The interfacial interaction existing in the Ni ZrO 2 composite plating has been investigated. The experimental results show that no new phases were formed in the interfacial regions between matrix Ni and ZrO 2 part...The interfacial interaction existing in the Ni ZrO 2 composite plating has been investigated. The experimental results show that no new phases were formed in the interfacial regions between matrix Ni and ZrO 2 particles, but an orbital interaction through the mutual overlap of the d orbits does exist in the interfacial regions between Ni atoms and Zr 3+ ions.展开更多
The electroless Ni-P-carbon nanotubes composite plating was studied on the copper substrate. Metallurgical microscope, scanning electronic microscope, X-ray diffractometer and micro hardness tester were used to study ...The electroless Ni-P-carbon nanotubes composite plating was studied on the copper substrate. Metallurgical microscope, scanning electronic microscope, X-ray diffractometer and micro hardness tester were used to study the structure, constitution and performance of the electroless Ni-P-carbon nanotubes composite deposit. Experiential results show that, with the increment of carbon nanotubes content in electroless plating solution, the grain size on the sample surface decreases whereas the density of grains and the hardness for composite deposit increases. Moreover, adding carbon nanotubes not only improves the degree of crystallization for the composite deposit but also helps their transformation from the amorphous state to the nanocrystal state.展开更多
The Ni/FA composite plating was realized by electrodeposition with fly ash (FA) as inert particles. The main compositions of FA are 72% SiO2 and 25% A1203 in the size of 3-7 Ixm. Electrodeposition was performed in W...The Ni/FA composite plating was realized by electrodeposition with fly ash (FA) as inert particles. The main compositions of FA are 72% SiO2 and 25% A1203 in the size of 3-7 Ixm. Electrodeposition was performed in Watts bath containing FA with concentrations of 5, 20, 50 g/L, current densities of 2 and 4 A/dm2, temperature of 50 ~C and magnetic stirring of 250 r/min. Scanning electron microscope (SEM+EDX), electrochemical and mechanical technique were used to study morphology, composition and properties of coating. FA content in deposit is dependent on the FA concentration in solution, as well as the plating parameters. Since FA particles were incorporated in the coating, the mechanical and electrochemical properties of the coating were increased. The microhardness of Ni/FA composite plating reaches HV 430 in comparison with HV 198 of pure Ni coating. It was confirmed by electrochemical measurement that the corrosion resistance of Ni/FA composite coating was higher than that of pure Ni.展开更多
Nano-ZiO_2was used to prepare composite electroplating bath by addingdifferent kinds of dispersants such as PEG and MZS. The composite electroplating bath was studied bymeans of sedimentation experiments and particle-...Nano-ZiO_2was used to prepare composite electroplating bath by addingdifferent kinds of dispersants such as PEG and MZS. The composite electroplating bath was studied bymeans of sedimentation experiments and particle-size analysis. The results showed that dispersantswith simple structure and small molecular weight could not play steric role, however, the highlydispersed and stabilized nanoparticle Ni-ZrO_2 composite electroplating bath was obtained at pHvalue equaling to 3 by adding MZS which is a kind of macromolecule dispersant with plentifulbranched chains.展开更多
The effect of nanodiamond content in electrolyte and rotational speed of the stirrer on the deposition rate of coatings, the nanodiamond content in coatings, the micro- structure and the micro-hardness of coatings wer...The effect of nanodiamond content in electrolyte and rotational speed of the stirrer on the deposition rate of coatings, the nanodiamond content in coatings, the micro- structure and the micro-hardness of coatings were studicd. A self-made pin-on-disk tribo-meter was employed to evaluate the wear resistance of prepared coatings. Re- sults show that the thickness of composite coating decreases with the rotational speed, while the micro hardness of coating and the content of nanodiamond in coating increase with increasing its content in electrolyte. The wear resistance of the composite coating deposited in an electrolye with 6 g/L nanodiamond increases by 50% in contrast with the pure Ni-P coating.展开更多
Technology and properties of electroless composite RE-Ni-B-SiC coatings have been investigated.Results show that stabilizer plys a decisive role in electroless composite Ni-B-SiC,the addition of appropriate quantity o...Technology and properties of electroless composite RE-Ni-B-SiC coatings have been investigated.Results show that stabilizer plys a decisive role in electroless composite Ni-B-SiC,the addition of appropriate quantity of RE(rare earth) into the Ni-B-SiC bath not only increases SiC content in composite coatings,their hardness and wear resistance but also improves crystalline fineness,Wear resistance increases with the increase of SiC.Hardness and wear resistance of composite coatings reach peak values a fter heat treatment at 4OO and 500℃ for 1h respectively.展开更多
Zirconium-titanium-steel composite plate with the size of 2500 mm×7800 mm×(3+0.7+22)mm was prepared by explosive welding+rolling method,and its properties were analyzed by ultrasonic nondestructive testing,p...Zirconium-titanium-steel composite plate with the size of 2500 mm×7800 mm×(3+0.7+22)mm was prepared by explosive welding+rolling method,and its properties were analyzed by ultrasonic nondestructive testing,phased array waveform shape,interface structure shape,electronic scanning,and mechanical property testing.Results show that the rolling temperature of zirconiumtitanium complex should be controlled at 760°C,and the rolling reduction of each pass should be controlled at 10%–25%.The explosive velocity to prepare zirconium-titanium-steel composite plates should be controlled at 2450–2500 m/s,the density should be 0.78 g/cm3,the stand-off height should be 12 mm,and the explosive height of Zone A and Zone B should be 45–50 mm.Explosive welding combined with rolling method reduces the impact of explosive welding and multiple heat treatment on material properties.Meanwhile,the problems of surface wrinkling and cracking,which occur during the preparation process of large-sized zirconiumtitanium-steel composite plate,can be solved.展开更多
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ...Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.展开更多
For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattic...For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattice core located in the middle and several homogeneous orthotropic layers that are symmetrical relative to it.For this purpose,the partial differential equations of motion have been derived based on the first-order shear deformation theory,employing Hamilton’s principle and Von Kármán’s nonlinear displacement-strain relations.Then,the nonlinear partial differential equations of the plate are converted into a time-dependent nonlinear ordinary differential equation(Duffing equation)by applying the Galerkin method.From the solution of this equation,the natural frequencies are extracted.Then,to calculate the non-linear frequencies of the plate,the non-linear equation of the plate has been solved analytically using the method of multiple scales.Finally,the effect of some critical parameters of the system,such as the thickness,height,and different angles of the stiffeners on the linear and nonlinear frequencies,has been analyzed in detail.To confirmthe solution method,the results of this research have been compared with the reported results in the literature and finite elements in ABAQUS,and a perfect match is observed.The results reveal that the geometry and configuration of core ribs strongly affect the natural frequencies of the plate.展开更多
The paper study the interfacial mechanical properties and structural evolution mechanisms in 6061/AZ31B/6061 composite plates with and without Ni foil interlayers.For Ni-free interfaces,a continuous diffusion layer(3....The paper study the interfacial mechanical properties and structural evolution mechanisms in 6061/AZ31B/6061 composite plates with and without Ni foil interlayers.For Ni-free interfaces,a continuous diffusion layer(3.5-4.0μm)forms,dominated by brittle columnar Al_(12)Mg_(17) intermetallic compounds(IMCs,0.27-0.35μm thick),which act as preferential crack initiation sites.In contrast,Ni foil implantation induces interfacial restructuring during hot rolling:Constrained deformation fragments the Ni foil into grid-like segments with"olive"-shaped crosssections,embedded into Mg/Al matrices.These fragments(56% areal coverage)coexist with dispersed multiphase IMCs(Mg_(2)Ni,Al_(3)Ni,Mg_(3)AlNi,Al_(12)Mg_(17);10-20 nm grains)at fragment edges,forming a hybrid interface of"willow-leaf"Al_(12)Mg_(17) islands and nanoscale Mg_(2)Ni/Al_(3)Ni layers(15-25 nm).Hall-Petch analysis reveals the multiphase IMC interface exhibits 3.6×higher"kd^(-1/2)"strengthening contribution than single-phase Al_(12)Mg_(17) systems,attributed to grain refinement(20 nm vs.260 nm average grain size).Synergistic effects of mechanical interlocking,adhesion hierarchy(Ni-Al>Ni-Mg>Al-Mg),and nanoscale reinforcement collectively enhance peel strength by 78%without compromising bulk tensile properties.展开更多
In this study,microstructure and mechanical behavior of Mg/Al composite plates with Ti foil interlayer were systematically studied,with a great emphasis on the effect of different thicknesses of Ti foil interlayer.The...In this study,microstructure and mechanical behavior of Mg/Al composite plates with Ti foil interlayer were systematically studied,with a great emphasis on the effect of different thicknesses of Ti foil interlayer.The results show that compared to 100μm thick Ti foil,10μm thick Ti foil is more prone to fracture and is evenly distributed in fragments at the interface.The introduction of Ti foil can effectively refine the grain size of Mg layers of as-rolled Mg/Al composite plates,10μm thick Ti foil has a better refining effect than 100μm thick Ti foil.Ti foil can effectively increase the yield strength(YS)and ultimate strength(UTS)of as-rolled Mg/Al composite plates,10μm thick Ti foil significantly improves the elongation(El)of Mg/Al composite plate,while 100μm thick Ti foil slightly weakens the El.After annealing at 420℃ for 0.5 h and 4 h,Ti foil can inhibit the formation of intermetallic compounds(IMCs)at the interface of Mg/Al composite plates,which effectively improves the YS,UTS and El of Mg/Al composite plates.In addition,Ti foil can also significantly enhance the interfacial shear strength(SS)of Mg/Al composite plates before and after annealing.展开更多
Bio-inspired helicoidal composite laminates,inspired by the intricate helical structures found in nature,present a promising frontier for enhancing the mechanical properties of structural designs.Hence,this study prov...Bio-inspired helicoidal composite laminates,inspired by the intricate helical structures found in nature,present a promising frontier for enhancing the mechanical properties of structural designs.Hence,this study provides a comprehensive investigation into the nonlinear free vibration and nonlinear bending behavior of bio-inspired composite plates.The inverse hyperbolic shear deformation theory(IHSDT)of plates is employed to characterize the displacement field,with the incorporation of Green-Lagrange nonlinearity.The problem is modeled using the C0finite element method(FEM),and an in-house code is developed in the MATLAB environment to solve it numerically.Various helicoidal layup configurations including helicoidal recursive(HR),helicoidal exponential(HE),helicoidal semi-circular(HS),linear helicoidal(LH),and Fibonacci helicoidal(FH)with different layup sequences and quasi-isotropic configurations are studied.The model is validated,and parametric studies are conducted.These studies investigate the effects of layup configurations,side-to-thickness ratio,modulus ratios,boundary conditions,and loading conditions at different load amplitudes on the nonlinear vibration and nonlinear bending behaviors of bio-inspired composite plates.The results show that the laminate sequence exerts a substantial impact on both nonlinear natural frequencies and nonlinear bending behaviors.Moreover,this influence varies across different side-to-thickness ratios and boundary conditions of the bio-inspired composite plate.展开更多
In the fabrication and monitoring of parts in composite structures,which are being used more and more in a variety of engineering applications,the prediction and fatigue failure detection in composite materials is a d...In the fabrication and monitoring of parts in composite structures,which are being used more and more in a variety of engineering applications,the prediction and fatigue failure detection in composite materials is a difficult problem.This difficulty arises from several factors,such as the lack of a comprehensive investigation of the fatigue failure phenomena,the lack of a well-defined fatigue damage theory used for fatigue damage prediction,and the inhomogeneity of composites because of their multiple internal borders.This study investigates the fatigue behavior of carbon fiber reinforced with epoxy(CFRE)laminated composite plates under spectrum loading utilizing a uniqueDeep LearningNetwork consisting of a convolutional neural network(CNN).Themethod includes establishing Finite Element Model(FEM)in a plate model under a spectrum fatigue loading.Then,a CNN is trained for fatigue behavior prediction.The training phase produces promising results,showing the model’s performance with 94.21%accuracy,92.63%regression,and 91.55%F-score.To evaluate the model’s reliability,a comparison is made between fatigue data from the CNN and the FEM.It was found that the error band for this comparison is less than 0.3878MPa,affirming the accuracy and reliability of the proposed technique.The proposed method results converge with available experimental results in the literature,thus,the study suggests the broad applicability of this method to other different composite structures.展开更多
As-rolled titanium/steel composite plate has poor plastic deformation ability,and it is difficult to achieve synergistic deformation,especially for dissimilar metals with very different plastic deformation abilities.T...As-rolled titanium/steel composite plate has poor plastic deformation ability,and it is difficult to achieve synergistic deformation,especially for dissimilar metals with very different plastic deformation abilities.The 304/TC4 composite plate with corrugated interface was manufactured using the asymmetric rolling with local strong stress method.The changing rules of bonding strength and synergistic deformation ability of corrugated interface under different annealing process parameters were studied.The results show that in the range of 550–850℃,especially after the temperature exceeds 650℃,with increasing the annealing temperature and time,the difference of microstructure between peak and trough positions increases,and the bonding strength of the composite plate decreases gradually.Especially,the interfacial bonding strength of the plate sharply decreases at 750℃ due to the rapid growth of intermetallic compounds at the interface and the diffusion holes caused by the difference of element diffusion.The 304/TC4 composite plate has the best synergistic deformation ability when annealing at 650℃/2 h,with the elongation reaching 35%and the tensile strength decreasing to 852 MPa.High interfacial bonding strength and moderate matrix recovery are important prerequisites for synergistic deformation of composite plates.展开更多
Edge defects significantly impact the forming quality of Mg/Al composite plates during the rolling process.This study aims to develop an effective rolling technique to suppress these defects.First,an enhanced Lemaitre...Edge defects significantly impact the forming quality of Mg/Al composite plates during the rolling process.This study aims to develop an effective rolling technique to suppress these defects.First,an enhanced Lemaitre damage model with a generalized stress state damage prediction mechanism was used to evaluate the key mechanical factors contributing to defect formation.Based on this evaluation,an embedded composite rolling technique was proposed.Subsequently,comparative validation was conducted at 350℃ with a 50% reduction ratio.Results showed that the plates rolled using the embedded composite rolling technique had smooth surfaces and edges,with no macroscopic cracks observed.Numerical simulation indicated that,compared to conventional processes,the proposed technique reduced the maximum edge stress triaxiality of the plates from-0.02 to-1.56,significantly enhancing the triaxial compressive stress effect at the edges,which suppressed void nucleation and growth,leading to a 96%reduction in damage values.Mechanical property evaluations demonstrated that,compared to the conventional rolling process,the proposed technique improved edge bonding strength and tensile strength by approximately 67.7%and 118%,respectively.Further microstructural characterization revealed that the proposed technique,influenced by the restriction of deformation along the transverse direction(TD),weakened the plastic flow in the TD and enhanced plastic flow along the rolling direction(RD),resulting in higher grain boundary density and stronger basal texture.This,in turn,improved the toughness and transverse homogeneity of the plates.In summary,the embedded composite rolling technique provides crucial technical guidance for the preparation of Mg-based composite plates.展开更多
The effects of the reduction rate of the corrugated rolling on the microstructure and mechanical properties of TA1/TC4 composite plate that was prepared via corrugated rolling+flat rolling process were investigated.Th...The effects of the reduction rate of the corrugated rolling on the microstructure and mechanical properties of TA1/TC4 composite plate that was prepared via corrugated rolling+flat rolling process were investigated.The finite element model was developed and validated for the corrugated rolling process of the composite plate.Experimental findings reveal the absence of significant defects and intermetallic compounds at the bonding interface.When the rolling temperature is 700℃with the reduction rate of 44%in the first pass of corrugated rolling,the tensile and interfacial shear strengths of the composite plate reach 749 and 403.97 MPa,respectively.The simulation results demonstrate that the plastic strain in the TC4 substrate is enhanced by corrugated rolling and the compressive stress at the trough is high.These results confirm that interfacial bonding is promoted by corrugated rolling,and the mechanical properties of the composite plate are improved significantly with the increase of reduction rate.展开更多
The aluminum(Al)/steel transition joints used in ships are processed from composite plates,and their mechanical properties have a significant impact on the safety of ships.In this paper,the Al/steel composite plate wa...The aluminum(Al)/steel transition joints used in ships are processed from composite plates,and their mechanical properties have a significant impact on the safety of ships.In this paper,the Al/steel composite plate was prepared using rolling,with 5083 aluminum plate as the cladding plate,Q235 steel plate as the substrate,and TA1 titanium(Ti)plate and DT4 pure iron(Fe)plate as the intermediate layers.The heterothermic billet was prepared through induction heating by the magnetic effects of the steel plate and the pure Fe plate,and then the Al/steel composite plate was obtained by rolling.The impacts of post-rolling cooling process on the microstructure and properties of the Al/Ti/pure Fe/steel composite plate were studied.The results manifested that the pure Fe/steel interface had a good composite effect.With the increase in the cooling rate,the bonding strength of the Al/Ti interface was raised,and that of the Ti/Fe interface was increased first and then decreased.When the oil cooling process was adopted,the Al/Ti/pure Fe/steel composite plate exhibited the highest comprehensive performance.The shear strength of the Al/Ti interface and the Ti/Fe interface was 102 MPa and 186 MPa,respectively.The plastic fracture was determined as the mode of interface fracture.展开更多
The prediction of the rolling force and thickness ratio plays an important role in the development and application of bimetallic composite plates.To analyze the rolling force of the bimetallic composite plate more acc...The prediction of the rolling force and thickness ratio plays an important role in the development and application of bimetallic composite plates.To analyze the rolling force of the bimetallic composite plate more accurately,a novel hypothesis based on Orowan's theory was proposed.The variation in the thickness of each differential element at different positions was considered to establish the analytical model.According to the characteristics of bimetallic composite plate rolling,the rolling deformation can be divided into forward and backward slip zones.The initial thickness ratio after rolling was predetermined by the thickness ratio before rolling;the rolling force balance of the upper and lower rollers was considered the convergence condition;and the final thickness ratio of the bimetallic composite plate was obtained by iterative calculation.The calculation results of the analytical model were compared with the measured and simulated data.The results showed that the errors in the calculation of the rolling force and thickness ratio were both less than 10%.The analytical model has high precision,meets engineering requirements,and has important reference significance for rolling process optimization and thickness ratio prediction.展开更多
Current research on the fabrication of rolled composite plates primarily focuses on processing and bonding mechanisms.Compared with hot-rolling technology,the electrically assisted rolling process has demonstrated exc...Current research on the fabrication of rolled composite plates primarily focuses on processing and bonding mechanisms.Compared with hot-rolling technology,the electrically assisted rolling process has demonstrated excellent performance in interfacial bonding effects.However,the influence of different current loading modes on the interfacial recombination process of composite panels varies significantly.In this study,low-frequency electrically assisted rolling was used in the first pass to pre-bond a composite plate at a low reduction rate of 15%.High-frequency electrically assisted rolling was used during the second pass,and Al/Mg alloy composite plates were obtained.The interfacial microstructure and mechanical properties of the composite plate were coordinated regulation by designing the rolling reduction rate.The results showed the interfacial morphology of the alternating distribution of the melt-diffusion layer,diffusion layer,and the formation of a new Al/Mg bonding interface.At the melt-diffusion interface,the irregular intermetallic compounds(IMCs)and the new Al/Mg bonding interface were alternately distributed,and the IMCs contained theα-Mg,Mg17Al12,and Mg2Al3 phases.In addition,an extremely high shear strength of 78.26 MPa was achieved.Adhesion of the Mg alloy matrix was observed on the fracture surface of the Al alloy side.The high shear strength was mainly attributed to the formation of a unique interfacial structure and the appearance of a melt-diffusion layer.Compared to the diffusion-reduction interface,the regular rectangular IMCs and the new Al/Mg bonding interface were alternately distributed,and the IMCs consisted of the Mg17Al12 and Mg2Al3 phases.The shear test results showed that the shear strength of the interface reached 68.69 MPa,and a regular distribution of the Mg alloy matrix with dimples and the Al alloy matrix with a necking zone was observed on the fracture surface of the Al side.Tensile strength test results revealed a maximum value of 316.86 MPa for the Al/Mg alloy composite plate.The tensile and interfacial bonding strengths can be synchronously enhanced by coordinating the regulation of the interfacial structure.This study proposes a new electrically assisted rolling technology that is useful for the fabrication of composite plates with excellent mechanical properties.展开更多
Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade compone...Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade components.In this paper,a dynamic model of 3D 4-directional braided composite thin plates considering braiding directions is established.Based on Kirchhoff's plate assumptions,the displacement variables of the plate are expressed.By incorporating the braiding directions into the constitutive equation of the braided composites,the dynamic model of the plate considering braiding directions is obtained.The effects of the speeds,braiding directions,and braided angles on the responses of the plate with fixed-axis rotation and translational motion,respectively,are investigated.This paper presents a dynamic theory for calculating the deformation of 3D braided composite structures undergoing both translational and rotational motions.It also provides a simulation method for investigating the dynamic behavior of non-isotropic material plates in various applications.展开更多
文摘The interfacial interaction existing in the Ni ZrO 2 composite plating has been investigated. The experimental results show that no new phases were formed in the interfacial regions between matrix Ni and ZrO 2 particles, but an orbital interaction through the mutual overlap of the d orbits does exist in the interfacial regions between Ni atoms and Zr 3+ ions.
文摘The electroless Ni-P-carbon nanotubes composite plating was studied on the copper substrate. Metallurgical microscope, scanning electronic microscope, X-ray diffractometer and micro hardness tester were used to study the structure, constitution and performance of the electroless Ni-P-carbon nanotubes composite deposit. Experiential results show that, with the increment of carbon nanotubes content in electroless plating solution, the grain size on the sample surface decreases whereas the density of grains and the hardness for composite deposit increases. Moreover, adding carbon nanotubes not only improves the degree of crystallization for the composite deposit but also helps their transformation from the amorphous state to the nanocrystal state.
文摘The Ni/FA composite plating was realized by electrodeposition with fly ash (FA) as inert particles. The main compositions of FA are 72% SiO2 and 25% A1203 in the size of 3-7 Ixm. Electrodeposition was performed in Watts bath containing FA with concentrations of 5, 20, 50 g/L, current densities of 2 and 4 A/dm2, temperature of 50 ~C and magnetic stirring of 250 r/min. Scanning electron microscope (SEM+EDX), electrochemical and mechanical technique were used to study morphology, composition and properties of coating. FA content in deposit is dependent on the FA concentration in solution, as well as the plating parameters. Since FA particles were incorporated in the coating, the mechanical and electrochemical properties of the coating were increased. The microhardness of Ni/FA composite plating reaches HV 430 in comparison with HV 198 of pure Ni coating. It was confirmed by electrochemical measurement that the corrosion resistance of Ni/FA composite coating was higher than that of pure Ni.
文摘Nano-ZiO_2was used to prepare composite electroplating bath by addingdifferent kinds of dispersants such as PEG and MZS. The composite electroplating bath was studied bymeans of sedimentation experiments and particle-size analysis. The results showed that dispersantswith simple structure and small molecular weight could not play steric role, however, the highlydispersed and stabilized nanoparticle Ni-ZrO_2 composite electroplating bath was obtained at pHvalue equaling to 3 by adding MZS which is a kind of macromolecule dispersant with plentifulbranched chains.
基金supported by the Jiangsu Key Laboratory for Materials Tribology (No.kjsmcx0901)
文摘The effect of nanodiamond content in electrolyte and rotational speed of the stirrer on the deposition rate of coatings, the nanodiamond content in coatings, the micro- structure and the micro-hardness of coatings were studicd. A self-made pin-on-disk tribo-meter was employed to evaluate the wear resistance of prepared coatings. Re- sults show that the thickness of composite coating decreases with the rotational speed, while the micro hardness of coating and the content of nanodiamond in coating increase with increasing its content in electrolyte. The wear resistance of the composite coating deposited in an electrolye with 6 g/L nanodiamond increases by 50% in contrast with the pure Ni-P coating.
文摘Technology and properties of electroless composite RE-Ni-B-SiC coatings have been investigated.Results show that stabilizer plys a decisive role in electroless composite Ni-B-SiC,the addition of appropriate quantity of RE(rare earth) into the Ni-B-SiC bath not only increases SiC content in composite coatings,their hardness and wear resistance but also improves crystalline fineness,Wear resistance increases with the increase of SiC.Hardness and wear resistance of composite coatings reach peak values a fter heat treatment at 4OO and 500℃ for 1h respectively.
基金Key R&D Plan of Shaanxi Province(2021LLRH-05-09)Shaanxi Province Youth Talent Support Program Project(CLGC202234)Sponsored by Innovative Pilot Platform for Layered Metal Composite Materials(2024CX-GXPT-20)。
文摘Zirconium-titanium-steel composite plate with the size of 2500 mm×7800 mm×(3+0.7+22)mm was prepared by explosive welding+rolling method,and its properties were analyzed by ultrasonic nondestructive testing,phased array waveform shape,interface structure shape,electronic scanning,and mechanical property testing.Results show that the rolling temperature of zirconiumtitanium complex should be controlled at 760°C,and the rolling reduction of each pass should be controlled at 10%–25%.The explosive velocity to prepare zirconium-titanium-steel composite plates should be controlled at 2450–2500 m/s,the density should be 0.78 g/cm3,the stand-off height should be 12 mm,and the explosive height of Zone A and Zone B should be 45–50 mm.Explosive welding combined with rolling method reduces the impact of explosive welding and multiple heat treatment on material properties.Meanwhile,the problems of surface wrinkling and cracking,which occur during the preparation process of large-sized zirconiumtitanium-steel composite plate,can be solved.
基金Opening Foundation of Key Laboratory of Explosive Energy Utilization and Control,Anhui Province(BP20240104)Graduate Innovation Program of China University of Mining and Technology(2024WLJCRCZL049)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2701)。
文摘Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.
文摘For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattice core located in the middle and several homogeneous orthotropic layers that are symmetrical relative to it.For this purpose,the partial differential equations of motion have been derived based on the first-order shear deformation theory,employing Hamilton’s principle and Von Kármán’s nonlinear displacement-strain relations.Then,the nonlinear partial differential equations of the plate are converted into a time-dependent nonlinear ordinary differential equation(Duffing equation)by applying the Galerkin method.From the solution of this equation,the natural frequencies are extracted.Then,to calculate the non-linear frequencies of the plate,the non-linear equation of the plate has been solved analytically using the method of multiple scales.Finally,the effect of some critical parameters of the system,such as the thickness,height,and different angles of the stiffeners on the linear and nonlinear frequencies,has been analyzed in detail.To confirmthe solution method,the results of this research have been compared with the reported results in the literature and finite elements in ABAQUS,and a perfect match is observed.The results reveal that the geometry and configuration of core ribs strongly affect the natural frequencies of the plate.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030006)Key Project of Chongqing Technology Innovation and Application Development Special Project(CSTB2023TIADKPX0016,CSTB2022TIAD-KPX0027)+1 种基金National Natural Science Foundation of China(51971183)the Science and Technology Program of Xinjiang Production and Construction Corps(2024AB056).
文摘The paper study the interfacial mechanical properties and structural evolution mechanisms in 6061/AZ31B/6061 composite plates with and without Ni foil interlayers.For Ni-free interfaces,a continuous diffusion layer(3.5-4.0μm)forms,dominated by brittle columnar Al_(12)Mg_(17) intermetallic compounds(IMCs,0.27-0.35μm thick),which act as preferential crack initiation sites.In contrast,Ni foil implantation induces interfacial restructuring during hot rolling:Constrained deformation fragments the Ni foil into grid-like segments with"olive"-shaped crosssections,embedded into Mg/Al matrices.These fragments(56% areal coverage)coexist with dispersed multiphase IMCs(Mg_(2)Ni,Al_(3)Ni,Mg_(3)AlNi,Al_(12)Mg_(17);10-20 nm grains)at fragment edges,forming a hybrid interface of"willow-leaf"Al_(12)Mg_(17) islands and nanoscale Mg_(2)Ni/Al_(3)Ni layers(15-25 nm).Hall-Petch analysis reveals the multiphase IMC interface exhibits 3.6×higher"kd^(-1/2)"strengthening contribution than single-phase Al_(12)Mg_(17) systems,attributed to grain refinement(20 nm vs.260 nm average grain size).Synergistic effects of mechanical interlocking,adhesion hierarchy(Ni-Al>Ni-Mg>Al-Mg),and nanoscale reinforcement collectively enhance peel strength by 78%without compromising bulk tensile properties.
基金supported by the National Key Research and Development Program of China(2022YFB3708400)the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030006)+4 种基金the Youth Talent Support Programme of Guangdong Provincial Association for Science and Technology(SKXRC202301)the Guangdong Academy of Science Fund(2020GDASYL-20200101001,2023GDASQNRC-0210,2023GDASQNRC-0321)the Guangdong Science and Technology plan project(2023A0505030002)the GINM’Special Project of Science and Technology Development(2023GINMZX-202301020108)Evaluation Project of Guangdong Provincial Key Laboratory(2023B1212060043).
文摘In this study,microstructure and mechanical behavior of Mg/Al composite plates with Ti foil interlayer were systematically studied,with a great emphasis on the effect of different thicknesses of Ti foil interlayer.The results show that compared to 100μm thick Ti foil,10μm thick Ti foil is more prone to fracture and is evenly distributed in fragments at the interface.The introduction of Ti foil can effectively refine the grain size of Mg layers of as-rolled Mg/Al composite plates,10μm thick Ti foil has a better refining effect than 100μm thick Ti foil.Ti foil can effectively increase the yield strength(YS)and ultimate strength(UTS)of as-rolled Mg/Al composite plates,10μm thick Ti foil significantly improves the elongation(El)of Mg/Al composite plate,while 100μm thick Ti foil slightly weakens the El.After annealing at 420℃ for 0.5 h and 4 h,Ti foil can inhibit the formation of intermetallic compounds(IMCs)at the interface of Mg/Al composite plates,which effectively improves the YS,UTS and El of Mg/Al composite plates.In addition,Ti foil can also significantly enhance the interfacial shear strength(SS)of Mg/Al composite plates before and after annealing.
文摘Bio-inspired helicoidal composite laminates,inspired by the intricate helical structures found in nature,present a promising frontier for enhancing the mechanical properties of structural designs.Hence,this study provides a comprehensive investigation into the nonlinear free vibration and nonlinear bending behavior of bio-inspired composite plates.The inverse hyperbolic shear deformation theory(IHSDT)of plates is employed to characterize the displacement field,with the incorporation of Green-Lagrange nonlinearity.The problem is modeled using the C0finite element method(FEM),and an in-house code is developed in the MATLAB environment to solve it numerically.Various helicoidal layup configurations including helicoidal recursive(HR),helicoidal exponential(HE),helicoidal semi-circular(HS),linear helicoidal(LH),and Fibonacci helicoidal(FH)with different layup sequences and quasi-isotropic configurations are studied.The model is validated,and parametric studies are conducted.These studies investigate the effects of layup configurations,side-to-thickness ratio,modulus ratios,boundary conditions,and loading conditions at different load amplitudes on the nonlinear vibration and nonlinear bending behaviors of bio-inspired composite plates.The results show that the laminate sequence exerts a substantial impact on both nonlinear natural frequencies and nonlinear bending behaviors.Moreover,this influence varies across different side-to-thickness ratios and boundary conditions of the bio-inspired composite plate.
文摘In the fabrication and monitoring of parts in composite structures,which are being used more and more in a variety of engineering applications,the prediction and fatigue failure detection in composite materials is a difficult problem.This difficulty arises from several factors,such as the lack of a comprehensive investigation of the fatigue failure phenomena,the lack of a well-defined fatigue damage theory used for fatigue damage prediction,and the inhomogeneity of composites because of their multiple internal borders.This study investigates the fatigue behavior of carbon fiber reinforced with epoxy(CFRE)laminated composite plates under spectrum loading utilizing a uniqueDeep LearningNetwork consisting of a convolutional neural network(CNN).Themethod includes establishing Finite Element Model(FEM)in a plate model under a spectrum fatigue loading.Then,a CNN is trained for fatigue behavior prediction.The training phase produces promising results,showing the model’s performance with 94.21%accuracy,92.63%regression,and 91.55%F-score.To evaluate the model’s reliability,a comparison is made between fatigue data from the CNN and the FEM.It was found that the error band for this comparison is less than 0.3878MPa,affirming the accuracy and reliability of the proposed technique.The proposed method results converge with available experimental results in the literature,thus,the study suggests the broad applicability of this method to other different composite structures.
基金supported by the Major Program of National Natural Science Foundation of China(U22A20188)the Natural Science Foundation of Shanxi Province(202303021224002)+1 种基金the special fund for Science and Technology Innovation Teams of Shanxi Province(202304051001025)the Open Research Fund from the Hai’an and Taiyuan University of Technology Advanced Manufacturing and Intelligent Equipment Industrial Research Institute(2023HA-TYUTKFYF036).
文摘As-rolled titanium/steel composite plate has poor plastic deformation ability,and it is difficult to achieve synergistic deformation,especially for dissimilar metals with very different plastic deformation abilities.The 304/TC4 composite plate with corrugated interface was manufactured using the asymmetric rolling with local strong stress method.The changing rules of bonding strength and synergistic deformation ability of corrugated interface under different annealing process parameters were studied.The results show that in the range of 550–850℃,especially after the temperature exceeds 650℃,with increasing the annealing temperature and time,the difference of microstructure between peak and trough positions increases,and the bonding strength of the composite plate decreases gradually.Especially,the interfacial bonding strength of the plate sharply decreases at 750℃ due to the rapid growth of intermetallic compounds at the interface and the diffusion holes caused by the difference of element diffusion.The 304/TC4 composite plate has the best synergistic deformation ability when annealing at 650℃/2 h,with the elongation reaching 35%and the tensile strength decreasing to 852 MPa.High interfacial bonding strength and moderate matrix recovery are important prerequisites for synergistic deformation of composite plates.
基金supported by National Key Research and Development Program(2018YFA0707300)Major Program of National Natural Science Foundation of China(U22A20188).
文摘Edge defects significantly impact the forming quality of Mg/Al composite plates during the rolling process.This study aims to develop an effective rolling technique to suppress these defects.First,an enhanced Lemaitre damage model with a generalized stress state damage prediction mechanism was used to evaluate the key mechanical factors contributing to defect formation.Based on this evaluation,an embedded composite rolling technique was proposed.Subsequently,comparative validation was conducted at 350℃ with a 50% reduction ratio.Results showed that the plates rolled using the embedded composite rolling technique had smooth surfaces and edges,with no macroscopic cracks observed.Numerical simulation indicated that,compared to conventional processes,the proposed technique reduced the maximum edge stress triaxiality of the plates from-0.02 to-1.56,significantly enhancing the triaxial compressive stress effect at the edges,which suppressed void nucleation and growth,leading to a 96%reduction in damage values.Mechanical property evaluations demonstrated that,compared to the conventional rolling process,the proposed technique improved edge bonding strength and tensile strength by approximately 67.7%and 118%,respectively.Further microstructural characterization revealed that the proposed technique,influenced by the restriction of deformation along the transverse direction(TD),weakened the plastic flow in the TD and enhanced plastic flow along the rolling direction(RD),resulting in higher grain boundary density and stronger basal texture.This,in turn,improved the toughness and transverse homogeneity of the plates.In summary,the embedded composite rolling technique provides crucial technical guidance for the preparation of Mg-based composite plates.
基金supported by the National Natural Science Foundation of China(No.52275362)Natural Science Foundation of Shanxi Province,China(No.202303021224002)the Central Government Guides the Special Fund Projects of Local Scientific and Technological Development(Nos.YDZJSX2021A020,YDZJSX2022A023).
文摘The effects of the reduction rate of the corrugated rolling on the microstructure and mechanical properties of TA1/TC4 composite plate that was prepared via corrugated rolling+flat rolling process were investigated.The finite element model was developed and validated for the corrugated rolling process of the composite plate.Experimental findings reveal the absence of significant defects and intermetallic compounds at the bonding interface.When the rolling temperature is 700℃with the reduction rate of 44%in the first pass of corrugated rolling,the tensile and interfacial shear strengths of the composite plate reach 749 and 403.97 MPa,respectively.The simulation results demonstrate that the plastic strain in the TC4 substrate is enhanced by corrugated rolling and the compressive stress at the trough is high.These results confirm that interfacial bonding is promoted by corrugated rolling,and the mechanical properties of the composite plate are improved significantly with the increase of reduction rate.
基金Supported by Science Research Project of Hebei Education Department(Grant No.BJK2024138)Hebei Provincial Natural Science Foundation(Grant No.E2023203129)National Natural Science Foundation of China(Grant Nos.52004242,52075472).
文摘The aluminum(Al)/steel transition joints used in ships are processed from composite plates,and their mechanical properties have a significant impact on the safety of ships.In this paper,the Al/steel composite plate was prepared using rolling,with 5083 aluminum plate as the cladding plate,Q235 steel plate as the substrate,and TA1 titanium(Ti)plate and DT4 pure iron(Fe)plate as the intermediate layers.The heterothermic billet was prepared through induction heating by the magnetic effects of the steel plate and the pure Fe plate,and then the Al/steel composite plate was obtained by rolling.The impacts of post-rolling cooling process on the microstructure and properties of the Al/Ti/pure Fe/steel composite plate were studied.The results manifested that the pure Fe/steel interface had a good composite effect.With the increase in the cooling rate,the bonding strength of the Al/Ti interface was raised,and that of the Ti/Fe interface was increased first and then decreased.When the oil cooling process was adopted,the Al/Ti/pure Fe/steel composite plate exhibited the highest comprehensive performance.The shear strength of the Al/Ti interface and the Ti/Fe interface was 102 MPa and 186 MPa,respectively.The plastic fracture was determined as the mode of interface fracture.
基金Supported by National Key Research and Development Program of China(Grant No.2018YFA0707300)Major Program of National Natural Science Foundation of China(Grant No.U22A20188)+1 种基金General Program of National Natural Science Foundation of China(Grant No.51974196)Postdoctoral Science Foundation of China(Grant No.201903D421047)。
文摘The prediction of the rolling force and thickness ratio plays an important role in the development and application of bimetallic composite plates.To analyze the rolling force of the bimetallic composite plate more accurately,a novel hypothesis based on Orowan's theory was proposed.The variation in the thickness of each differential element at different positions was considered to establish the analytical model.According to the characteristics of bimetallic composite plate rolling,the rolling deformation can be divided into forward and backward slip zones.The initial thickness ratio after rolling was predetermined by the thickness ratio before rolling;the rolling force balance of the upper and lower rollers was considered the convergence condition;and the final thickness ratio of the bimetallic composite plate was obtained by iterative calculation.The calculation results of the analytical model were compared with the measured and simulated data.The results showed that the errors in the calculation of the rolling force and thickness ratio were both less than 10%.The analytical model has high precision,meets engineering requirements,and has important reference significance for rolling process optimization and thickness ratio prediction.
基金Supported by National Natural Science Foundation of China(Grant Nos.52075360,52275360,51805359).
文摘Current research on the fabrication of rolled composite plates primarily focuses on processing and bonding mechanisms.Compared with hot-rolling technology,the electrically assisted rolling process has demonstrated excellent performance in interfacial bonding effects.However,the influence of different current loading modes on the interfacial recombination process of composite panels varies significantly.In this study,low-frequency electrically assisted rolling was used in the first pass to pre-bond a composite plate at a low reduction rate of 15%.High-frequency electrically assisted rolling was used during the second pass,and Al/Mg alloy composite plates were obtained.The interfacial microstructure and mechanical properties of the composite plate were coordinated regulation by designing the rolling reduction rate.The results showed the interfacial morphology of the alternating distribution of the melt-diffusion layer,diffusion layer,and the formation of a new Al/Mg bonding interface.At the melt-diffusion interface,the irregular intermetallic compounds(IMCs)and the new Al/Mg bonding interface were alternately distributed,and the IMCs contained theα-Mg,Mg17Al12,and Mg2Al3 phases.In addition,an extremely high shear strength of 78.26 MPa was achieved.Adhesion of the Mg alloy matrix was observed on the fracture surface of the Al alloy side.The high shear strength was mainly attributed to the formation of a unique interfacial structure and the appearance of a melt-diffusion layer.Compared to the diffusion-reduction interface,the regular rectangular IMCs and the new Al/Mg bonding interface were alternately distributed,and the IMCs consisted of the Mg17Al12 and Mg2Al3 phases.The shear test results showed that the shear strength of the interface reached 68.69 MPa,and a regular distribution of the Mg alloy matrix with dimples and the Al alloy matrix with a necking zone was observed on the fracture surface of the Al side.Tensile strength test results revealed a maximum value of 316.86 MPa for the Al/Mg alloy composite plate.The tensile and interfacial bonding strengths can be synchronously enhanced by coordinating the regulation of the interfacial structure.This study proposes a new electrically assisted rolling technology that is useful for the fabrication of composite plates with excellent mechanical properties.
基金Project supported by the National Natural Science Foundation of China(Nos.12372071 and 12372070)the Aeronautical Science Fund of China(No.2022Z055052001)the Foundation of China Scholarship Council(No.202306830079)。
文摘Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade components.In this paper,a dynamic model of 3D 4-directional braided composite thin plates considering braiding directions is established.Based on Kirchhoff's plate assumptions,the displacement variables of the plate are expressed.By incorporating the braiding directions into the constitutive equation of the braided composites,the dynamic model of the plate considering braiding directions is obtained.The effects of the speeds,braiding directions,and braided angles on the responses of the plate with fixed-axis rotation and translational motion,respectively,are investigated.This paper presents a dynamic theory for calculating the deformation of 3D braided composite structures undergoing both translational and rotational motions.It also provides a simulation method for investigating the dynamic behavior of non-isotropic material plates in various applications.