期刊文献+
共找到111篇文章
< 1 2 6 >
每页显示 20 50 100
XPS AND UPS STUDIES OF THE INTERFACIAL INTERACTION IN Ni ZrO 2 COMPOSITE PLATING
1
作者 王为 项民 +2 位作者 郭鹤桐 覃奇贤 任殿胜 《Transactions of Tianjin University》 EI CAS 1998年第1期98-101,共4页
The interfacial interaction existing in the Ni ZrO 2 composite plating has been investigated. The experimental results show that no new phases were formed in the interfacial regions between matrix Ni and ZrO 2 part... The interfacial interaction existing in the Ni ZrO 2 composite plating has been investigated. The experimental results show that no new phases were formed in the interfacial regions between matrix Ni and ZrO 2 particles, but an orbital interaction through the mutual overlap of the d orbits does exist in the interfacial regions between Ni atoms and Zr 3+ ions. 展开更多
关键词 Ni ZrO 2 composite plating interfacial structure INTERACTION
在线阅读 下载PDF
Study of Electroless Ni-P-CNTs Composite Plating 被引量:9
2
作者 Ji-lan Kong Shang-qi Zhou +1 位作者 Qin Ren Xi Zhang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2006年第3期259-264,共6页
The electroless Ni-P-carbon nanotubes composite plating was studied on the copper substrate. Metallurgical microscope, scanning electronic microscope, X-ray diffractometer and micro hardness tester were used to study ... The electroless Ni-P-carbon nanotubes composite plating was studied on the copper substrate. Metallurgical microscope, scanning electronic microscope, X-ray diffractometer and micro hardness tester were used to study the structure, constitution and performance of the electroless Ni-P-carbon nanotubes composite deposit. Experiential results show that, with the increment of carbon nanotubes content in electroless plating solution, the grain size on the sample surface decreases whereas the density of grains and the hardness for composite deposit increases. Moreover, adding carbon nanotubes not only improves the degree of crystallization for the composite deposit but also helps their transformation from the amorphous state to the nanocrystal state. 展开更多
关键词 Carbon nanotubes NI-P Electroless composite plating CONSTITUTION STRUCTURE
在线阅读 下载PDF
Nickel composite plating with fly ash as inert particle 被引量:1
3
作者 Viet Hue NGUYEN Thi Anh Tuyet NGO +1 位作者 Hong Hanh PHAM Ngoc Phong NGUYEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第8期2348-2353,共6页
The Ni/FA composite plating was realized by electrodeposition with fly ash (FA) as inert particles. The main compositions of FA are 72% SiO2 and 25% A1203 in the size of 3-7 Ixm. Electrodeposition was performed in W... The Ni/FA composite plating was realized by electrodeposition with fly ash (FA) as inert particles. The main compositions of FA are 72% SiO2 and 25% A1203 in the size of 3-7 Ixm. Electrodeposition was performed in Watts bath containing FA with concentrations of 5, 20, 50 g/L, current densities of 2 and 4 A/dm2, temperature of 50 ~C and magnetic stirring of 250 r/min. Scanning electron microscope (SEM+EDX), electrochemical and mechanical technique were used to study morphology, composition and properties of coating. FA content in deposit is dependent on the FA concentration in solution, as well as the plating parameters. Since FA particles were incorporated in the coating, the mechanical and electrochemical properties of the coating were increased. The microhardness of Ni/FA composite plating reaches HV 430 in comparison with HV 198 of pure Ni coating. It was confirmed by electrochemical measurement that the corrosion resistance of Ni/FA composite coating was higher than that of pure Ni. 展开更多
关键词 composite plating fly ash MICROHARDNESS corrosion resistance inert particles
在线阅读 下载PDF
Preparation of nanoparticle Ni -ZrO_2 composite electroplating bath
4
作者 HUOWeirong LIUJiachen YUTianlai WANGLijuan 《Rare Metals》 SCIE EI CAS CSCD 2004年第4期322-325,共4页
Nano-ZiO_2was used to prepare composite electroplating bath by addingdifferent kinds of dispersants such as PEG and MZS. The composite electroplating bath was studied bymeans of sedimentation experiments and particle-... Nano-ZiO_2was used to prepare composite electroplating bath by addingdifferent kinds of dispersants such as PEG and MZS. The composite electroplating bath was studied bymeans of sedimentation experiments and particle-size analysis. The results showed that dispersantswith simple structure and small molecular weight could not play steric role, however, the highlydispersed and stabilized nanoparticle Ni-ZrO_2 composite electroplating bath was obtained at pHvalue equaling to 3 by adding MZS which is a kind of macromolecule dispersant with plentifulbranched chains. 展开更多
关键词 composite plating bath DISPERSANT nano-ZrO_2 stability
在线阅读 下载PDF
Ni-P-Nanodiamond composite electroless plating 被引量:4
5
作者 Yongwei ZHU Yongjun CHEN +1 位作者 Changhong ZHU Xiangqian SHEN 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2010年第6期409-415,共7页
The effect of nanodiamond content in electrolyte and rotational speed of the stirrer on the deposition rate of coatings, the nanodiamond content in coatings, the micro- structure and the micro-hardness of coatings wer... The effect of nanodiamond content in electrolyte and rotational speed of the stirrer on the deposition rate of coatings, the nanodiamond content in coatings, the micro- structure and the micro-hardness of coatings were studicd. A self-made pin-on-disk tribo-meter was employed to evaluate the wear resistance of prepared coatings. Re- sults show that the thickness of composite coating decreases with the rotational speed, while the micro hardness of coating and the content of nanodiamond in coating increase with increasing its content in electrolyte. The wear resistance of the composite coating deposited in an electrolye with 6 g/L nanodiamond increases by 50% in contrast with the pure Ni-P coating. 展开更多
关键词 NANODIAMOND composite electroless plating Micro-hardness Wear resistance
原文传递
PROCESS AND PROPERTIES OF ELECTROLESS PLATING RE-Ni-B-SiC COMPOSITE COATINGS 被引量:9
6
作者 GUO Zhongcheng LIU Hongkang +1 位作者 WANG Zhiyin WANG Min(Kunming Institute of Technology,Kunming. China ) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1995年第2期118-122,共5页
Technology and properties of electroless composite RE-Ni-B-SiC coatings have been investigated.Results show that stabilizer plys a decisive role in electroless composite Ni-B-SiC,the addition of appropriate quantity o... Technology and properties of electroless composite RE-Ni-B-SiC coatings have been investigated.Results show that stabilizer plys a decisive role in electroless composite Ni-B-SiC,the addition of appropriate quantity of RE(rare earth) into the Ni-B-SiC bath not only increases SiC content in composite coatings,their hardness and wear resistance but also improves crystalline fineness,Wear resistance increases with the increase of SiC.Hardness and wear resistance of composite coatings reach peak values a fter heat treatment at 4OO and 500℃ for 1h respectively. 展开更多
关键词 electroless plating Ni-B-SiC-RE composite coating
在线阅读 下载PDF
Preparation and Performance of Large-Size Seamless Zirconium-Titanium-Steel Composite Plate 被引量:1
7
作者 Wu Jiangtao Wang Ding +7 位作者 Huang Xingli Zou Juntao Zhang Penghui Gao Ruibo Yang Huan Zhang Tao Ren Qianyu Wei Yong 《稀有金属材料与工程》 北大核心 2025年第2期319-326,共8页
Zirconium-titanium-steel composite plate with the size of 2500 mm×7800 mm×(3+0.7+22)mm was prepared by explosive welding+rolling method,and its properties were analyzed by ultrasonic nondestructive testing,p... Zirconium-titanium-steel composite plate with the size of 2500 mm×7800 mm×(3+0.7+22)mm was prepared by explosive welding+rolling method,and its properties were analyzed by ultrasonic nondestructive testing,phased array waveform shape,interface structure shape,electronic scanning,and mechanical property testing.Results show that the rolling temperature of zirconiumtitanium complex should be controlled at 760°C,and the rolling reduction of each pass should be controlled at 10%–25%.The explosive velocity to prepare zirconium-titanium-steel composite plates should be controlled at 2450–2500 m/s,the density should be 0.78 g/cm3,the stand-off height should be 12 mm,and the explosive height of Zone A and Zone B should be 45–50 mm.Explosive welding combined with rolling method reduces the impact of explosive welding and multiple heat treatment on material properties.Meanwhile,the problems of surface wrinkling and cracking,which occur during the preparation process of large-sized zirconiumtitanium-steel composite plate,can be solved. 展开更多
关键词 large-size seamless zirconium-titanium-steel composite plate explosive welding+rolling phased array interface structure
原文传递
Microstructure Analysis of TC4/Al 6063/Al 7075 Explosive Welded Composite Plate via Multi-scale Simulation and Experiment 被引量:1
8
作者 Zhou Jianan Luo Ning +3 位作者 Liang Hanliang Chen Jinhua Liu Zhibing Zhou Xiaohong 《稀有金属材料与工程》 北大核心 2025年第1期27-38,共12页
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ... Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces. 展开更多
关键词 TC4/Al 6063/Al 7075 composite plate explosive welding microstructure analysis multi-scale simulation
原文传递
Analysis of Linear and Nonlinear Vibrations of Composite Rectangular Sandwich Plates with Lattice Cores
9
作者 Alireza Moradi Alireza Shaterzadeh 《Computers, Materials & Continua》 SCIE EI 2025年第1期223-257,共35页
For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattic... For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattice core located in the middle and several homogeneous orthotropic layers that are symmetrical relative to it.For this purpose,the partial differential equations of motion have been derived based on the first-order shear deformation theory,employing Hamilton’s principle and Von Kármán’s nonlinear displacement-strain relations.Then,the nonlinear partial differential equations of the plate are converted into a time-dependent nonlinear ordinary differential equation(Duffing equation)by applying the Galerkin method.From the solution of this equation,the natural frequencies are extracted.Then,to calculate the non-linear frequencies of the plate,the non-linear equation of the plate has been solved analytically using the method of multiple scales.Finally,the effect of some critical parameters of the system,such as the thickness,height,and different angles of the stiffeners on the linear and nonlinear frequencies,has been analyzed in detail.To confirmthe solution method,the results of this research have been compared with the reported results in the literature and finite elements in ABAQUS,and a perfect match is observed.The results reveal that the geometry and configuration of core ribs strongly affect the natural frequencies of the plate. 展开更多
关键词 Free vibration composite sandwich plate lattice core galerkin method Duffing equation multiple scales method
在线阅读 下载PDF
Control mechanism of Ni-foil on the interfacial structure and properties of the magnesium alumina laminated composite plate
10
作者 Xianquan Jiang Na yang +6 位作者 Jiangyang Yu Ruihao Zhang Kaihong Zheng Jing Li Bo Feng Xiaowei Feng Fusheng Pan 《Journal of Magnesium and Alloys》 2025年第9期4346-4363,共18页
The paper study the interfacial mechanical properties and structural evolution mechanisms in 6061/AZ31B/6061 composite plates with and without Ni foil interlayers.For Ni-free interfaces,a continuous diffusion layer(3.... The paper study the interfacial mechanical properties and structural evolution mechanisms in 6061/AZ31B/6061 composite plates with and without Ni foil interlayers.For Ni-free interfaces,a continuous diffusion layer(3.5-4.0μm)forms,dominated by brittle columnar Al_(12)Mg_(17) intermetallic compounds(IMCs,0.27-0.35μm thick),which act as preferential crack initiation sites.In contrast,Ni foil implantation induces interfacial restructuring during hot rolling:Constrained deformation fragments the Ni foil into grid-like segments with"olive"-shaped crosssections,embedded into Mg/Al matrices.These fragments(56% areal coverage)coexist with dispersed multiphase IMCs(Mg_(2)Ni,Al_(3)Ni,Mg_(3)AlNi,Al_(12)Mg_(17);10-20 nm grains)at fragment edges,forming a hybrid interface of"willow-leaf"Al_(12)Mg_(17) islands and nanoscale Mg_(2)Ni/Al_(3)Ni layers(15-25 nm).Hall-Petch analysis reveals the multiphase IMC interface exhibits 3.6×higher"kd^(-1/2)"strengthening contribution than single-phase Al_(12)Mg_(17) systems,attributed to grain refinement(20 nm vs.260 nm average grain size).Synergistic effects of mechanical interlocking,adhesion hierarchy(Ni-Al>Ni-Mg>Al-Mg),and nanoscale reinforcement collectively enhance peel strength by 78%without compromising bulk tensile properties. 展开更多
关键词 Mg/Al composite plate ROLLING Interface Ni-foil Microstructure Performance
在线阅读 下载PDF
Microstructure and mechanical behavior of Mg/Al composite plates with different thicknesses of Ti foil interlayer
11
作者 Jian Li Bo Feng +4 位作者 Xiaowei Feng Xianhua Chen Kaihong Zheng Xianquan Jiang Fusheng Pan 《Journal of Magnesium and Alloys》 2025年第7期3237-3251,共15页
In this study,microstructure and mechanical behavior of Mg/Al composite plates with Ti foil interlayer were systematically studied,with a great emphasis on the effect of different thicknesses of Ti foil interlayer.The... In this study,microstructure and mechanical behavior of Mg/Al composite plates with Ti foil interlayer were systematically studied,with a great emphasis on the effect of different thicknesses of Ti foil interlayer.The results show that compared to 100μm thick Ti foil,10μm thick Ti foil is more prone to fracture and is evenly distributed in fragments at the interface.The introduction of Ti foil can effectively refine the grain size of Mg layers of as-rolled Mg/Al composite plates,10μm thick Ti foil has a better refining effect than 100μm thick Ti foil.Ti foil can effectively increase the yield strength(YS)and ultimate strength(UTS)of as-rolled Mg/Al composite plates,10μm thick Ti foil significantly improves the elongation(El)of Mg/Al composite plate,while 100μm thick Ti foil slightly weakens the El.After annealing at 420℃ for 0.5 h and 4 h,Ti foil can inhibit the formation of intermetallic compounds(IMCs)at the interface of Mg/Al composite plates,which effectively improves the YS,UTS and El of Mg/Al composite plates.In addition,Ti foil can also significantly enhance the interfacial shear strength(SS)of Mg/Al composite plates before and after annealing. 展开更多
关键词 Mg/Al composite plate Ti foil INTERFACE Mechanical behavior MICROSTRUCTURE
在线阅读 下载PDF
A comprehensive investigation on nonlinear vibration and bending characteristics of bio-inspired helicoidal laminated composite structures
12
作者 S.SAURABH R.KIRAN +2 位作者 D.SINGH R.VAISH V.S.CHAUHAN 《Applied Mathematics and Mechanics(English Edition)》 2025年第1期81-100,共20页
Bio-inspired helicoidal composite laminates,inspired by the intricate helical structures found in nature,present a promising frontier for enhancing the mechanical properties of structural designs.Hence,this study prov... Bio-inspired helicoidal composite laminates,inspired by the intricate helical structures found in nature,present a promising frontier for enhancing the mechanical properties of structural designs.Hence,this study provides a comprehensive investigation into the nonlinear free vibration and nonlinear bending behavior of bio-inspired composite plates.The inverse hyperbolic shear deformation theory(IHSDT)of plates is employed to characterize the displacement field,with the incorporation of Green-Lagrange nonlinearity.The problem is modeled using the C0finite element method(FEM),and an in-house code is developed in the MATLAB environment to solve it numerically.Various helicoidal layup configurations including helicoidal recursive(HR),helicoidal exponential(HE),helicoidal semi-circular(HS),linear helicoidal(LH),and Fibonacci helicoidal(FH)with different layup sequences and quasi-isotropic configurations are studied.The model is validated,and parametric studies are conducted.These studies investigate the effects of layup configurations,side-to-thickness ratio,modulus ratios,boundary conditions,and loading conditions at different load amplitudes on the nonlinear vibration and nonlinear bending behaviors of bio-inspired composite plates.The results show that the laminate sequence exerts a substantial impact on both nonlinear natural frequencies and nonlinear bending behaviors.Moreover,this influence varies across different side-to-thickness ratios and boundary conditions of the bio-inspired composite plate. 展开更多
关键词 finite element method(FEM) nonlinear Green-Lagrange inverse hyperbolic shear deformation theory(IHSDT) bio-inspired composite plate helicoidal
在线阅读 下载PDF
An Artificial Intelligence-Based Scheme for Structural Health Monitoring in CFRE Laminated Composite Plates under Spectrum Fatigue Loading
13
作者 Wael A.Altabey 《Structural Durability & Health Monitoring》 2025年第5期1145-1165,共21页
In the fabrication and monitoring of parts in composite structures,which are being used more and more in a variety of engineering applications,the prediction and fatigue failure detection in composite materials is a d... In the fabrication and monitoring of parts in composite structures,which are being used more and more in a variety of engineering applications,the prediction and fatigue failure detection in composite materials is a difficult problem.This difficulty arises from several factors,such as the lack of a comprehensive investigation of the fatigue failure phenomena,the lack of a well-defined fatigue damage theory used for fatigue damage prediction,and the inhomogeneity of composites because of their multiple internal borders.This study investigates the fatigue behavior of carbon fiber reinforced with epoxy(CFRE)laminated composite plates under spectrum loading utilizing a uniqueDeep LearningNetwork consisting of a convolutional neural network(CNN).Themethod includes establishing Finite Element Model(FEM)in a plate model under a spectrum fatigue loading.Then,a CNN is trained for fatigue behavior prediction.The training phase produces promising results,showing the model’s performance with 94.21%accuracy,92.63%regression,and 91.55%F-score.To evaluate the model’s reliability,a comparison is made between fatigue data from the CNN and the FEM.It was found that the error band for this comparison is less than 0.3878MPa,affirming the accuracy and reliability of the proposed technique.The proposed method results converge with available experimental results in the literature,thus,the study suggests the broad applicability of this method to other different composite structures. 展开更多
关键词 Deep learning structural health monitoring(SHM) CFRE convolutional neural network(CNN) spectrum fatigue loading composite plates
在线阅读 下载PDF
Effect of annealing on microstructure and synergistic deformation of 304/TC4 composite plates with corrugated interface
14
作者 Xiong-wei Guo Zhong-kai Ren +4 位作者 Han Wu Zhe Chai Qi Zhang Tao Wang Qing-xue Huang 《Journal of Iron and Steel Research International》 2025年第8期2434-2451,共18页
As-rolled titanium/steel composite plate has poor plastic deformation ability,and it is difficult to achieve synergistic deformation,especially for dissimilar metals with very different plastic deformation abilities.T... As-rolled titanium/steel composite plate has poor plastic deformation ability,and it is difficult to achieve synergistic deformation,especially for dissimilar metals with very different plastic deformation abilities.The 304/TC4 composite plate with corrugated interface was manufactured using the asymmetric rolling with local strong stress method.The changing rules of bonding strength and synergistic deformation ability of corrugated interface under different annealing process parameters were studied.The results show that in the range of 550–850℃,especially after the temperature exceeds 650℃,with increasing the annealing temperature and time,the difference of microstructure between peak and trough positions increases,and the bonding strength of the composite plate decreases gradually.Especially,the interfacial bonding strength of the plate sharply decreases at 750℃ due to the rapid growth of intermetallic compounds at the interface and the diffusion holes caused by the difference of element diffusion.The 304/TC4 composite plate has the best synergistic deformation ability when annealing at 650℃/2 h,with the elongation reaching 35%and the tensile strength decreasing to 852 MPa.High interfacial bonding strength and moderate matrix recovery are important prerequisites for synergistic deformation of composite plates. 展开更多
关键词 304/TC4 composite plate Corrugated interface MICROSTRUCTURE Mechanical property Synergistic deformation
原文传递
Research on edge defects suppression of Mg/Al composite plate rolling:Development of embedded rolling technology
15
作者 Chenchen Zhao Zhiquan Huang +3 位作者 Haoran Zhang Peng Li Tao Wang Qingxue Huang 《Journal of Magnesium and Alloys》 2025年第8期3751-3767,共17页
Edge defects significantly impact the forming quality of Mg/Al composite plates during the rolling process.This study aims to develop an effective rolling technique to suppress these defects.First,an enhanced Lemaitre... Edge defects significantly impact the forming quality of Mg/Al composite plates during the rolling process.This study aims to develop an effective rolling technique to suppress these defects.First,an enhanced Lemaitre damage model with a generalized stress state damage prediction mechanism was used to evaluate the key mechanical factors contributing to defect formation.Based on this evaluation,an embedded composite rolling technique was proposed.Subsequently,comparative validation was conducted at 350℃ with a 50% reduction ratio.Results showed that the plates rolled using the embedded composite rolling technique had smooth surfaces and edges,with no macroscopic cracks observed.Numerical simulation indicated that,compared to conventional processes,the proposed technique reduced the maximum edge stress triaxiality of the plates from-0.02 to-1.56,significantly enhancing the triaxial compressive stress effect at the edges,which suppressed void nucleation and growth,leading to a 96%reduction in damage values.Mechanical property evaluations demonstrated that,compared to the conventional rolling process,the proposed technique improved edge bonding strength and tensile strength by approximately 67.7%and 118%,respectively.Further microstructural characterization revealed that the proposed technique,influenced by the restriction of deformation along the transverse direction(TD),weakened the plastic flow in the TD and enhanced plastic flow along the rolling direction(RD),resulting in higher grain boundary density and stronger basal texture.This,in turn,improved the toughness and transverse homogeneity of the plates.In summary,the embedded composite rolling technique provides crucial technical guidance for the preparation of Mg-based composite plates. 展开更多
关键词 Numerical simulation Damage model Stress triaxiality Mg/Al composite plate Embedded composite rolling
在线阅读 下载PDF
Influence mechanism of reduction rate on interface microstructure and mechanical properties of TA1/TC4 composite plate
16
作者 Peng ZHANG Hao ZHAO +4 位作者 Jin-zhou ZHU Tao WANG Zhong-kai REN Jian-chao HAN Wen-wen LIU 《Transactions of Nonferrous Metals Society of China》 2025年第12期4118-4136,共19页
The effects of the reduction rate of the corrugated rolling on the microstructure and mechanical properties of TA1/TC4 composite plate that was prepared via corrugated rolling+flat rolling process were investigated.Th... The effects of the reduction rate of the corrugated rolling on the microstructure and mechanical properties of TA1/TC4 composite plate that was prepared via corrugated rolling+flat rolling process were investigated.The finite element model was developed and validated for the corrugated rolling process of the composite plate.Experimental findings reveal the absence of significant defects and intermetallic compounds at the bonding interface.When the rolling temperature is 700℃with the reduction rate of 44%in the first pass of corrugated rolling,the tensile and interfacial shear strengths of the composite plate reach 749 and 403.97 MPa,respectively.The simulation results demonstrate that the plastic strain in the TC4 substrate is enhanced by corrugated rolling and the compressive stress at the trough is high.These results confirm that interfacial bonding is promoted by corrugated rolling,and the mechanical properties of the composite plate are improved significantly with the increase of reduction rate. 展开更多
关键词 corrugated rolling TA1/TC4 composite plate reduction rate interface microstructure interface bonding properties
在线阅读 下载PDF
Effects of Different Cooling Processes on the Structure and Properties of Aluminum/Steel Composite Plate
17
作者 Yufei Zhu Runwu Jiang +2 位作者 Chao Yu Yuhua Wu Hong Xiao 《Chinese Journal of Mechanical Engineering》 2025年第1期220-232,共13页
The aluminum(Al)/steel transition joints used in ships are processed from composite plates,and their mechanical properties have a significant impact on the safety of ships.In this paper,the Al/steel composite plate wa... The aluminum(Al)/steel transition joints used in ships are processed from composite plates,and their mechanical properties have a significant impact on the safety of ships.In this paper,the Al/steel composite plate was prepared using rolling,with 5083 aluminum plate as the cladding plate,Q235 steel plate as the substrate,and TA1 titanium(Ti)plate and DT4 pure iron(Fe)plate as the intermediate layers.The heterothermic billet was prepared through induction heating by the magnetic effects of the steel plate and the pure Fe plate,and then the Al/steel composite plate was obtained by rolling.The impacts of post-rolling cooling process on the microstructure and properties of the Al/Ti/pure Fe/steel composite plate were studied.The results manifested that the pure Fe/steel interface had a good composite effect.With the increase in the cooling rate,the bonding strength of the Al/Ti interface was raised,and that of the Ti/Fe interface was increased first and then decreased.When the oil cooling process was adopted,the Al/Ti/pure Fe/steel composite plate exhibited the highest comprehensive performance.The shear strength of the Al/Ti interface and the Ti/Fe interface was 102 MPa and 186 MPa,respectively.The plastic fracture was determined as the mode of interface fracture. 展开更多
关键词 Al/steel composite plate Cooling method MICROSTRUCTURE Shear strength
在线阅读 下载PDF
Prediction Model Study of Rolling Force and Thickness Ratio of the Bimetallic Composite Plate
18
作者 Jun Che Tao Wang +3 位作者 Bo Ma Yue Wu Zhiqiang Li Qingxue Huang 《Chinese Journal of Mechanical Engineering》 2025年第2期138-150,共13页
The prediction of the rolling force and thickness ratio plays an important role in the development and application of bimetallic composite plates.To analyze the rolling force of the bimetallic composite plate more acc... The prediction of the rolling force and thickness ratio plays an important role in the development and application of bimetallic composite plates.To analyze the rolling force of the bimetallic composite plate more accurately,a novel hypothesis based on Orowan's theory was proposed.The variation in the thickness of each differential element at different positions was considered to establish the analytical model.According to the characteristics of bimetallic composite plate rolling,the rolling deformation can be divided into forward and backward slip zones.The initial thickness ratio after rolling was predetermined by the thickness ratio before rolling;the rolling force balance of the upper and lower rollers was considered the convergence condition;and the final thickness ratio of the bimetallic composite plate was obtained by iterative calculation.The calculation results of the analytical model were compared with the measured and simulated data.The results showed that the errors in the calculation of the rolling force and thickness ratio were both less than 10%.The analytical model has high precision,meets engineering requirements,and has important reference significance for rolling process optimization and thickness ratio prediction. 展开更多
关键词 Bimetallic composite plate Deformation zone Rolling force calculation model Thickness ratio prediction model
在线阅读 下载PDF
Coordinated Regulation of Bonding Interfacial Structure and Mechanical Properties of Al/Mg Alloy Composite Plates by Electrically Assisted Rolling
19
作者 Tingting Zhang Xingrun An +2 位作者 Yan Wang Gongbo Bian Tao Wang 《Chinese Journal of Mechanical Engineering》 2025年第1期246-260,共15页
Current research on the fabrication of rolled composite plates primarily focuses on processing and bonding mechanisms.Compared with hot-rolling technology,the electrically assisted rolling process has demonstrated exc... Current research on the fabrication of rolled composite plates primarily focuses on processing and bonding mechanisms.Compared with hot-rolling technology,the electrically assisted rolling process has demonstrated excellent performance in interfacial bonding effects.However,the influence of different current loading modes on the interfacial recombination process of composite panels varies significantly.In this study,low-frequency electrically assisted rolling was used in the first pass to pre-bond a composite plate at a low reduction rate of 15%.High-frequency electrically assisted rolling was used during the second pass,and Al/Mg alloy composite plates were obtained.The interfacial microstructure and mechanical properties of the composite plate were coordinated regulation by designing the rolling reduction rate.The results showed the interfacial morphology of the alternating distribution of the melt-diffusion layer,diffusion layer,and the formation of a new Al/Mg bonding interface.At the melt-diffusion interface,the irregular intermetallic compounds(IMCs)and the new Al/Mg bonding interface were alternately distributed,and the IMCs contained theα-Mg,Mg17Al12,and Mg2Al3 phases.In addition,an extremely high shear strength of 78.26 MPa was achieved.Adhesion of the Mg alloy matrix was observed on the fracture surface of the Al alloy side.The high shear strength was mainly attributed to the formation of a unique interfacial structure and the appearance of a melt-diffusion layer.Compared to the diffusion-reduction interface,the regular rectangular IMCs and the new Al/Mg bonding interface were alternately distributed,and the IMCs consisted of the Mg17Al12 and Mg2Al3 phases.The shear test results showed that the shear strength of the interface reached 68.69 MPa,and a regular distribution of the Mg alloy matrix with dimples and the Al alloy matrix with a necking zone was observed on the fracture surface of the Al side.Tensile strength test results revealed a maximum value of 316.86 MPa for the Al/Mg alloy composite plate.The tensile and interfacial bonding strengths can be synchronously enhanced by coordinating the regulation of the interfacial structure.This study proposes a new electrically assisted rolling technology that is useful for the fabrication of composite plates with excellent mechanical properties. 展开更多
关键词 Al/Mg alloy composite plate Electrically assisted rolling Bonding properties Interfacial structure
在线阅读 下载PDF
Dynamic modeling of a three-dimensional braided composite thin plate considering braiding directions
20
作者 Chentong GAO Huiyu SUN +1 位作者 Jianping GU W.M.HUANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第1期123-138,共16页
Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade compone... Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade components.In this paper,a dynamic model of 3D 4-directional braided composite thin plates considering braiding directions is established.Based on Kirchhoff's plate assumptions,the displacement variables of the plate are expressed.By incorporating the braiding directions into the constitutive equation of the braided composites,the dynamic model of the plate considering braiding directions is obtained.The effects of the speeds,braiding directions,and braided angles on the responses of the plate with fixed-axis rotation and translational motion,respectively,are investigated.This paper presents a dynamic theory for calculating the deformation of 3D braided composite structures undergoing both translational and rotational motions.It also provides a simulation method for investigating the dynamic behavior of non-isotropic material plates in various applications. 展开更多
关键词 three-dimensional(3D)braided composite braiding direction composite thin plate large overall motion dynamic model
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部