期刊文献+
共找到216,269篇文章
< 1 2 250 >
每页显示 20 50 100
Design and synthesis of KIT-5/Beta composites under varied hydrothermal temperatures and evaluation of their hydrodenitrogenation performance
1
作者 LIU Xing GUO Shaoqing +7 位作者 CUI Haitao LI Zhenrong LI Xin WANG Lei WU Xingjie WANG Xiaoxiao YUAN Lijing ZHAO Liangfu 《燃料化学学报(中英文)》 北大核心 2026年第1期46-57,共12页
KIT-5/Beta composite supports were synthesized using an in situ self-assembly hydrothermal method,and NiW/KIT-5/Beta catalysts were prepared by impregnation.A series of characterization techniques were utilized to eva... KIT-5/Beta composite supports were synthesized using an in situ self-assembly hydrothermal method,and NiW/KIT-5/Beta catalysts were prepared by impregnation.A series of characterization techniques were utilized to evaluate the influence of varying hydrothermal synthesis temperatures on the physicochemical properties of both the KIT-5/Beta supports and the resulting catalysts.The catalytic performances of catalysts were evaluated under reaction conditions of 320℃,4 MPa H_(2)pressure,and a weight hourly space velocity(WHSV)of 4.8 h^(-1)for hydrodenitrogenation(HDN)of quinoline.The results indicated that the specific surface area and pore structure of the materials could be effectively regulated by adjusting the hydrothermal synthesis temperature,which in turn influenced the number of active sites on the catalyst.The NiW/KB-125 catalyst,synthesized at 125℃,presented the highest quinoline HDN efficiency(96.8%),which can be attributed to its favorable pore channel structure,greater Brønsted acid number,higher degree of metal sulfidation(80.12%)and appropriate metal-support interaction(MSI). 展开更多
关键词 mesoporous-microporous material KIT-5/Beta composite NiWS QUINOLINE HYDRODENITROGENATION
在线阅读 下载PDF
Post-synthetic modification strategy to construct Co-MOF composites for boosting oxygen evolution reaction activity
2
作者 ZHENG Haifeng GUO Xingzhe +5 位作者 WEI Yunwei WANG Xinfang QI Huimin YAN Yuting ZHANG Jie LI Bingwen 《无机化学学报》 北大核心 2026年第1期193-202,共10页
The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecul... The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecules and{[Co2(BINDI)(DMA)_(2)]·DMA}_(n)(Co-MOF,H4BINDI=N,N'-bis(5-isophthalic acid)naphthalenediimide,DMA=N,N-dimethylacetamide)was synthesized via a one-pot method,leveragingπ-πinteractions between pyrene and Co-MOF to modulate electrical conductivity.Results demonstrate that the Py@Co-MOF catalyst exhibited significantly enhanced OER performance compared to pure Co-MOF or pyrene-based electrodes,achieving an overpotential of 246 mV at a current density of 10 mA·cm^(-2) along with excellent stability.Density functional theory(DFT)calculations reveal that the formation of O*in the second step is the rate-determining step(RDS)during the OER process on Co-MOF,with an energy barrier of 0.85 eV due to the weak adsorption affinity of the OH*intermediate for Co sites.CCDC:2419276. 展开更多
关键词 PYRENE metal-organic frameworks composite catalyst oxygen evolution reaction density functional theory
在线阅读 下载PDF
CoMoNiO-S/nickel foam heterostructure composite for efficient oxygen evolution catalysis performance
3
作者 YANG Hong SHAO Shengjuan +2 位作者 LI Baoyi LU Yifan LI Na 《无机化学学报》 北大核心 2026年第1期203-215,共13页
A composite electrocatalyst,CoMoNiO-S/NF-110(NF is nickel foam),was synthesized through electrodeposition,followed by pyrolysis and then the vulcanization process.CoMoNiO-S/NF-110 exhibited a structure where Ni3S2 and... A composite electrocatalyst,CoMoNiO-S/NF-110(NF is nickel foam),was synthesized through electrodeposition,followed by pyrolysis and then the vulcanization process.CoMoNiO-S/NF-110 exhibited a structure where Ni3S2 and Mo2S3 nanoparticles were integrated at the edges of Co3O4 nanosheets,creating a rich,heterogeneous interface that enhances the synergistic effects of each component.In an alkaline electrolyte,the synthesized CoMoNiO-S/NF-110 exhibited superior electrocatalytic performance for oxygen evolution reaction(OER),achieving current densities of 100 and 200 mA·cm^(-2) with low overpotentials of 199.4 and 224.4 mV,respectively,outperforming RuO2 and several high-performance Mo and Ni-based catalysts.This excellent performance is attributed to the rich interface formed between the components and active sites exposed by the defect structure. 展开更多
关键词 oxygen evolution reaction VULCANIZATION composite electrocatalyst MoNi-based catalyst
在线阅读 下载PDF
The Microstructure and Properties of Graphene/Copper Composite Wires
4
作者 CHEN Wei CHEN Yufei +2 位作者 KUANG Meizhou CHEN Haibing LIN Gaoyong 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期1-7,共7页
In this study,multilayer lamination welding was employed to prepare graphene/copper(Gr/Cu)composite billets from graphene-coated copper foils,followed by multi-pass cold drawing to produce Φ1 mm Gr/Cu composite wires... In this study,multilayer lamination welding was employed to prepare graphene/copper(Gr/Cu)composite billets from graphene-coated copper foils,followed by multi-pass cold drawing to produce Φ1 mm Gr/Cu composite wires.Microstructure and property analyses in both the cold-drawn and annealed states show that the incorporation of graphene significantly improves the ductility and electrical conductivity of the copper wire.After annealing at 350℃ for 30 minutes,the composite wire demonstrates a tensile strength of 270 MPa and an electrical conductivity of 102.74%IACS,both superior to those of pure copper wire under identical conditions.At 150℃,the electrical conductivity of the annealed composite wire reaches 72.60%IACS,notably higher than the 68.19%IACS of pure copper.The results suggest that graphene is uniformly distributed within the composite wire,with minimal impact on conductivity,while effectively refining the copper grain structure to enhance ductility.Moreover,graphene suppresses copper lattice vibrations at elevated temperatures,reducing the rate of conductivity degradation. 展开更多
关键词 copper-based composite wire GRAPHENE electrical conductivity cold drawing ANNEALING
原文传递
Enhanced electromagnetic wave absorption in biochar/yttrium iron garnet hybrid composites for electromagnetic interference shielding applications
5
作者 Ozgur Yasin Keskin 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期335-346,共12页
Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the... Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the shielding effectiveness of the composite structure.Firstly,the effect of the pyrolysis temperature on the shielding effectiveness of biochar was investigated.Secondly,biochars combined with YIG nanocrystals with different contents and shielding effectiveness of the composites were investigated.The electromagnetic effectiveness of the samples was investigated within the X band(8-12 GHz).The findings indicate that biochar demonstrates enhanced absorption properties with elevated pyrolysis temperatures.Biochars demonstrated an approximate 40 d B shielding effectiveness,while YIG exhibited approximately 7 d B,corresponding to absorption at 8 GHz.However,the combination of biochar and YIG exhibited exceptional absorption,reaching 67.12 d B at 8 GHz. 展开更多
关键词 BIOCHAR electromagnetic shielding electromagnetic wave absorption composite
在线阅读 下载PDF
Horizontal Bearing Capacity of Monocolumn Composite Bucket Foundations for Offshore Wind Turbines
6
作者 Hongyan Ding Renhao Wang +1 位作者 Puyang Zhang Conghuan Le 《哈尔滨工程大学学报(英文版)》 2026年第1期162-174,共13页
Monocolumn composite bucket foundation is a new type of offshore wind energy foundation.Its bearing characteristics under shallow bedrock conditions and complex geological conditions have not been extensively studied.... Monocolumn composite bucket foundation is a new type of offshore wind energy foundation.Its bearing characteristics under shallow bedrock conditions and complex geological conditions have not been extensively studied.Therefore,to analyze its bearing characteristics under complex conditions-such as silty soil,chalky soil,and shallow bedrock-this paper employs finite element software to establish various soil combination scenarios.The load-displacement curves of the foundations under these scenarios are calculated to subsequently evaluate the horizontal ultimate bearing capacity.This study investigates the effects of shallow bedrock depth,the type of soil above the bedrock,the thickness of layered soil,and the quality of layered soil on the bearing characteristics of the monocolumn composite bucket foundation.Based on the principle of single-variable control,the ultimate bearing capacity characteristics of the foundation under different conditions are compared.The distribution of soil pressure inside and outside the bucket wall on the compressed side of the foundation,along with the plastic strain of the soil at the base of the foundation,is also analyzed.In conclusion,shallow bedrock somewhat reduces foundation bearing capacity.Under shallow bedrock conditions,the degree of influence on foundation bearing capacity characteristics can considerably vary on different upper soils.The thickness of each soil layer and the depth to bedrock in stratified soils also affect the bearing capacity of the foundation.The findings of this paper provide a theoretical reference for related foundation design and construction.In practice,the bearing performance of the foundation can be enhanced by improvingthe soil quality in the bucket,adjusting the penetration depth,adjusting the percentage of different types of soil layers in the bucket,and applying other technical construction methods. 展开更多
关键词 Monocolumn composite bucket foundations Shallow bedrock Bearing characteristics Offshore wind power Silty soil Chalky soil
在线阅读 下载PDF
Graphene Aerogel Composites with Self‑Organized Nanowires‑Packed Honeycomb Structure for Highly Efficient Electromagnetic Wave Absorption 被引量:1
7
作者 Xiao You Huiying Ouyang +6 位作者 Ruixiang Deng Qiuqi Zhang Zhenzhong Xing Xiaowu Chen Qingliang Shan Jinshan Yang Shaoming Dong 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期533-547,共15页
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h... With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h. 展开更多
关键词 Hierarchical porous structure Interface High-temperature resistance Graphene aerogel composites Electromagnetic wave absorption
在线阅读 下载PDF
Preparation and Performance of Large-Size Seamless Zirconium-Titanium-Steel Composite Plate 被引量:1
8
作者 Wu Jiangtao Wang Ding +7 位作者 Huang Xingli Zou Juntao Zhang Penghui Gao Ruibo Yang Huan Zhang Tao Ren Qianyu Wei Yong 《稀有金属材料与工程》 北大核心 2025年第2期319-326,共8页
Zirconium-titanium-steel composite plate with the size of 2500 mm×7800 mm×(3+0.7+22)mm was prepared by explosive welding+rolling method,and its properties were analyzed by ultrasonic nondestructive testing,p... Zirconium-titanium-steel composite plate with the size of 2500 mm×7800 mm×(3+0.7+22)mm was prepared by explosive welding+rolling method,and its properties were analyzed by ultrasonic nondestructive testing,phased array waveform shape,interface structure shape,electronic scanning,and mechanical property testing.Results show that the rolling temperature of zirconiumtitanium complex should be controlled at 760°C,and the rolling reduction of each pass should be controlled at 10%–25%.The explosive velocity to prepare zirconium-titanium-steel composite plates should be controlled at 2450–2500 m/s,the density should be 0.78 g/cm3,the stand-off height should be 12 mm,and the explosive height of Zone A and Zone B should be 45–50 mm.Explosive welding combined with rolling method reduces the impact of explosive welding and multiple heat treatment on material properties.Meanwhile,the problems of surface wrinkling and cracking,which occur during the preparation process of large-sized zirconiumtitanium-steel composite plate,can be solved. 展开更多
关键词 large-size seamless zirconium-titanium-steel composite plate explosive welding+rolling phased array interface structure
原文传递
Microstructure Analysis of TC4/Al 6063/Al 7075 Explosive Welded Composite Plate via Multi-scale Simulation and Experiment 被引量:1
9
作者 Zhou Jianan Luo Ning +3 位作者 Liang Hanliang Chen Jinhua Liu Zhibing Zhou Xiaohong 《稀有金属材料与工程》 北大核心 2025年第1期27-38,共12页
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ... Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces. 展开更多
关键词 TC4/Al 6063/Al 7075 composite plate explosive welding microstructure analysis multi-scale simulation
原文传递
Carbon-based porous materials for performance-enhanced composite phase change materials in thermal energy storage:Materials,fabrication and applications 被引量:5
10
作者 Lei Hu Li Zhang +4 位作者 Wei Cui Qinyou An Ting Ma Qiuwang Wang Liqiang Mai 《Journal of Materials Science & Technology》 2025年第7期204-226,共23页
Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductiv... Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductivity and poor shape stability are the main drawbacks in realizing the large-scale application of PCMs.Promisingly,developing composite PCM(CPCM)based on porous supporting mate-rial provides a desirable solution to obtain performance-enhanced PCMs with improved effective thermal conductivity and shape stability.Among all the porous matrixes as supports for PCM,three-dimensional carbon-based porous supporting material has attracted considerable attention ascribing to its high ther-mal conductivity,desirable loading capacity of PCMs,and excellent chemical compatibility with various PCMs.Therefore,this work systemically reviews the CPCMs with three-dimensional carbon-based porous supporting materials.First,a concise rule for the fabrication of CPCMs is illustrated in detail.Next,the experimental and computational research of carbon nanotube-based support,graphene-based support,graphite-based support and amorphous carbon-based support are reviewed.Then,the applications of the shape-stabilized CPCMs including thermal management and thermal conversion are illustrated.Last but not least,the challenges and prospects of the CPCMs are discussed.To conclude,introducing carbon-based porous materials can solve the liquid leakage issue and essentially improve the thermal conductivity of PCMs.However,there is still a long way to further develop a desirable CPCM with higher latent heat capacity,higher thermal conductivity,and more excellent shape stability. 展开更多
关键词 Thermal energy storage Phase change material Supporting material Carbon-based material Thermal conductivity Shape-stabilized composite
原文传递
Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection 被引量:4
11
作者 Pengfei Yin Di Lan +7 位作者 Changfang Lu Zirui Jia Ailing Feng Panbo Liu Xuetao Shi Hua Guo Guanglei Wu Jian Wang 《Journal of Materials Science & Technology》 2025年第1期204-223,共20页
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro... With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well. 展开更多
关键词 Microwave absorption Structural regulation Performance optimization Emerging composites Synthetic strategy
原文传递
Femtosecond laser rotary drilling for SiC_(f)/SiC composites 被引量:3
12
作者 Feng YANG Zhigang DONG +3 位作者 Renke KANG Hongbin MA Guangyi MA Yan BAO 《Chinese Journal of Aeronautics》 2025年第2期478-490,共13页
SiC_(f)/SiC ceramic matrix composites(SiC_(f)/SiC composites)are difficult to drill small holes due to their heterogeneity,high hardness,and low electrical conductivity.In order to solve the difficulties of poor quali... SiC_(f)/SiC ceramic matrix composites(SiC_(f)/SiC composites)are difficult to drill small holes due to their heterogeneity,high hardness,and low electrical conductivity.In order to solve the difficulties of poor quality and low efficiency when drilling small holes,a novel femtosecond laser rotary drilling(FLRD)technique is proposed.Beam kinematic paths and experimental studies were carried out to analyze the effects of processing parameters on the drilling results in the two-step drilling process.In the through-hole drilling stage,the material removal rate increases with increasing laser power,decreasing feed speed and decreasing pitch.As for the finishing stage of drilling,the exit diameter increased with increasing laser power and decreasing feed speed.The drilling parameters were selected by taking the processing efficiency of through-hole and the quality of finished hole as the constraint criteria.Holes with a diameter of 500μm were drilled using FLRD in 3 mm thick SiC_(f)/SiC composites with a drilling time<150 s.The hole aspect ratio was 6,the taper<0.2°,and there was no significant thermal damage at the orifice or the wall of the hole.The FLRD provides a solution for precision machining of small holes in difficult-to-machine materials by offering the advantages of high processing quality and short drilling times. 展开更多
关键词 Ceramic matrix composites Femtosecond lasers DRILLING HIGH-QUALITY Film cooling holes
原文传递
Construction of iron manganese metal-organic framework-derived manganese ferrite/carbon-modified graphene composites toward broadband and efficient electromagnetic dissipation 被引量:2
13
作者 Baohua Liu Shuai Liu +1 位作者 Zaigang Luo Ruiwen Shu 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期546-555,共10页
The preparation of carbon-based electromagnetic wave(EMW)absorbers possessing thin matching thickness,wide absorption bandwidth,strong absorption intensity,and low filling ratio remains a huge challenge.Metal-organic ... The preparation of carbon-based electromagnetic wave(EMW)absorbers possessing thin matching thickness,wide absorption bandwidth,strong absorption intensity,and low filling ratio remains a huge challenge.Metal-organic frameworks(MOFs)are ideal self-sacrificing templates for the construction of carbon-based EMW absorbers.In this work,bimetallic FeMn-MOF-derived MnFe_(2)O_(4)/C/graphene composites were fabricated via a two-step route of solvothermal reaction and the following pyrolysis treatment.The results re-veal the evolution of the microscopic morphology of carbon skeletons from loofah-like to octahedral and then to polyhedron and pomegran-ate after the adjustment of the Fe^(3+)to Mn^(2+)molar ratio.Furthermore,at the Fe^(3+)to Mn^(2+)molar ratio of 2:1,the obtained MnFe_(2)O_(4)/C/graphene composite exhibited the highest EMW absorption capacity.Specifically,a minimum reflection loss of-72.7 dB and a max-imum effective absorption bandwidth of 5.1 GHz were achieved at a low filling ratio of 10wt%.In addition,the possible EMW absorp-tion mechanism of MnFe_(2)O_(4)/C/graphene composites was proposed.Therefore,the results of this work will contribute to the construction of broadband and efficient carbon-based EMW absorbers derived from MOFs. 展开更多
关键词 metal-organic frameworks GRAPHENE magnetic composites morphology regulation electromagnetic dissipation
在线阅读 下载PDF
Crack-Net:A Deep Learning Approach to Predict Crack Propagation and Stress–Strain Curves in Particulate Composites 被引量:2
14
作者 Hao Xu Wei Fan +3 位作者 Lecheng Ruan Rundong Shi Ambrose C.Taylor Dongxiao Zhang 《Engineering》 2025年第6期149-163,共15页
Computational solid mechanics has become an indispensable approach in engineering,and numerical investigation of fracturing in composites is essential,as composites are widely used in structural applications.Crack evo... Computational solid mechanics has become an indispensable approach in engineering,and numerical investigation of fracturing in composites is essential,as composites are widely used in structural applications.Crack evolution in composites is the path to elucidating the relationship between microstructures and fracture performance,but crack-based finite-element methods are computationally expensive and time-consuming,which limits their application in computation-intensive scenarios.Consequently,this study proposes a deep learning framework called Crack-Net for instant prediction of the dynamic crack growth process,as well as its strain-stress curve.Specifically,Crack-Net introduces an implicit constraint technique,which incorporates the relationship between crack evolution and stress response into the network architecture.This technique substantially reduces data requirements while improving predictive accuracy.The transfer learning technique enables Crack-Net to handle composite materials with reinforcements of different strengths.Trained on high-accuracy fracture development datasets from phase field simulations,the proposed framework is capable of tackling intricate scenarios,involving materials with diverse interfaces,varying initial conditions,and the intricate elastoplastic fracture process.The proposed Crack-Net holds great promise for practical applications in engineering and materials science,in which accurate and efficient fracture prediction is crucial for optimizing material performance and microstructural design. 展开更多
关键词 Fracture of composites Crack evolution Deep learning Modeling
在线阅读 下载PDF
Fabrication of bamboo-inspired continuous carbon fiber-reinforced SiC composites via dual-material thermally assisted extrusion-based 3D printing 被引量:2
15
作者 Sai Li Haitian Zhang +8 位作者 Zhongliang Lu Fusheng Cao Ziyao Wang Yan Liu Xiaohui Zhu Shuai Ning Kai Miao Shaoyu Qiu Dichen Li 《Journal of Materials Science & Technology》 2025年第5期92-103,共12页
Ceramic matrix composites(CMCs)structural components encounter the dual challenges of severe mechanical conditions and complex electromagnetic environments due to the increasing demand for stealth technology in aerosp... Ceramic matrix composites(CMCs)structural components encounter the dual challenges of severe mechanical conditions and complex electromagnetic environments due to the increasing demand for stealth technology in aerospace field.To address various functional requirements,this study integrates a biomimetic strategy inspired by gradient bamboo vascular bundles with a novel dual-material 3D printing approach.Three distinct bamboo-inspired structural configurations Cf/SiC composites are designed and manufactured,and the effects of these different structural configurations on the CVI process are analyzed.Nanoindentation method is utilized to characterize the relationship between interface bonding strength and mechanical properties.The results reveal that the maximum flexural strength and fracture toughness reach 108.6±5.2 MPa and 16.45±1.52 MPa m1/2,respectively,attributed to the enhanced crack propagation resistance and path caused by the weak fiber-matrix interface.Furthermore,the bio-inspired configuration enhances the dielectric loss and conductivity loss,exhibiting a minimum reflection loss of−24.3 dB with the effective absorption band of 3.89 GHz.This work introduces an innovative biomimetic strategy and 3D printing method for continuous fiber-reinforced ceramic composites,expanding the application of 3D printing technology in the field of CMCs. 展开更多
关键词 3D printing Cf/SiC composites Mechanical properties Electromagnetic wave absorption
原文传递
Denitrification enhanced by composite carbon sources in AAO-biofilter:Efficiency and metagenomics research 被引量:1
16
作者 Fan Guo Guokai Yan +8 位作者 Haiyan Wang Lingling Shi Yanjie Zhang Yu Ling Youfang Wei Huan Wang Weiyang Dong Yang Chang Ziyang Tian 《Journal of Environmental Sciences》 2025年第4期25-35,共11页
Nitrogen removal from domestic sewage is usually limited by insufficient carbon source and electron donor.An economical solid carbon source was developed by composition of polyvinyl alcohol,sodium alginate,and corncob... Nitrogen removal from domestic sewage is usually limited by insufficient carbon source and electron donor.An economical solid carbon source was developed by composition of polyvinyl alcohol,sodium alginate,and corncob,which was utilized as external carbon source in the anaerobic anoxic oxic(AAO)-biofilter for the treatment of low carbon-to-nitrogen ratio domestic sewage,and the nitrogen removal was remarkably improved from 63.2%to 96.5%.Furthermore,the effluent chemical oxygen demand maintained at 35 mg/L or even lower,and the total nitrogenwas reduced to less than 2mg/L.Metagenomic analysis demonstrated that the microbial communities responsible for potential denitrification and organic matter degradation in both AAO and the biofilter reactors were mainly composed of Proteobacteria and Bacteroides,respectively.The solid carbon source addition resulted in relatively high abundance of functional enzymes responsible for NO_(3)^(−)-N to NO_(2)^(−)-N con-version in both AAO and the biofilter reactors,thus enabled stable reaction.The carbon source addition during glycolysis primarily led to the increase of genes associated with the metabolic conversion of fructose 1.6P2 to glycerol-3P The reactor maintained high abun-dance of genes related to the tricarboxylic acid cycle,and then guaranteed efficient carbon metabolism.The results indicate that the composite carbon source is feasible for denitri-fication enhancement of AAO-biofilter,which contribute to the theoretical foundation for practical nitrogen removal application. 展开更多
关键词 AAO BIOFILTER composite carbon source Nitrogen removal METAGENOMICS
原文传递
Performance Enhancement of Aquivion-based Ionic Polymer Metal Composites for Cylindrical Actuators 被引量:1
17
作者 Xiaojie Tong Min Yu +3 位作者 Guoxiao Yin Yuwei Wu Chengbo Tian Gengying Wang 《Journal of Bionic Engineering》 2025年第1期1-11,共11页
As a kind of ionic artificial muscle material,Ionic Polymer-Metal Composites(IPMCs)have the advantages of a low drive current,light weight,and significant flexibility.IPMCs are widely used in the fields of biomedicine... As a kind of ionic artificial muscle material,Ionic Polymer-Metal Composites(IPMCs)have the advantages of a low drive current,light weight,and significant flexibility.IPMCs are widely used in the fields of biomedicine,soft robots,etc.However,the displacement and blocking force of the traditional sheet-type Nafion-IPMC need to be improved,and it has the limitation of unidirectional actuation.In this paper,a new type of short side chain Aquivion material is used as the polymer in the IPMC.The cylindrical IPMC is prepared by extrusion technology to improve its actuation performance and realize multi-degree-of-freedom motion.In comparison to the traditional Nafion-IPMC,the ion exchange capacity,specific capacitance,and conductivity of Aquivion-IPMC are improved by 28%,27%,and 32%,respectively,and the displacement and blocking force are improved by 57%and 25%,respectively.The cylindrical actuators can be deflected in eight directions.This indicates that Aquivion,as a polymer membrane for IPMC,holds significant application potential.By designing a cylindrical IPMC electrode distribution,the multi-degree-of-freedom deflection of IPMC can be realized. 展开更多
关键词 Ionic polymer-metal composite Equivalent weight Aquivion NAFION Actuation performance
在线阅读 下载PDF
Variable stiffness design optimization of fiber-reinforced composite laminates with regular and irregular holes considering fiber continuity for additive manufacturing 被引量:1
18
作者 Yi LIU Zunyi DUAN +6 位作者 Chunping ZHOU Yuan SI Chenxi GUAN Yi XIONG Bin XU Jun YAN Jihong ZHU 《Chinese Journal of Aeronautics》 2025年第3期334-354,共21页
Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design o... Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper. 展开更多
关键词 Variable stiffness composite laminates Discrete material interpolation scheme Normal distribution fiber optimization Discrete fiber continuous filtering strategy Additive manufacturing of composite laminates
原文传递
Composite anti-disturbance predictive control of unmanned systems with time-delay using multi-dimensional Taylor network 被引量:1
19
作者 Chenlong LI Wenshuo LI Zejun ZHANG 《Chinese Journal of Aeronautics》 2025年第7期589-600,共12页
A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source di... A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach. 展开更多
关键词 Multi-dimensional Taylor network composite anti-disturbance Predictive control Unmanned systems Multi-source disturbances TIME-DELAY
原文传递
Revealing Hetero-Deformation Induced(HDI)Hardening and Dislocation Activity in a Dual-Heterostructure Magnesium Matrix Composite 被引量:1
20
作者 Lingling Fan Ran Ni +7 位作者 Lingbao Ren Peng Xiao Ying Zeng Dongdi Yin Hajo Dieringa Yuanding Huang Gaofeng Quan Wei Feng 《Journal of Magnesium and Alloys》 2025年第2期902-921,共20页
Integrating a heterogeneous structure can significantly enhance the strength-ductility synergy of composites.However,the relationship between hetero-deformation induced(HDI)strain hardening and dislocation activity ca... Integrating a heterogeneous structure can significantly enhance the strength-ductility synergy of composites.However,the relationship between hetero-deformation induced(HDI)strain hardening and dislocation activity caused by heterogeneous structures in the magnesium matrix composite remains unclear.In this study,a dual-heterogeneous TiC/AZ61 composite exhibits significantly improved plastic elongation(PEL)by nearly one time compared to uniform FG composite,meanwhile maintaining a high strength(UTS:417 MPa).This is because more severe deformation inhomogeneity in heterogeneous structure leads to more geometrically necessary dislocations(GNDs)accumulation and stronger HDI stress,resulting in higher HDI hardening compared to FG and CG composites.During the early stage of plastic deformation,the pile-up types of GND in the FG zone and CG zone are significantly different.GNDs tend to form substructures in the FG zone instead of the CG zone.They only accumulate at grain boundaries of the CG region,thereby leading to obviously increased back stress in the CG region.In the late deformation stage,the elevated HDI stress activates the new〈c+a〉dislocations in the CG region,resulting in dislocation entanglements and even the formation of substructures,further driving the high hardening in the heterogeneous composite.However,For CG composite,〈c+a〉dislocations are not activated even under large plastic strains,and only〈a〉dislocations pile up at grain boundaries and twin boundaries.Our work provides an in-depth understanding of dislocation variation and HDI hardening in heterogeneous magnesium-based composites. 展开更多
关键词 Mg-matrix composite Heterogeneous structure HDI hardening GND density DISLOCATION
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部