A dual structure of composite right/left handed (CRLH) transmission line (TL) is analyzed in which an inductance LR is in parallel with a capacitance CL and a shunt capacitance CR is in series with an inductance LL. B...A dual structure of composite right/left handed (CRLH) transmission line (TL) is analyzed in which an inductance LR is in parallel with a capacitance CL and a shunt capacitance CR is in series with an inductance LL. Both the distributed and lumped cases are considered. The dispersion diagram and transmission properties of the dual CRLH TL are given and compared with those of a standard CRLH TL. Contrary to the frequency response of a standard CRLH TL, a dual CRLH TL has a left-handed (negative phase shift) band at higher frequencies and a right-handed (positive phase shift) band at lower frequencies. A novel dual-band balun is presented as an application.展开更多
Three-layer composite ingot of 4045/3004/4045 aluminum alloys was prepared by direct-chill semi-continuous casting process,the temperature field distribution near the composite interface,macro-morphology,microstructur...Three-layer composite ingot of 4045/3004/4045 aluminum alloys was prepared by direct-chill semi-continuous casting process,the temperature field distribution near the composite interface,macro-morphology,microstructure and composition distribution of the composite interface were investigated.The results show that semi-solid layer with a certain thickness forms near the interface due to the effect of cooling plate,which ensures successful implementation of casting the composite ingot.Two different aluminum alloys are well bonded metallurgically.The mechanical properties of composite interface were measured,the tensile and shearing strengths of composite interface are 105 and 88 MPa,respectively,which proves that the composite interface is a kind of metallurgical bonding.展开更多
Based on the first-order shear deformation theory,a 3-node co-rotational triangular finite element formulation is developed for large deformation modeling of non-smooth,folded and multi-shell laminated composite struc...Based on the first-order shear deformation theory,a 3-node co-rotational triangular finite element formulation is developed for large deformation modeling of non-smooth,folded and multi-shell laminated composite structures.The two smaller components of the mid-surface normal vector of shell at a node are defined as nodal rotational variables in the co-rotational local coordinate system.In the global coordinate system,two smaller components of one vector,together with the smallest or second smallest component of another vector,of an orthogonal triad at a node on a non-smooth intersection of plates and/or shells are defined as rotational variables,whereas the two smaller components of the mid-surface normal vector at a node on the smooth part of the plate or shell(away from non-smooth intersections)are defined as rotational variables.All these vectorial rotational variables can be updated in an additive manner during an incremental solution procedure,and thus improve the computational efficiency in the nonlinear solution of these composite shell structures.Due to the commutativity of all nodal variables in calculating of the second derivatives of the local nodal variables with respect to global nodal variables,and the second derivatives of the strain energy functional with respect to local nodal variables,symmetric tangent stiffness matrices in local and global coordinate systems are obtained.To overcome shear locking,the assumed transverse shear strains obtained from the line-integration approach are employed.The reliability and computational accuracy of the present 3-node triangular shell finite element are verified through modeling two patch tests,several smooth and non-smooth laminated composite shells undergoing large displacements and large rotations.展开更多
A three-layered phosphor structure was designed and prepared by the spin coating of BaSi_(2)N_(2)O_(2):Eu(cyan-emitting)and(Sr,Ca)AlSiN_(3):Eu(red-emitting)phosphor films on the yellowemitting Y_(3)Al_(5)O_(12):Ce(YAG...A three-layered phosphor structure was designed and prepared by the spin coating of BaSi_(2)N_(2)O_(2):Eu(cyan-emitting)and(Sr,Ca)AlSiN_(3):Eu(red-emitting)phosphor films on the yellowemitting Y_(3)Al_(5)O_(12):Ce(YAG:Ce)phosphor ceramic synthesized by the solid-state reaction under vacuum sintering.In order to achieve high color rendering lighting,the influence of the composition and structure of the three-layered phosphors on the optical,thermal,and electrical properties of the chip-on-board(COB)packaged white-light-emitting diodes(WLEDs)was studied systematically.The WLED with the structure of“red+cyan+yellow”(R+C+Y)three-layered phosphor generated neutral white light and had a luminous efficacy of 75 lm/W,the fidelity index(R_(f))of 93,the gamut index(R_(g))of 97,and the correlated color temperature(CCT)of 3852 K.Under the excitation of laser diode(LD),the layer-structured phosphor yielded the white light with a luminous efficacy of 120 lm/W,color rendering index(CRI)of 90,and CCT of 5988 K.The result indicates that the three-layered phosphor structure is a promising candidate to achieve high color rendering and high luminous efficacy lighting.展开更多
基金Project supported by the National Basic Research Program (973) of China (No. 2004CB719802), and the Science and Technology De-partment of Zhejiang Province (No. 2005C31004), China
文摘A dual structure of composite right/left handed (CRLH) transmission line (TL) is analyzed in which an inductance LR is in parallel with a capacitance CL and a shunt capacitance CR is in series with an inductance LL. Both the distributed and lumped cases are considered. The dispersion diagram and transmission properties of the dual CRLH TL are given and compared with those of a standard CRLH TL. Contrary to the frequency response of a standard CRLH TL, a dual CRLH TL has a left-handed (negative phase shift) band at higher frequencies and a right-handed (positive phase shift) band at lower frequencies. A novel dual-band balun is presented as an application.
基金Project (2005CB623707) supported by the National Basic Research Program of China
文摘Three-layer composite ingot of 4045/3004/4045 aluminum alloys was prepared by direct-chill semi-continuous casting process,the temperature field distribution near the composite interface,macro-morphology,microstructure and composition distribution of the composite interface were investigated.The results show that semi-solid layer with a certain thickness forms near the interface due to the effect of cooling plate,which ensures successful implementation of casting the composite ingot.Two different aluminum alloys are well bonded metallurgically.The mechanical properties of composite interface were measured,the tensile and shearing strengths of composite interface are 105 and 88 MPa,respectively,which proves that the composite interface is a kind of metallurgical bonding.
基金This work was supported by National Natural Science Foundation of China under Grant 11672266.
文摘Based on the first-order shear deformation theory,a 3-node co-rotational triangular finite element formulation is developed for large deformation modeling of non-smooth,folded and multi-shell laminated composite structures.The two smaller components of the mid-surface normal vector of shell at a node are defined as nodal rotational variables in the co-rotational local coordinate system.In the global coordinate system,two smaller components of one vector,together with the smallest or second smallest component of another vector,of an orthogonal triad at a node on a non-smooth intersection of plates and/or shells are defined as rotational variables,whereas the two smaller components of the mid-surface normal vector at a node on the smooth part of the plate or shell(away from non-smooth intersections)are defined as rotational variables.All these vectorial rotational variables can be updated in an additive manner during an incremental solution procedure,and thus improve the computational efficiency in the nonlinear solution of these composite shell structures.Due to the commutativity of all nodal variables in calculating of the second derivatives of the local nodal variables with respect to global nodal variables,and the second derivatives of the strain energy functional with respect to local nodal variables,symmetric tangent stiffness matrices in local and global coordinate systems are obtained.To overcome shear locking,the assumed transverse shear strains obtained from the line-integration approach are employed.The reliability and computational accuracy of the present 3-node triangular shell finite element are verified through modeling two patch tests,several smooth and non-smooth laminated composite shells undergoing large displacements and large rotations.
基金supported by the National Key R&D Program of China(Grant No.2017YFB0310500)the National Natural Science Foundation of China(Grant No.61775226)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA22010301)the key research project of the frontier science of the Chinese Academy of Sciences(No.QYZDB-SSW-JSC022).
文摘A three-layered phosphor structure was designed and prepared by the spin coating of BaSi_(2)N_(2)O_(2):Eu(cyan-emitting)and(Sr,Ca)AlSiN_(3):Eu(red-emitting)phosphor films on the yellowemitting Y_(3)Al_(5)O_(12):Ce(YAG:Ce)phosphor ceramic synthesized by the solid-state reaction under vacuum sintering.In order to achieve high color rendering lighting,the influence of the composition and structure of the three-layered phosphors on the optical,thermal,and electrical properties of the chip-on-board(COB)packaged white-light-emitting diodes(WLEDs)was studied systematically.The WLED with the structure of“red+cyan+yellow”(R+C+Y)three-layered phosphor generated neutral white light and had a luminous efficacy of 75 lm/W,the fidelity index(R_(f))of 93,the gamut index(R_(g))of 97,and the correlated color temperature(CCT)of 3852 K.Under the excitation of laser diode(LD),the layer-structured phosphor yielded the white light with a luminous efficacy of 120 lm/W,color rendering index(CRI)of 90,and CCT of 5988 K.The result indicates that the three-layered phosphor structure is a promising candidate to achieve high color rendering and high luminous efficacy lighting.