A heat resistant gradient composite was synthesized in situ on steel with the self-propagating high temperature synthesis (SHS) reaction of 3Ni-Al-Ti-C system during casting. The phases, microstructure, and composit...A heat resistant gradient composite was synthesized in situ on steel with the self-propagating high temperature synthesis (SHS) reaction of 3Ni-Al-Ti-C system during casting. The phases, microstructure, and composition of the composite were analyzed by using an X-ray diffractometer (XRD), and a scanning electron microscope (SEM) coupled with an energy-dispersive X-ray spectroscope (EDS). The formation mechanism of the composite is also discussed. TiC/Ni3 Al/steel gradient composite is achieved by forming the gradient distributions of Fe, Ni, and Al, accompanied with the gradient variation of the microstructure from TiC/Nia A1, to TiC/Ni3 Al/steel, and to steel. The composite is in situ synthesized through whole reaction of 3Ni-Al-Ti-C system in liquid steel and densification procedure, and the liquid steel infiltrates into pores in the SHS product and forces liquid Ni3Al to form self-compaction further.展开更多
Thermal energy storage is an attractive option for effectiveness since it gives flexibility and reduces energy consumption and costs. New composite materials for storage and transformation of heat of NaCl-Al2O3composi...Thermal energy storage is an attractive option for effectiveness since it gives flexibility and reduces energy consumption and costs. New composite materials for storage and transformation of heat of NaCl-Al2O3composite materials were synthesized by one-step synthesis method. The chemical composition, morphology, structure, and thermal properties were investigated by XRD, EDS, SEM, and DSC. The results show that NaCl can be absorbed by Al2O3particle from 800 to 900 ℃ for Al2O3particle surface is rich active structure. The results also indicate that the leakage of NaCl when the phase change can be prevented by Al2O3particles and the enthalpy of phase change of NaCl-Al2O3material is 362 J/g. The composites have an excellent heat storage capacity. Therefore, this study contributes to one new thought and method to prepare high temperature heat storage material and this material can be applied in future thermal engineering.展开更多
The action of the composite heat source model in DE-GMAW has been carried out according to the characteristics of the DE-GMA W process, and the distribution of surface and body heat source was analyzed. The weld tempe...The action of the composite heat source model in DE-GMAW has been carried out according to the characteristics of the DE-GMA W process, and the distribution of surface and body heat source was analyzed. The weld temperature field distribution has been derived from the appropriate boundary conditions and the thermal physical property parameters by COMSOL software. The effects of the positions of the surface and body heat source on the cross- sectional shape were investigated by studying the experimental welding thermal cycle curve. The simulated results are fully compliant with the experimental data under the same conditions. This illustrates that the composite heat source model is correct. It reflects the thermal mechanism of DE-GMA W process, and reveals the internal influence of weld shaping.展开更多
A new method of fabricating C/C composite materials, namely electric heating CVD method, was used, which electrified the carbon fiber directly by using the conductivity of itself. Acetylene was used as the carbon sour...A new method of fabricating C/C composite materials, namely electric heating CVD method, was used, which electrified the carbon fiber directly by using the conductivity of itself. Acetylene was used as the carbon source with nitrogen as dilution gas, and the pyrolytic carbon started to deposit on the carbon fiber surface when the deposition temperature was reached. The morphology of pyrolytic carbon was characterized by SEM, and the surface properties of carbon fibers before and after CVD were characterized by Raman spectroscopy. The experimental results show that the electric heating method is a novel method to fabricate C/C composite materials, which can form a dense C/C composite material in a short time. The order degree and the average crystallite size of the carbon fiber surface were decreased after the experiment.展开更多
A finite composite laminate weakened by multiple elliptical holes of arbitrarydistribution, arbitrary orientation and arbitrary dimension, is treated as an anisotropic,finite multiple connected thin plate. Using the c...A finite composite laminate weakened by multiple elliptical holes of arbitrarydistribution, arbitrary orientation and arbitrary dimension, is treated as an anisotropic,finite multiple connected thin plate. Using the complex potential method in planetheory of heat conduction and elastictiy of an anisotropic body, the analytical solutionof a finite composite laminated plate subjected io arbitrary mechanical and thermalloads with multiple elliptical holes is. obtained by means of the Faber series expansion,mapping and the least square boundary collocation technique. The effects of someparameters on the thermostress distribution are studied in detail. Some conclusions aredrawn.展开更多
Modeling of heat transfer and solidification of composite roll was established and used to predict the thermal history and solidification process of roll during spray forming. Evolution of temperature field of the pr...Modeling of heat transfer and solidification of composite roll was established and used to predict the thermal history and solidification process of roll during spray forming. Evolution of temperature field of the preform and cooling rate in the growing deposit during spray deposition and post-deposition were numerically simulated.展开更多
Polycrystalline Cr2AlC coatings were prepared on M38G superalloy using a two-step method consisting of magnetron sputtering from Cr-Al-C composite targets at room temperature and subsequent annealing at 620 ℃. Partic...Polycrystalline Cr2AlC coatings were prepared on M38G superalloy using a two-step method consisting of magnetron sputtering from Cr-Al-C composite targets at room temperature and subsequent annealing at 620 ℃. Particularly, various targets synthesized by hot pressing mixture of Cr, Al, and C powders at 650-1000 ℃ were used. It was found that regardless of the phase compositions and density of the com- posite targets, when the molar ratio of Cr:Al:C in the starting materials was 2:1:1, phase-pure crystalline Cr2AlC coatings were prepared by magnetron sputtering and post crystallization. The Cr2AIC coatings were dense and crack-free and had a duplex structure. The adhesion strength of the coating deposited on M38G superalloy from the 800 ℃ hot-pressed target and then annealed at 620 ℃ for 20 h in Ar exceeded 82 ± 6 MPa, while its hardness was 12 ± 3 GPa.展开更多
Ru O2·n H2O film was deposited on tantalum foils by electrodeposition and heat treatment using Ru Cl3·3H2O as precursor.Surface morphology, composition change and cyclic voltammetry from precursor to amorpho...Ru O2·n H2O film was deposited on tantalum foils by electrodeposition and heat treatment using Ru Cl3·3H2O as precursor.Surface morphology, composition change and cyclic voltammetry from precursor to amorphous and crystalline RuO2·n H2O films were studied by X-ray diffractometer, Fourier transformation infrared spectrometer, differential thermal analyzer, scanning electron microscope and electrochemical analyzer, respectively. The results show that the precursor was transformed gradually from amorphous to crystalline phase with temperature. When heat treated at 300 °C for 2h, RuO2·n H2O electrode surface gains mass of2.5 mg/cm2 with specific capacitance of 782 F/g. Besides, it is found that the specific capacitance of the film decreased by roughly20% with voltage scan rate increasing from 5 to 250 m V/s.展开更多
Moisture in insulation materials will impair their thermal and acoustic performance, induce microbe growth, and cause equipment/material corrosion. Moisture content measurement is vital to the effective moisture contr...Moisture in insulation materials will impair their thermal and acoustic performance, induce microbe growth, and cause equipment/material corrosion. Moisture content measurement is vital to the effective moisture control. This investigation proposes a simple, fast, and accurate method to measure moisture content of insulation materials through matching the measured temperature rise. Since moisture content corresponds to unique thermophysical properties, the measured temperature rise varies with moisture content. During the data analysis, all possible volumetric heat capacities and thermal conductivities are enumerated to match the measured temperature rise based on the composite heat conduction theory. Then, the partial derivatives with respect to both volumetric heat capacity and thermal conductivity are evaluated, so that these partial derivatives will be guaranteed equaling to zero at the optimal solutions to the moisture content. Compared to the benchmarked gravimetric method, this proposed method was found having a better accuracy but requiring a short test time.展开更多
In this paper,a novel composite heat transfer enhancement technique comprised of louvered fins(LFs)and rectangular wing vortex generators(RWVGs)is proposed to improve the LF side thermal-hydraulic performance of louve...In this paper,a novel composite heat transfer enhancement technique comprised of louvered fins(LFs)and rectangular wing vortex generators(RWVGs)is proposed to improve the LF side thermal-hydraulic performance of louvered fin and flat tube heat exchangers(LFHEs).After validation of the LF side pressure dropΔP and heat transfer coefficient hLFof the baseline by experiments,the numerical method is applied to investigate the influential mechanisms of the RWVG parameters(the number N(7 to 15),attack angleβ(30°to 90°),height H_(VG)(0.8 mm to 2 mm)and width W_(VG)(0.8 mm to 1.2 mm))on the performance of the LFHE in the velocity range of 3 m/s to 10 m/s.Results show that thermal-hydraulic performance of the LFHE is significantly impacted by the RWVGs,and according to the performance evaluation criteria(PEC),the LFHE achieves its optimal thermal-hydraulic performance when N=7,β=45°,H_(VG)=1.8 mm and W_(VG)=1 mm.Compared to the baseline,the maximum,minimum and average increments of PEC for the optimal case are 13.85%,4.67%and 8.39%,respectively.展开更多
This paper explores the difficulties in solving partial differential equations(PDEs)using physics-informed neural networks(PINNs).PINNs use physics as a regularization term in the objective function.However,a drawback...This paper explores the difficulties in solving partial differential equations(PDEs)using physics-informed neural networks(PINNs).PINNs use physics as a regularization term in the objective function.However,a drawback of this approach is the requirement for manual hyperparameter tuning,making it impractical in the absence of validation data or prior knowledge of the solution.Our investigations of the loss landscapes and backpropagated gradients in the presence of physics reveal that existing methods produce non-convex loss landscapes that are hard to navigate.Our findings demonstrate that high-order PDEs contaminate backpropagated gradients and hinder convergence.To address these challenges,we introduce a novel method that bypasses the calculation of high-order derivative operators and mitigates the contamination of backpropagated gradients.Consequently,we reduce the dimension of the search space and make learning PDEs with non-smooth solutions feasible.Our method also provides a mechanism to focus on complex regions of the domain.Besides,we present a dual unconstrained formulation based on Lagrange multiplier method to enforce equality constraints on the model’s prediction,with adaptive and independent learning rates inspired by adaptive subgradient methods.We apply our approach to solve various linear and non-linear PDEs.展开更多
基金Item Sponsored by National High-Tech Research and Development Programof China (2002AA331180)High Education Council of Jiangsu Province for Key-Lab Project (Kjsmcx 04004)
文摘A heat resistant gradient composite was synthesized in situ on steel with the self-propagating high temperature synthesis (SHS) reaction of 3Ni-Al-Ti-C system during casting. The phases, microstructure, and composition of the composite were analyzed by using an X-ray diffractometer (XRD), and a scanning electron microscope (SEM) coupled with an energy-dispersive X-ray spectroscope (EDS). The formation mechanism of the composite is also discussed. TiC/Ni3 Al/steel gradient composite is achieved by forming the gradient distributions of Fe, Ni, and Al, accompanied with the gradient variation of the microstructure from TiC/Nia A1, to TiC/Ni3 Al/steel, and to steel. The composite is in situ synthesized through whole reaction of 3Ni-Al-Ti-C system in liquid steel and densification procedure, and the liquid steel infiltrates into pores in the SHS product and forces liquid Ni3Al to form self-compaction further.
基金Funded by the National Natural Science of China(No.2012BAA05B06)
文摘Thermal energy storage is an attractive option for effectiveness since it gives flexibility and reduces energy consumption and costs. New composite materials for storage and transformation of heat of NaCl-Al2O3composite materials were synthesized by one-step synthesis method. The chemical composition, morphology, structure, and thermal properties were investigated by XRD, EDS, SEM, and DSC. The results show that NaCl can be absorbed by Al2O3particle from 800 to 900 ℃ for Al2O3particle surface is rich active structure. The results also indicate that the leakage of NaCl when the phase change can be prevented by Al2O3particles and the enthalpy of phase change of NaCl-Al2O3material is 362 J/g. The composites have an excellent heat storage capacity. Therefore, this study contributes to one new thought and method to prepare high temperature heat storage material and this material can be applied in future thermal engineering.
基金supported by the National Natural Science Foundation of China(Grant No.51165023)
文摘The action of the composite heat source model in DE-GMAW has been carried out according to the characteristics of the DE-GMA W process, and the distribution of surface and body heat source was analyzed. The weld temperature field distribution has been derived from the appropriate boundary conditions and the thermal physical property parameters by COMSOL software. The effects of the positions of the surface and body heat source on the cross- sectional shape were investigated by studying the experimental welding thermal cycle curve. The simulated results are fully compliant with the experimental data under the same conditions. This illustrates that the composite heat source model is correct. It reflects the thermal mechanism of DE-GMA W process, and reveals the internal influence of weld shaping.
基金Funded by the National Natural Science Foundation of China(51165006)
文摘A new method of fabricating C/C composite materials, namely electric heating CVD method, was used, which electrified the carbon fiber directly by using the conductivity of itself. Acetylene was used as the carbon source with nitrogen as dilution gas, and the pyrolytic carbon started to deposit on the carbon fiber surface when the deposition temperature was reached. The morphology of pyrolytic carbon was characterized by SEM, and the surface properties of carbon fibers before and after CVD were characterized by Raman spectroscopy. The experimental results show that the electric heating method is a novel method to fabricate C/C composite materials, which can form a dense C/C composite material in a short time. The order degree and the average crystallite size of the carbon fiber surface were decreased after the experiment.
文摘A finite composite laminate weakened by multiple elliptical holes of arbitrarydistribution, arbitrary orientation and arbitrary dimension, is treated as an anisotropic,finite multiple connected thin plate. Using the complex potential method in planetheory of heat conduction and elastictiy of an anisotropic body, the analytical solutionof a finite composite laminated plate subjected io arbitrary mechanical and thermalloads with multiple elliptical holes is. obtained by means of the Faber series expansion,mapping and the least square boundary collocation technique. The effects of someparameters on the thermostress distribution are studied in detail. Some conclusions aredrawn.
基金The National Natural Science FOundation of China(Grants No. 59605012) and Natural Science FOundation of Heilonaiiang (GrantsNO.9
文摘Modeling of heat transfer and solidification of composite roll was established and used to predict the thermal history and solidification process of roll during spray forming. Evolution of temperature field of the preform and cooling rate in the growing deposit during spray deposition and post-deposition were numerically simulated.
基金supported by the National Natural Science Foundation of China under Grant Nos.51271191,51571205 and 51401209
文摘Polycrystalline Cr2AlC coatings were prepared on M38G superalloy using a two-step method consisting of magnetron sputtering from Cr-Al-C composite targets at room temperature and subsequent annealing at 620 ℃. Particularly, various targets synthesized by hot pressing mixture of Cr, Al, and C powders at 650-1000 ℃ were used. It was found that regardless of the phase compositions and density of the com- posite targets, when the molar ratio of Cr:Al:C in the starting materials was 2:1:1, phase-pure crystalline Cr2AlC coatings were prepared by magnetron sputtering and post crystallization. The Cr2AIC coatings were dense and crack-free and had a duplex structure. The adhesion strength of the coating deposited on M38G superalloy from the 800 ℃ hot-pressed target and then annealed at 620 ℃ for 20 h in Ar exceeded 82 ± 6 MPa, while its hardness was 12 ± 3 GPa.
基金Project(S2013040015492)supported by the Natural Science Foundation of Guangdong Province,ChinaProject(2007AA03Z240)supported by Hi-tech Research and Development Program of China
文摘Ru O2·n H2O film was deposited on tantalum foils by electrodeposition and heat treatment using Ru Cl3·3H2O as precursor.Surface morphology, composition change and cyclic voltammetry from precursor to amorphous and crystalline RuO2·n H2O films were studied by X-ray diffractometer, Fourier transformation infrared spectrometer, differential thermal analyzer, scanning electron microscope and electrochemical analyzer, respectively. The results show that the precursor was transformed gradually from amorphous to crystalline phase with temperature. When heat treated at 300 °C for 2h, RuO2·n H2O electrode surface gains mass of2.5 mg/cm2 with specific capacitance of 782 F/g. Besides, it is found that the specific capacitance of the film decreased by roughly20% with voltage scan rate increasing from 5 to 250 m V/s.
文摘Moisture in insulation materials will impair their thermal and acoustic performance, induce microbe growth, and cause equipment/material corrosion. Moisture content measurement is vital to the effective moisture control. This investigation proposes a simple, fast, and accurate method to measure moisture content of insulation materials through matching the measured temperature rise. Since moisture content corresponds to unique thermophysical properties, the measured temperature rise varies with moisture content. During the data analysis, all possible volumetric heat capacities and thermal conductivities are enumerated to match the measured temperature rise based on the composite heat conduction theory. Then, the partial derivatives with respect to both volumetric heat capacity and thermal conductivity are evaluated, so that these partial derivatives will be guaranteed equaling to zero at the optimal solutions to the moisture content. Compared to the benchmarked gravimetric method, this proposed method was found having a better accuracy but requiring a short test time.
基金supported by the National Natural Science Foundation of China(51875238)。
文摘In this paper,a novel composite heat transfer enhancement technique comprised of louvered fins(LFs)and rectangular wing vortex generators(RWVGs)is proposed to improve the LF side thermal-hydraulic performance of louvered fin and flat tube heat exchangers(LFHEs).After validation of the LF side pressure dropΔP and heat transfer coefficient hLFof the baseline by experiments,the numerical method is applied to investigate the influential mechanisms of the RWVG parameters(the number N(7 to 15),attack angleβ(30°to 90°),height H_(VG)(0.8 mm to 2 mm)and width W_(VG)(0.8 mm to 1.2 mm))on the performance of the LFHE in the velocity range of 3 m/s to 10 m/s.Results show that thermal-hydraulic performance of the LFHE is significantly impacted by the RWVGs,and according to the performance evaluation criteria(PEC),the LFHE achieves its optimal thermal-hydraulic performance when N=7,β=45°,H_(VG)=1.8 mm and W_(VG)=1 mm.Compared to the baseline,the maximum,minimum and average increments of PEC for the optimal case are 13.85%,4.67%and 8.39%,respectively.
文摘This paper explores the difficulties in solving partial differential equations(PDEs)using physics-informed neural networks(PINNs).PINNs use physics as a regularization term in the objective function.However,a drawback of this approach is the requirement for manual hyperparameter tuning,making it impractical in the absence of validation data or prior knowledge of the solution.Our investigations of the loss landscapes and backpropagated gradients in the presence of physics reveal that existing methods produce non-convex loss landscapes that are hard to navigate.Our findings demonstrate that high-order PDEs contaminate backpropagated gradients and hinder convergence.To address these challenges,we introduce a novel method that bypasses the calculation of high-order derivative operators and mitigates the contamination of backpropagated gradients.Consequently,we reduce the dimension of the search space and make learning PDEs with non-smooth solutions feasible.Our method also provides a mechanism to focus on complex regions of the domain.Besides,we present a dual unconstrained formulation based on Lagrange multiplier method to enforce equality constraints on the model’s prediction,with adaptive and independent learning rates inspired by adaptive subgradient methods.We apply our approach to solve various linear and non-linear PDEs.