Based on continuum-discontinuum element method,the numerical simulation of fracture propagation during deflagration-hydraulic composite fracturing was constructed by considering deflagration stress impact induced frac...Based on continuum-discontinuum element method,the numerical simulation of fracture propagation during deflagration-hydraulic composite fracturing was constructed by considering deflagration stress impact induced fracture creation,deflagrating gas driven fracture propagation,and hydraulic fracture propagation,exploring the effects of in-situ stress difference,deflagration peak pressure,deflagration pressurization rate,hydraulic fracturing displacement and hydraulic fracturing fluid viscosity on fracture propagation in deflagration-hydraulic composite fracturing.The deflagration-hydraulic composite fracturing combines the advantages of deflagration fracturing in creating complex fractures near wells and the deep penetration of hydraulic fracturing at the far-field region,which can form multiple deep penetrating long fractures with better stimulation effects.With the increase of in-situ stress difference,the stimulated area of deflagration-hydraulic composite fracturing is reduced,and the deflagration-hydraulic composite fracturing is more suitable for reservoirs with small in-situ stress difference.Higher peak pressure and pressurization rate are conducive to increasing the maximum fracture length and burst degree of the deflagration fractures,which in turn increases the stimulated area of deflagration-hydraulic composite fracturing and improves the stimulation effect.Increasing the displacement and viscosity of hydraulic fracturing fluid can enhance the net pressure within the fractures,activate the deflagration fractures,increase the turning radius of the fractures,generate more long fractures,and effectively increase the stimulated reservoir area.The stimulated reservoir area is not completely positively correlated with the hydraulic fracturing displacement and fracturing fluid viscosity,and there is a critical value.When the critical value is exceeded,the stimulated area decreases.展开更多
Limited by serious heterogeneity both horizontally and vertically, water driving of low-permeability layers in Qiaokou oilfield appears to be very difficult. As the classⅠ layer reaches the stage of high water-conten...Limited by serious heterogeneity both horizontally and vertically, water driving of low-permeability layers in Qiaokou oilfield appears to be very difficult. As the classⅠ layer reaches the stage of high water-content too early, the level of exploitation became worse with low-recovery. Regarding the serious heterogeneity and low recovery in layers class Ⅱand Ⅲ, composite fracturing technology suitable for this kind of reservoir was applied. Its basement was a lab study of indoor water driving efficiency and fracturing experiment. Perfect result has achieved by using the technology.展开更多
It is a common phenomenon during CBM drilling and production that reservoir damage is not eliminated completely.In view of this,a technical idea of composite pulsating hydraulic fracturing of radial horizontal wells w...It is a common phenomenon during CBM drilling and production that reservoir damage is not eliminated completely.In view of this,a technical idea of composite pulsating hydraulic fracturing of radial horizontal wells which is conducive to blockage removing and stimulation was put forward in this paper.Speaking of the hydraulic jetting in a multi-branch radial well,it is to conduct pulsating hydraulic fracturing moderately through a high-diversion radial hole,so as to crush and break coal beds near the main hole to the uttermost.Thus,an extensive pressure relief and permeability increase area where high-diversion pathways are combined with fracture networks is formed.Then,to verify its technical principles,laboratory tests on pulsating hydraulic fracturing of radial wells were designed and carried out.Besides,the relationships of the features of acoustic emission(AE)response during the formation of fractures by composite fracturing of radial horizontal wells vs.coal breaking degree and macro fracture morphology were experimentally studied by using a pulse servo fatigue testing machine and an acoustic emission detector.And the following research results were obtained.First,under experimental conditions,fractures initially occur when the pressure of composite pulsating hydraulic fracturing of radial horizontal wells is 1/3–1/4 of the peak pressure of conventional fracturing,and the amount of its AE events is 1.38–7.07 times that of conventional fracturing.Second,when composite pulsating hydraulic fracturing of radial horizontal wells is conducted,AE emission signals respond strongly,the peak pressure for macro fracturing is lower and a larger fracture network can be generated more easily under the same condition.Third,radial laterals amount,borehole length,dynamic loading frequency and amplitude are the important factors affecting the effect of composite pulsating hydraulic fracturing of radial horizontal wells.In conclusion,composite pulsating hydraulic fracturing of radial horizontal wells provides a new idea of removing the blockages in CBM reservoirs and developing CBM efficiently,realizing effective blockage removing and stimulation of CBM wells.展开更多
Computational solid mechanics has become an indispensable approach in engineering,and numerical investigation of fracturing in composites is essential,as composites are widely used in structural applications.Crack evo...Computational solid mechanics has become an indispensable approach in engineering,and numerical investigation of fracturing in composites is essential,as composites are widely used in structural applications.Crack evolution in composites is the path to elucidating the relationship between microstructures and fracture performance,but crack-based finite-element methods are computationally expensive and time-consuming,which limits their application in computation-intensive scenarios.Consequently,this study proposes a deep learning framework called Crack-Net for instant prediction of the dynamic crack growth process,as well as its strain-stress curve.Specifically,Crack-Net introduces an implicit constraint technique,which incorporates the relationship between crack evolution and stress response into the network architecture.This technique substantially reduces data requirements while improving predictive accuracy.The transfer learning technique enables Crack-Net to handle composite materials with reinforcements of different strengths.Trained on high-accuracy fracture development datasets from phase field simulations,the proposed framework is capable of tackling intricate scenarios,involving materials with diverse interfaces,varying initial conditions,and the intricate elastoplastic fracture process.The proposed Crack-Net holds great promise for practical applications in engineering and materials science,in which accurate and efficient fracture prediction is crucial for optimizing material performance and microstructural design.展开更多
The fracture toughness of a carbon/carbon composites oxidized at different temperature for 1 h was measured. The fracture surfaces were examined by scanning electron microscopy (SEM). The results indicate that oxida...The fracture toughness of a carbon/carbon composites oxidized at different temperature for 1 h was measured. The fracture surfaces were examined by scanning electron microscopy (SEM). The results indicate that oxidation temperature has significant effects on the fracture toughness. Fracture toughness decreases with the increase of the weight loss. The SEM images reveal that the decrease of fracture toughness was mainly attributed to the oxidation of the interface in the composite.展开更多
2D carbon fiber reinforced AZ91 D matrix composites(2D-C_f/AZ91 D composites) were fabricated by liquid–solid extrusion and vacuum pressure infiltration technique(LSEVI). In order to modify the interface between ...2D carbon fiber reinforced AZ91 D matrix composites(2D-C_f/AZ91 D composites) were fabricated by liquid–solid extrusion and vacuum pressure infiltration technique(LSEVI). In order to modify the interface between fibers and matrix and protect the fiber, pyrolytic carbon(Py C) coating was deposited on the surface of T700 carbon fiber by chemical vapor deposition(CVD). Microstructure observation of the composites revealed that the composites were well fabricated by LSEVI. The segregation of aluminum at fiber surface led to the formation of Mg_(17)Al_(12) precipitates at the interface. The aluminum improved the infiltration of the alloy and Py C coating protected the fibers effectively. The ultimate tensile strength of 2D-C_f/AZ91 D composites was about 400 MPa. The fracture process of 2D-C_f/AZ91 D composites was transverse fiber interface cracking–matrix transferring load–longitudinal fibers bearing load–longitudinal fibers breaking.展开更多
In this study, magnesium matrix composites reinforced with different loading of AlN particles were fabricated by the powder metallurgy technique. The microstructure, bending strength and fracture behavior of the resul...In this study, magnesium matrix composites reinforced with different loading of AlN particles were fabricated by the powder metallurgy technique. The microstructure, bending strength and fracture behavior of the resulting Mg-Al/Al N composites were investigated. It showed that the 5 wt% AlN reinforcements led to the highest densification and bending strength. The total strengthening effect of AlN particles was predicted by considering the contributions of CTE mismatch between the matrix and the particles,load bearing and Hall-Petch mechanism. The results revealed that the increase of dislocation density,the change of Mg17Al12 phase morphology, and the effective load transfer were the major strengthening contributors to the composites. The fracture of the composites altered from plastic to brittle mode with increasing reinforcement content. The regions of clustered particles in the composites were easy to be damaged under external load, and the fracture occurred mainly along grain boundaries.展开更多
Recently, quasimolecular dynamics has been successfully used to simulate the deformation characteristics of actual size solid materials. In quasimolecular dynamics, which is an attempt to bridge the gap between atomis...Recently, quasimolecular dynamics has been successfully used to simulate the deformation characteristics of actual size solid materials. In quasimolecular dynamics, which is an attempt to bridge the gap between atomistic and continuum simulations, molecules are aggregated into large units, called quasimolecules, to evaluate large scale material behavior. In this paper, a 2-dimensional numerical simulation using quasimolecular dynamics was performed to investigate laminar composite material fractures and crack propagation behavior in the uniform bending of laminar composite materials. It was verified that under bending deformation laminar composite materials deform quite differently from homogeneous materials展开更多
This paper reports some results obtained in an investigation to see how increasing the corundum dispersoid content from 0% to 7% in a matrix of as-cast and wrought hiduminium alloy affects the hardness. wear resistanc...This paper reports some results obtained in an investigation to see how increasing the corundum dispersoid content from 0% to 7% in a matrix of as-cast and wrought hiduminium alloy affects the hardness. wear resistance and fracture toughness of the composite. The results show that as the corundum content is increased, the hardness and the wear resistance increase remarkably,whereas the fracture toughness drops significantly. It was found that Just a minute amount of corundum is sufficient to cause a fairly large change in these mechanical properties. The hardness of the material is also affected signifIcantly by the aging time. Moreover, if other factors are kept constant, hot extrusion improves both its hardness and its wear resistance. whereas the fracture toughness is decreased展开更多
The fracture toughness and fracture work of A12O3/SiC prismatic ceramic composites was evaluated in this paper, which showed the fracture energy was improved greatly. Based on the observation 'for crack propagat...The fracture toughness and fracture work of A12O3/SiC prismatic ceramic composites was evaluated in this paper, which showed the fracture energy was improved greatly. Based on the observation 'for crack propagation and fracture morphology, the fracture behavior of the prismatic composites was analyzed. In the bending test, the composites displayed a non-catastrophic behavior and a graceful failure with reasonable load-carrying capability.展开更多
The strengthening effect of a Zn alloy reinforced by SiC particulate was examined. Based on the results of SEM in-situ fracture observation and stress field analysis by finite element method, it is believed that the r...The strengthening effect of a Zn alloy reinforced by SiC particulate was examined. Based on the results of SEM in-situ fracture observation and stress field analysis by finite element method, it is believed that the reinforcing effect of this composite is due to the combination of strain and stress hardening in the matrix.展开更多
Theoretical consideration was conducted on a relation between pore diameter and interfacialarea between pores and fibers when pores uniforinly distribute in C/C composites. It was shownthat bonding at the fiber/matrix...Theoretical consideration was conducted on a relation between pore diameter and interfacialarea between pores and fibers when pores uniforinly distribute in C/C composites. It was shownthat bonding at the fiber/matrix interface apparently decreased with decreasing a pore diameter,and consequently a new idea of microspace modification concept was proposed for controllingfracture behavior of C/C composites. Four types of C/C composites with various pore structureswere fabricated by hot-pressing, and their fracture behavior was investigated by three pointbending tests. The fracture behavior of the C/C composites was changed from brittle one topseudo ductile one with decreasing the pore diameter. This result supported the validity of themicrospace modification concept proposed in this paper.展开更多
Microstructure and mechanical properties of the heat affected zone(HAZ)in multi-pass gas metal arc(GMA)welded Al Zn Mg Cu alloy plates were investigated,based upon which the mechanical anisotropy and fracture mechanis...Microstructure and mechanical properties of the heat affected zone(HAZ)in multi-pass gas metal arc(GMA)welded Al Zn Mg Cu alloy plates were investigated,based upon which the mechanical anisotropy and fracture mechanism were analyzed.The microstructure and composition were analyzed by scanning electron microscope(SEM)and energy dispersive spectroscope(EDS).X-ray diffractometer(XRD),transmission electron microscope(TEM)and selective area electron diffraction(SAED)were used to analyze the phase composition.The distribution of microhardness was identified as gradual transition and tensile strength had a tendency to decrease first and then increase.The distribution of nano-sizedη(MgZn2)particles in theα(Al)matrix and Al2MgCu phase determined the tensile performances along the thickness direction and led to the formation of ductile/brittle composite fracture in the HAZ.The continuous distribution of Al2MgCu phase in the strip intergranular precipitates gave birth to premature cracks and the brittle fracture region.The precipitated particles coarsening also led to the deterioration of mechanical properties.展开更多
The strength of rockmass from two aspects is analyzed.Firstly,the strength of the rockmass is mainly controlled by the critical stress value of rock,and the contribution of joints is to increase the effective stresses...The strength of rockmass from two aspects is analyzed.Firstly,the strength of the rockmass is mainly controlled by the critical stress value of rock,and the contribution of joints is to increase the effective stresses of rock and to decrease the damage strength of rockmass according to the macro damage mechanics of rockmass.Secondly,the strength of rockmass is mainly controlled by the fracture strength of joints.Based on the comprehensive analysis and comparison for the damage strength of rockmass and the fracture strength of joints,a composite damage theory of rockmass may be established.展开更多
基金Supported by the Basic Science Center Project of the National Natural Science Foundation of China(52288101).
文摘Based on continuum-discontinuum element method,the numerical simulation of fracture propagation during deflagration-hydraulic composite fracturing was constructed by considering deflagration stress impact induced fracture creation,deflagrating gas driven fracture propagation,and hydraulic fracture propagation,exploring the effects of in-situ stress difference,deflagration peak pressure,deflagration pressurization rate,hydraulic fracturing displacement and hydraulic fracturing fluid viscosity on fracture propagation in deflagration-hydraulic composite fracturing.The deflagration-hydraulic composite fracturing combines the advantages of deflagration fracturing in creating complex fractures near wells and the deep penetration of hydraulic fracturing at the far-field region,which can form multiple deep penetrating long fractures with better stimulation effects.With the increase of in-situ stress difference,the stimulated area of deflagration-hydraulic composite fracturing is reduced,and the deflagration-hydraulic composite fracturing is more suitable for reservoirs with small in-situ stress difference.Higher peak pressure and pressurization rate are conducive to increasing the maximum fracture length and burst degree of the deflagration fractures,which in turn increases the stimulated area of deflagration-hydraulic composite fracturing and improves the stimulation effect.Increasing the displacement and viscosity of hydraulic fracturing fluid can enhance the net pressure within the fractures,activate the deflagration fractures,increase the turning radius of the fractures,generate more long fractures,and effectively increase the stimulated reservoir area.The stimulated reservoir area is not completely positively correlated with the hydraulic fracturing displacement and fracturing fluid viscosity,and there is a critical value.When the critical value is exceeded,the stimulated area decreases.
文摘Limited by serious heterogeneity both horizontally and vertically, water driving of low-permeability layers in Qiaokou oilfield appears to be very difficult. As the classⅠ layer reaches the stage of high water-content too early, the level of exploitation became worse with low-recovery. Regarding the serious heterogeneity and low recovery in layers class Ⅱand Ⅲ, composite fracturing technology suitable for this kind of reservoir was applied. Its basement was a lab study of indoor water driving efficiency and fracturing experiment. Perfect result has achieved by using the technology.
基金supported by National Natural Science Foundation of China-General Program“Study on fracturing control mechanism for radial drilling through water jet in coal rocks”(No.:51674275)National Natural Science Foundation of China-Major Program“Theory of safe and quality drilling for shale oil and gas development under the mode of multi-coupling”(No.:51490652)。
文摘It is a common phenomenon during CBM drilling and production that reservoir damage is not eliminated completely.In view of this,a technical idea of composite pulsating hydraulic fracturing of radial horizontal wells which is conducive to blockage removing and stimulation was put forward in this paper.Speaking of the hydraulic jetting in a multi-branch radial well,it is to conduct pulsating hydraulic fracturing moderately through a high-diversion radial hole,so as to crush and break coal beds near the main hole to the uttermost.Thus,an extensive pressure relief and permeability increase area where high-diversion pathways are combined with fracture networks is formed.Then,to verify its technical principles,laboratory tests on pulsating hydraulic fracturing of radial wells were designed and carried out.Besides,the relationships of the features of acoustic emission(AE)response during the formation of fractures by composite fracturing of radial horizontal wells vs.coal breaking degree and macro fracture morphology were experimentally studied by using a pulse servo fatigue testing machine and an acoustic emission detector.And the following research results were obtained.First,under experimental conditions,fractures initially occur when the pressure of composite pulsating hydraulic fracturing of radial horizontal wells is 1/3–1/4 of the peak pressure of conventional fracturing,and the amount of its AE events is 1.38–7.07 times that of conventional fracturing.Second,when composite pulsating hydraulic fracturing of radial horizontal wells is conducted,AE emission signals respond strongly,the peak pressure for macro fracturing is lower and a larger fracture network can be generated more easily under the same condition.Third,radial laterals amount,borehole length,dynamic loading frequency and amplitude are the important factors affecting the effect of composite pulsating hydraulic fracturing of radial horizontal wells.In conclusion,composite pulsating hydraulic fracturing of radial horizontal wells provides a new idea of removing the blockages in CBM reservoirs and developing CBM efficiently,realizing effective blockage removing and stimulation of CBM wells.
基金supported and partially funded by the National Natural Science Foundation of China(52288101)the China Postdoctoral Science Foundation(2024M761535)supported by the High Performance Computing Centers at Eastern Institute of Technology,Ningbo,and Ningbo Institute of Digital Twin.
文摘Computational solid mechanics has become an indispensable approach in engineering,and numerical investigation of fracturing in composites is essential,as composites are widely used in structural applications.Crack evolution in composites is the path to elucidating the relationship between microstructures and fracture performance,but crack-based finite-element methods are computationally expensive and time-consuming,which limits their application in computation-intensive scenarios.Consequently,this study proposes a deep learning framework called Crack-Net for instant prediction of the dynamic crack growth process,as well as its strain-stress curve.Specifically,Crack-Net introduces an implicit constraint technique,which incorporates the relationship between crack evolution and stress response into the network architecture.This technique substantially reduces data requirements while improving predictive accuracy.The transfer learning technique enables Crack-Net to handle composite materials with reinforcements of different strengths.Trained on high-accuracy fracture development datasets from phase field simulations,the proposed framework is capable of tackling intricate scenarios,involving materials with diverse interfaces,varying initial conditions,and the intricate elastoplastic fracture process.The proposed Crack-Net holds great promise for practical applications in engineering and materials science,in which accurate and efficient fracture prediction is crucial for optimizing material performance and microstructural design.
基金Funded by National Natural Science Foundation of China(No.50702045)the Program for New Century Excellent Talents in University(No.NCET-08-0460)Basic Research Foundation of NWPU(No.JC20100227)
文摘The fracture toughness of a carbon/carbon composites oxidized at different temperature for 1 h was measured. The fracture surfaces were examined by scanning electron microscopy (SEM). The results indicate that oxidation temperature has significant effects on the fracture toughness. Fracture toughness decreases with the increase of the weight loss. The SEM images reveal that the decrease of fracture toughness was mainly attributed to the oxidation of the interface in the composite.
基金supported by the National Nature Science Foundation of China (Nos. 51472203, 51521061, 51575447 and 51432008)
文摘2D carbon fiber reinforced AZ91 D matrix composites(2D-C_f/AZ91 D composites) were fabricated by liquid–solid extrusion and vacuum pressure infiltration technique(LSEVI). In order to modify the interface between fibers and matrix and protect the fiber, pyrolytic carbon(Py C) coating was deposited on the surface of T700 carbon fiber by chemical vapor deposition(CVD). Microstructure observation of the composites revealed that the composites were well fabricated by LSEVI. The segregation of aluminum at fiber surface led to the formation of Mg_(17)Al_(12) precipitates at the interface. The aluminum improved the infiltration of the alloy and Py C coating protected the fibers effectively. The ultimate tensile strength of 2D-C_f/AZ91 D composites was about 400 MPa. The fracture process of 2D-C_f/AZ91 D composites was transverse fiber interface cracking–matrix transferring load–longitudinal fibers bearing load–longitudinal fibers breaking.
基金financially supported by the State Key Laboratory for Mechanical Behavior of Materials (No. 20151712)
文摘In this study, magnesium matrix composites reinforced with different loading of AlN particles were fabricated by the powder metallurgy technique. The microstructure, bending strength and fracture behavior of the resulting Mg-Al/Al N composites were investigated. It showed that the 5 wt% AlN reinforcements led to the highest densification and bending strength. The total strengthening effect of AlN particles was predicted by considering the contributions of CTE mismatch between the matrix and the particles,load bearing and Hall-Petch mechanism. The results revealed that the increase of dislocation density,the change of Mg17Al12 phase morphology, and the effective load transfer were the major strengthening contributors to the composites. The fracture of the composites altered from plastic to brittle mode with increasing reinforcement content. The regions of clustered particles in the composites were easy to be damaged under external load, and the fracture occurred mainly along grain boundaries.
文摘Recently, quasimolecular dynamics has been successfully used to simulate the deformation characteristics of actual size solid materials. In quasimolecular dynamics, which is an attempt to bridge the gap between atomistic and continuum simulations, molecules are aggregated into large units, called quasimolecules, to evaluate large scale material behavior. In this paper, a 2-dimensional numerical simulation using quasimolecular dynamics was performed to investigate laminar composite material fractures and crack propagation behavior in the uniform bending of laminar composite materials. It was verified that under bending deformation laminar composite materials deform quite differently from homogeneous materials
文摘This paper reports some results obtained in an investigation to see how increasing the corundum dispersoid content from 0% to 7% in a matrix of as-cast and wrought hiduminium alloy affects the hardness. wear resistance and fracture toughness of the composite. The results show that as the corundum content is increased, the hardness and the wear resistance increase remarkably,whereas the fracture toughness drops significantly. It was found that Just a minute amount of corundum is sufficient to cause a fairly large change in these mechanical properties. The hardness of the material is also affected signifIcantly by the aging time. Moreover, if other factors are kept constant, hot extrusion improves both its hardness and its wear resistance. whereas the fracture toughness is decreased
文摘The fracture toughness and fracture work of A12O3/SiC prismatic ceramic composites was evaluated in this paper, which showed the fracture energy was improved greatly. Based on the observation 'for crack propagation and fracture morphology, the fracture behavior of the prismatic composites was analyzed. In the bending test, the composites displayed a non-catastrophic behavior and a graceful failure with reasonable load-carrying capability.
基金This project is supported by the National Natural Science Foundation of China(No.59971017).
文摘The strengthening effect of a Zn alloy reinforced by SiC particulate was examined. Based on the results of SEM in-situ fracture observation and stress field analysis by finite element method, it is believed that the reinforcing effect of this composite is due to the combination of strain and stress hardening in the matrix.
文摘Theoretical consideration was conducted on a relation between pore diameter and interfacialarea between pores and fibers when pores uniforinly distribute in C/C composites. It was shownthat bonding at the fiber/matrix interface apparently decreased with decreasing a pore diameter,and consequently a new idea of microspace modification concept was proposed for controllingfracture behavior of C/C composites. Four types of C/C composites with various pore structureswere fabricated by hot-pressing, and their fracture behavior was investigated by three pointbending tests. The fracture behavior of the C/C composites was changed from brittle one topseudo ductile one with decreasing the pore diameter. This result supported the validity of themicrospace modification concept proposed in this paper.
基金Project(51905126) supported by the National Natural Science Foundation of ChinaProject(2018M641822) supported by the China Postdoctoral Science Foundation-General ProgramProject(HIT.NSRIF.201703) supported by the Natural Scientific Research Innovation Foundation in HIT,China
文摘Microstructure and mechanical properties of the heat affected zone(HAZ)in multi-pass gas metal arc(GMA)welded Al Zn Mg Cu alloy plates were investigated,based upon which the mechanical anisotropy and fracture mechanism were analyzed.The microstructure and composition were analyzed by scanning electron microscope(SEM)and energy dispersive spectroscope(EDS).X-ray diffractometer(XRD),transmission electron microscope(TEM)and selective area electron diffraction(SAED)were used to analyze the phase composition.The distribution of microhardness was identified as gradual transition and tensile strength had a tendency to decrease first and then increase.The distribution of nano-sizedη(MgZn2)particles in theα(Al)matrix and Al2MgCu phase determined the tensile performances along the thickness direction and led to the formation of ductile/brittle composite fracture in the HAZ.The continuous distribution of Al2MgCu phase in the strip intergranular precipitates gave birth to premature cracks and the brittle fracture region.The precipitated particles coarsening also led to the deterioration of mechanical properties.
文摘The strength of rockmass from two aspects is analyzed.Firstly,the strength of the rockmass is mainly controlled by the critical stress value of rock,and the contribution of joints is to increase the effective stresses of rock and to decrease the damage strength of rockmass according to the macro damage mechanics of rockmass.Secondly,the strength of rockmass is mainly controlled by the fracture strength of joints.Based on the comprehensive analysis and comparison for the damage strength of rockmass and the fracture strength of joints,a composite damage theory of rockmass may be established.