期刊文献+
共找到167篇文章
< 1 2 9 >
每页显示 20 50 100
Variable stiffness design optimization of fiber-reinforced composite laminates with regular and irregular holes considering fiber continuity for additive manufacturing 被引量:1
1
作者 Yi LIU Zunyi DUAN +6 位作者 Chunping ZHOU Yuan SI Chenxi GUAN Yi XIONG Bin XU Jun YAN Jihong ZHU 《Chinese Journal of Aeronautics》 2025年第3期334-354,共21页
Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design o... Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper. 展开更多
关键词 Variable stiffness composite laminates Discrete material interpolation scheme Normal distribution fiber optimization Discrete fiber continuous filtering strategy Additive manufacturing of composite laminates
原文传递
A novel solution of rectangular composite laminates under oblique low-velocity impacts
2
作者 Yinxiao ZHANG Zheng GONG +1 位作者 Ernian PAN Chao ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第12期2165-2182,共18页
An analytical solution for the responses of composite laminates under oblique low-velocity impacts is presented for a cross-ply,orthotropic,and rectangular plate under oblique low-velocity impacts.The plate is under s... An analytical solution for the responses of composite laminates under oblique low-velocity impacts is presented for a cross-ply,orthotropic,and rectangular plate under oblique low-velocity impacts.The plate is under simply-supported edge conditions,and the dynamic displacement field is expressed in a mixed form by in-plane double Fourier series and cubic polynomials through the thickness as 12 variables for each layer.A system of modified Lagrange equations is derived with all interface constraints.The Hertz and Cattaneo-Mindlin theories are used to solve for the normal and tangential contact forces during the impacts.By further discretizing in the time domain,the oblique impact problem is solved iteratively.While the numerical results clearly show the influence of impact velocity,stacking sequence,mechanical parameters,and geometric parameters,the proposed analytical approach could serve as a theoretical basis for the laminate analysis and design when it is under low-velocity impacts. 展开更多
关键词 composite laminate analytical model oblique impact three-dimensional(3D)displacement field modified Lagrange equation
在线阅读 下载PDF
Low-velocity Impact Damage Analysis of Composite Laminates Using Self-adapting Delamination Element Method 被引量:1
3
作者 王立朋 燕瑛 +1 位作者 吴大方 吴浩 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第4期313-319,共7页
On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method... On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method, the sublaminate elements are generated automatically when the delamination damage occurs or extends. Thus, the complex process and state of delamination damage can be simulated practically with high efficiency for both analysis and modeling. Based on the self-adapting delamination method, linear dynamic finite element damage analysis is performed to simulate the low-velocity impact damage process of three types of mixed woven composite laminates. Taking the frictional force among sublaminations during delaminating and the transverse normal stress into account, the analytical results are consistent with those of the experimental data. 展开更多
关键词 self-adapting delamination element method low-velocity impact DELAMINATION composite laminate
在线阅读 下载PDF
Damping and Mechanical Properties of Cocured Composite Laminates with Embedded Perforate Viscoelastic Layer 被引量:5
4
作者 Lijian Pan Boming Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第4期543-546,共4页
The composite laminates with embedded acrylonitrile butadiene rubber (NBR) layer were fabricated by cocuring process. The embedded layers were perforated with a series of small holes to allow resin to flow through t... The composite laminates with embedded acrylonitrile butadiene rubber (NBR) layer were fabricated by cocuring process. The embedded layers were perforated with a series of small holes to allow resin to flow through the damping layer and completely couple the structure to improve bending stiffness and interlaminar shearing strength of these cocured composite laminates. The damping, bending stiffness and shearing strength of these composite laminates with different perforation diameters were investigated. The experimental results show that increasing the perforation diameter leads to significant decreases in damping and significant increase in bending stiffness up to an area ratio of 7.065%. The area ratio here is defined as the ratio of perforation area to the total damping area. Beyond the area ratio of 7.065%, increasing the diameter to an area ratio of 50.24% results in only a slight variation in damping and bending stiffness. Moreover, increasing the perforation diameter does not always increase the shearing strength of the embedded viscoelastic layer. The shearing strength of embedded viscoelastic layer increases only when the area ratio is greater than 19.625%; instead, it will decrease. 展开更多
关键词 composite laminates Perforate viscoelastic layer Cocured DAMPING Mechanical Properties
在线阅读 下载PDF
Progressive damage behaviors of woven composite laminates subjected to LVI, TAI and CAI 被引量:5
5
作者 Zhengqiang CHENG Junjiang XIONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第10期2807-2823,共17页
This paper seeks to deal with progressive damage behaviors of woven composite laminates subjected to low-velocity impact(LVI),tension-after-impact(TAI)and compression-afterimpact(CAI).The LVI,TAI and CAI tests were co... This paper seeks to deal with progressive damage behaviors of woven composite laminates subjected to low-velocity impact(LVI),tension-after-impact(TAI)and compression-afterimpact(CAI).The LVI,TAI and CAI tests were conducted on woven carbon fibre lamina3238 A/CF3052 and woven glass fibre lamina 3238 A/EW250 F,and the time-dependent LVI contact force and deflection curves,static TAI and CAI load versus displacement curves were determined and discussed.A modified progressive damage model was presented for explicit dynamic LVI and implicit static TAI and CAI analysis by using basic material properties and geometrical dimensions,and progressive damage LVI,TAI and CAI behaviors of woven composite laminates were simulated,demonstrating a good correlation between simulations and experiments. 展开更多
关键词 Compression after impact Low velocity impact Progressive damage Tension after impact Woven composite laminates
原文传递
Effect of SACMA and QMW Test Methods on Compressive Properties of Composite Laminates after Low Velocity Impact 被引量:2
6
作者 CHENG Xiao-quan ZHANG Zi-long +1 位作者 YI Xiao-su WU Xue-ren 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2002年第2期90-97,共8页
Experimental studies on the compressive behavior of composite laminates after low velocity impact was carried out with two test methods.One is SACMA Standard,and the other is a small dimensional specimen test method.I... Experimental studies on the compressive behavior of composite laminates after low velocity impact was carried out with two test methods.One is SACMA Standard,and the other is a small dimensional specimen test method.Impact damage distributions,compressive failure process after impact,quasi static indentation and compression of laminates with a hole were brought into comparison between these two test methods.The results showed that there is a great difference between these two test methods.Compressive behavior of laminates after impact varies with different test methods.Residual compressive strength of laminates after low velocity impact measured with SACMA Standard can reflect stiffness properties of composite resins more wholely than that measured with the other method can do.Small dimensional specimen test method should be improved on as an experimental standard of compressive strength after impact. 展开更多
关键词 composite laminates test methods low velocity impact DAMAGE residual compressive strength
在线阅读 下载PDF
Suppression of thermal postbuckling and nonlinear panel flutter motions of variable stiffness composite laminates using piezoelectric actuators 被引量:2
7
作者 TAO Ji-xiao YI Sheng-hui +1 位作者 DENG Ya-jie HE Xiao-qiao 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第12期3757-3777,共21页
Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbu... Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbuckling and nonlinear panel flutter motions of VSCLs,a full-order numerical model is developed based on the linear quadratic regulator(LQR)algorithm in control theory,the classical laminate plate theory(CLPT)considering von Kármán geometrical nonlinearity,and the first-order Piston theory.The critical buckling temperature and the critical aerodynamic pressure of VSCLs are parametrically investigated.The location and shape of piezoelectric actuators for optimal control of the dynamic responses of VSCLs are determined through comparing the norms of feedback control gain(NFCG).Numerical simulations show that the temperature field has a great effect on aeroelastic tailoring of VSCLs;the curvilinear fiber path of VSCLs can significantly affect the optimal location and shape of piezoelectric actuator for flutter suppression;the unstable panel flutter and the thermal postbuckling deflection can be suppressed effectively through optimal design of piezoelectric patches. 展开更多
关键词 active control finite element method linear quadratic regulator algorithm nonlinear flutter thermal postbuckling variable stiffness composite laminates
在线阅读 下载PDF
FATIGUE LIFE PREDICTION THEORY OF COMPOSITE LAMINATES AND EXPERIMENTAL VERIFICATION 被引量:2
8
作者 XiongJunjiang WuZhe +1 位作者 GaoZhentong ShenoiRAjiat 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第2期178-180,共3页
According to traditional phenomenological fatigue methodology and moderncontinuum damage mechanics theory, dual fatigue cumulative damage rules to predict fatigue damageformation and propagation lives of the notched c... According to traditional phenomenological fatigue methodology and moderncontinuum damage mechanics theory, dual fatigue cumulative damage rules to predict fatigue damageformation and propagation lives of the notched composite laminates are presented. A 3-dimensionaldamage constitutive equation of anisotropic composites is also established. Damage strain energyrelease rate is interpreted as a driving force of the fatigue delamination damage propagation. A newdamage evolution equation and a damage propagation σ_a-σ_m-N~* surface (stress amplitude-meanstress-life surface) are derived. Hence, using the method above, the fatigue life of compositecomponents can be predicted. Finally, theoretically predicted results are compared with experimentaldata. It is found that the deviation of theoretic prediction from experimental results is about22%. 展开更多
关键词 FATIGUE life prediction composite laminates damage evolution
在线阅读 下载PDF
Multi-objective Optimization of Co-cured Composite Laminates with Embedded Viscoelastic Damping Layer 被引量:2
9
作者 Lijian Pan Boming Zhang Fuhong Dai 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第5期708-712,共5页
Presented herein is a methodology for the multi-objective optimization of damping and bending stiffness of cocoured composite laminates with embedded viscoelastic damping layer. The embedded viscoelastic damping layer... Presented herein is a methodology for the multi-objective optimization of damping and bending stiffness of cocoured composite laminates with embedded viscoelastic damping layer. The embedded viscoelastic damping layer is perforated with a series of small holes, and the ratio of the perforation area to the total damping area is the design variable of the methodology. The multi-objective optimization is converted into a single-objective problem by an evaluation function which is a liner weigh sum of the two sub-objective functions. The proposed methodology was carried out to determine the optimal perforation area ratios of two viscoelstic layers with different perforation distance embedded in two composite plates. Both the optimal perforation area ratios are approximate to 2.2%. However, the objective value of the plate with greater perforation distance in embedded viscoelatic layer is much greater. 展开更多
关键词 composite laminates Viscoelastic damping layer Co-cured Multi-objective optimization
在线阅读 下载PDF
PREDICTIVE APPROACH TO FAILURE OF COMPOSITE LAMINATES WITH EQUIVALENT CONSTRAINT MODEL 被引量:2
10
作者 Fang Wang Xiangguo Zeng Junqian Zhang 《Acta Mechanica Solida Sinica》 SCIE EI 2010年第3期240-247,共8页
This work established a new analytical model based upon the equivalent constraint model (ECM) to constitute an available predictive approach for analyzing the ultimate strength and simulating the stress/strain respo... This work established a new analytical model based upon the equivalent constraint model (ECM) to constitute an available predictive approach for analyzing the ultimate strength and simulating the stress/strain response of general symmetric laminates subjected to combined loading, by taking into account the effect of matrix cracking. The ECM was adopted to mainly predict the in-plane stiffness reduction of the damaged laminate. Basic consideration that progressive matrix cracking provokes a re-distribution of the stress fields on each lamina within laminates, which greatly deteriorates the stress distributed in the primary load-bearing lamina and leads to the final failure of the laminates, is introduced for the construction of the failure criterion. The effects of lamina properties, lay-up configurations and loading conditions on the behaviors of the laminates were examined in this paper. A comparison of numerical results obtained from the established model and other existed models and published experimental data was presented for different material systems. The theory predictions demonstrated great match with the experimental observations investigated in this study. 展开更多
关键词 composite laminates equivalent constraint model primary load-bearing lamina progressive matrix cracking strength
原文传递
Extended Kantorovich method for local stresses in composite laminates upon polynomial stress functions 被引量:1
11
作者 Bin Huang Ji Wang +3 位作者 Jianke Du Yan Guo Tingfeng Ma Lijun Yi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第5期854-865,共12页
The extended Kantorovich method is employed to study the local stress concentrations at the vicinity of free edges in symmetrically layered composite laminates subjected to uniaxial tensile load upon polynomial stress... The extended Kantorovich method is employed to study the local stress concentrations at the vicinity of free edges in symmetrically layered composite laminates subjected to uniaxial tensile load upon polynomial stress functions. The stress fields are initially assumed by means of the Lekhnitskii stress functions under the plane strain state. Applying the principle of complementary virtual work,the coupled ordinary differential equations are obtained in which the solutions can be obtained by solving a generalized eigenvalue problem. Then an iterative procedure is established to achieve convergent stress distributions. It should be noted that the stress function based extended Kantorovich method can satisfy both the traction-free and free edge stress boundary conditions during the iterative processes. The stress components near the free edges and in the interior regions are calculated and compared with those obtained results by finite element method(FEM). The convergent stresses have good agreements with those results obtained by three dimensional(3D) FEM. For generality, various layup configurations are considered for the numerical analysis. The results show that the proposed polynomial stress function based extended Kantorovich method is accurate and efficient in predicting the local stresses in composite laminates and computationally much more efficient than the 3D FEM. 展开更多
关键词 Kantorovich method Polynomial stress function composite laminates Local stresses 3D FEM
在线阅读 下载PDF
Analytical solution methods for eigenbuckling of symmetric cross-ply composite laminates 被引量:1
12
作者 Xing Yufeng Xiang Wei 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第1期282-291,共10页
Based on the first-order shear deformation theory, this paper explores the analytical methods for eigenbuckling of symmetric cross-ply rectangular composite laminates with a pair of parallel edges simply supported and... Based on the first-order shear deformation theory, this paper explores the analytical methods for eigenbuckling of symmetric cross-ply rectangular composite laminates with a pair of parallel edges simply supported and the remaining two edges arbitrarily constrained. The main contribution of present paper lies in two aspects: one is to present a simple and effective analytical method, namely, the separation-of-variables method, which can generate the closed-form buckling solutions without any computational difficulty; the other is to incorporate the accurate computation method of exponential matrix into the state space technique to avoid the inevitable numerically illconditioned problems reported in several literatures. The results obtained via both analytical methods are identical, and a good agreement with their counterparts in literature is observed. The separation-of-variables method can generate exact solutions within 1 s, which is impossible if the state space method is employed. Besides, the combination of the accurate computation method of exponential matrix and the state space method greatly improves the computational efficiency and gives correct results compared with the straightforward use of state space method. 展开更多
关键词 Accurate computation Analytical solution composite laminates Eigenbuckling Separation of variablesState space
原文传递
Multiaxial fatigue life prediction of composite laminates 被引量:1
13
作者 Jingmeng WENG Tong MENG +1 位作者 Weidong WEN Shaodong WENG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第12期227-237,共11页
A study of composite laminates under tension–torsion biaxial loading is presented.The focus is placed on fatigue lives of composite laminates under different tension–torsion biaxial fatigue loading paths.A macro-mes... A study of composite laminates under tension–torsion biaxial loading is presented.The focus is placed on fatigue lives of composite laminates under different tension–torsion biaxial fatigue loading paths.A macro-meso model used to predict multiaxial fatigue life of composite laminates is also presented in this paper.Firstly,a macro-scale 3 D RVE corresponding to composite laminates is established to determine strain components in the material principal direction of each layer for each biaxial stress ratio.Secondly,a meso-scale 3 D RVE corresponding to each layer with fibers distributed randomly is established,with progressive damage prediction method,biaxial strength of composite laminates can be predicted,and the final failure layer can be confirmed.Thirdly,select any one of fatigue loading path at which the final failure of composite laminates is fiber failure(matrix failure)to establish the reference curve for fiber(matrix).Finally,with reference curve,fatigue life of composite laminates under any biaxial loading path can be predicted.And numerical results show good agreements with experimental data. 展开更多
关键词 composite laminates Fatigue damage parameter Life prediction Multiaxial fatigue Multiaxial strength
原文传递
Effects of Lay-up Types of Out-of-autoclave Prepregs on Preparation Quality of L-shape Composite Laminates 被引量:1
14
作者 GONG Ming ZHANG Daijun +1 位作者 ZHANG Jiayang CHEN Xiangbao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第5期629-635,共7页
Effects of layer quantities and stacking sequences on L-shape composite manufacturing qualities in using OOA(out-of-autoclave)prepregs were studied.The mechanisms of air evacuated in 5 kinds of lay-ups were revealed b... Effects of layer quantities and stacking sequences on L-shape composite manufacturing qualities in using OOA(out-of-autoclave)prepregs were studied.The mechanisms of air evacuated in 5 kinds of lay-ups were revealed by image analysis of cut surfaces and thickness measurements.Results show that air in OOA prepregs is evacuated in two ways.Most of the air is forced out of layers directly by vacuum before air accesses in prepregs closed.Very little entrapped air moves perpendicularly to outer layers under hydrostatic resin pressure.When a laminate contains less than 16 layers,voids can hardly be found in layers.When a laminate contains more than 16 layers,voids cannot be expelled completely during the window of vertical movement.As for stacking sequences,the synergetic effect of slip function and nest function determines the thickness and voids content of laminates.Results show that the average of single layer thickness of unidirectional layers is the lowest,and the average of single layer thickness of quasi-isotropic layers is the highest.The voids content of quasi isotropic is the highest,which is consistent with the theoretical analysis. 展开更多
关键词 OOA prepregs L-shape composite laminates lay-up type
原文传递
Analytical solutions to edge effect of composite laminates based on symplectic dual system
15
作者 姚伟岸 聂臆瞩 肖锋 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第9期1091-1100,共10页
In the symplectic space composed of the original variables,displacements,and their dual variables,stresses,the symplectic solution for the composite laminates based on the Pipes-Pagano model is established in this pap... In the symplectic space composed of the original variables,displacements,and their dual variables,stresses,the symplectic solution for the composite laminates based on the Pipes-Pagano model is established in this paper.In contrast to the traditional technique using only one kind of variables,the symplectic dual variables include displacement components as well as stress components.Therefore,the compatibility conditions of displacement and stress at interfaces can be formulated simultaneously.After being introduced into the symplectic dual system,the uniform schemes,such as the separation of variables and symplectic eigenfunction expansion method,can be implemented conveniently to analyze composite laminate problems.An analytical solution for the free edge effect of composite laminates is obtained,showing the effectiveness of the symplectic dual method in analyzing composite laminates. 展开更多
关键词 composite laminates edge effect Pipes-Pagano model interlaminar stresses symplectic dual system
在线阅读 下载PDF
Sectional Warping Corrective Model for Free Edge Stresses in Composite Laminates
16
作者 黄传跃 诸德超 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2002年第4期213-221,共9页
The edge stress problem in composite laminates under uniform axial extension is analyzed. The displacement distribution in three directions along the thickness are derived respectively by use of the sectional warping ... The edge stress problem in composite laminates under uniform axial extension is analyzed. The displacement distribution in three directions along the thickness are derived respectively by use of the sectional warping corrective theory, and the hierarchical displacement functions are adopted in the width direction. Finally, based on the principle of virtual work, a special finite element model for boundary layer effects is obtained. Accuracy and convergence of the solution are studied, and the present resu... 展开更多
关键词 composite laminates boundary layer effects sectional warping theory hierarchical finite element methods
在线阅读 下载PDF
ON THE DESCRIPTION OF ANISOTROPIC DAMAGE IN COMPOSITE LAMINATES
17
作者 杨卫 J.P.Boehler 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1991年第4期335-343,共9页
A general anisotropic damage theory of cracked laminates is formulated here.The deformation of composite laminates is composed of matrix elastic strains,pseudo-elastic damage strains due to cracking and permanent dama... A general anisotropic damage theory of cracked laminates is formulated here.The deformation of composite laminates is composed of matrix elastic strains,pseudo-elastic damage strains due to cracking and permanent damage strains due to interlaminar slip.The surface of damage initiation is constructed accord- ing to the concept of linear elastic fracture mechanics for the virgin material.After the initial damage,a pesudo-elastic damage can be used to describe the damage behaviour if interlaminar slip is negligible.Damage evolution,load induced anisotropy and interlaminar-intralaminar interaction for composite laminates are exam- ined;the latter can perturb the normality structure of damage strain rate.Explicit expressions are given for pseudo-elastic (or secant) moduli of the damaging composite laminates,under a non-interacting assumption imposed on the cracks between different families. 展开更多
关键词 composite laminates anisotropic damage constitutive modelling
在线阅读 下载PDF
Research on Fixture's Effect on Properties of Single-Shear Bolt Jointed Composite Laminates Structure
18
作者 Changxi Liu Zhengong Zhou +1 位作者 Xiaohong Wang Boming Zhang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2017年第2期19-29,共11页
The testing on the bearing strength of single-shear bolt jointed composite laminates structure is done.And the effect of the fixture on the testing results is analyzed. Then a macro-micro multi-scale analytical model ... The testing on the bearing strength of single-shear bolt jointed composite laminates structure is done.And the effect of the fixture on the testing results is analyzed. Then a macro-micro multi-scale analytical model combined with the improved"Generalized Method of Cells( GMC) "is developed,which is used to predict the macro bearing strength and to characterize the micro constitute material failure of the bolt jointed composite laminates structure. Both the contact conditions at the bolt/hole boundary and the contact conditions at the specimen/fixture boundary,progressive damage,and the material properties degradation are all taken account into the analytical model. Thus,the numerical simulation results agree well with the experimental results.Finally,the effect of the fixture on the testing results is characterized. The results show that the incomplete contaction between the fixture and the specimen or the lack of the lateral constraint on the specimen will affect the limited bearing strength and the offset bearing strength of the bolt jointed composite laminates structure. In addition,the lower support rigid of the fixture will affect the rigid of the bolt jointed composite laminates structure. 展开更多
关键词 macro-micro multi-scale numerical analysis single-shear composite laminates structure test fixture ABAQUS GMC model user subroutine
在线阅读 下载PDF
Analysis of vibration attenuation characteristics of large thickness carbon fiber composite laminates
19
作者 Yi-Qi WANG Chaoqun WANG +2 位作者 Pengxiao YANG Ziao WANG Tete CAO 《Mechanical Engineering Science》 2022年第1期22-26,共5页
The vibration attenuation and damping characteristics of carbon fiber reinforced composite laminates with different thicknesses were investigated by hammering experiments under free boundary constraints in different d... The vibration attenuation and damping characteristics of carbon fiber reinforced composite laminates with different thicknesses were investigated by hammering experiments under free boundary constraints in different directions.The dynamic signal testing and analysis system is applied to collect and analyze the vibration signals of the composite specimens,and combine the self-spectrum analysis and logarithmic decay method to identify the fundamental frequencies of different specimens and calculate the damping ratios of different directions of the specimens.The results showed that the overall stiffness of the specimen increased with the increase of the specimen thickness,and when the thickness of the sample increases from 24mm to 32mm,the fundamental frequency increases by 35.1%,the vibration showed the same vibration attenuation and energy dissipation characteristics in the 0°and 90°directions of the specimen,compared with the specimen in the 45°direction,which was less likely to be excited and had poorer vibration attenuation ability,while the upper and lower surfaces of the same specimen showed slightly different attenuation characteristics to the vibration,the maximum difference of damping capacity between top and bottom surfaces of CFRP plates is about 70%. 展开更多
关键词 Carbon fiber composite laminates Logarithmic decay method Damping ratio Natural frequency
在线阅读 下载PDF
Nonlinear progressive damage model for composite laminates used for low-velocity impact 被引量:11
20
作者 郭卫 薛璞 杨军 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第9期1145-1154,共10页
In order to effectively describe the progressively intralaminar and interlam- inar damage for composite laminates, a three dimensional progressive damage model for composite laminates to be used for low-velocity impac... In order to effectively describe the progressively intralaminar and interlam- inar damage for composite laminates, a three dimensional progressive damage model for composite laminates to be used for low-velocity impact is presented. Being applied to three-dimensional (3D) solid elements and cohesive elements, the nonlinear damage model can be used to analyze the dynamic performance of composite structure and its failure be- havior. For the intralaminar damage, as a function of the energy release rate, the damage model in an exponential function can describe progressive development of the damage. For the interlaminar damage, the damage evolution is described by the framework of the continuum mechanics through cohesive elements. Coding the user subroutine VUMAT of the finite element software ABAQUS/Explicit, the model is applied to an example, i.e., carbon fiber reinforced epoxy composite laminates under low-velocity impact. It is shown that the prediction of damage and deformation agrees well with the experimental results. 展开更多
关键词 composite laminate progressive damage DELAMINATION energy release rate low-velocity impact
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部