In recent years,there has been a pronounced increase in the frequency of extreme weather events.To compre hensively examine the impact of extreme weather on ecosystem services within the Wuhan Urban Agglomera tion(WUA...In recent years,there has been a pronounced increase in the frequency of extreme weather events.To compre hensively examine the impact of extreme weather on ecosystem services within the Wuhan Urban Agglomera tion(WUA),this study utilized meteorological station data,the Mann-Kendall(MK)test,and the Standardized Precipitation-Evapotranspiration Index(SPEI)to quantify the variation trends in heatwaves(HW)and droughts from 1961 to 2020.Then the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model was employed to evaluate and compare the differences in water yield and climate regulation ecosystem services un der various HW,droughts,and HW-drought combination scenarios.The results show that over the past 60 years,the temperature,duration,and frequency of HW have significantly increased in the WUA.Specifically,the high est HW temperature,total HW days,HW frequency,and average HW temperature showed changing trend of+0.17℃/decade,+1.4 day/decade,+0.19 event/decade,and+0.07℃/decade,respectively.The year 2000 was identified as a mutation year for HW,characterized by increased frequency and heightened severity thereafter.The SPEI value exhibited an insignificant upward trend,with 1980 marked as a mutation year,indicating a de creasing trend in drought occurrences after 1980.Heatwaves have a weakening effect on both water yield and climate regulation services,while drought significantly weakened water yield and had a relatively modest effect on climate regulation.During HW-drought composite period,the average monthly water yield showed a notable discrepancy of 60 mm compared to humid years.Besides,as heatwaves intensify,the area of low aggregation for ecosystem services expands,whereas the area of high aggregation decreases.This study provides a preliminary understanding of the impact of urban extreme weather on urban ecosystem services under changing climatic conditions.展开更多
Wireless Sensor Networks(WSNs) have many applications, such as climate monitoring systems, fire detection, smart homes, and smart cities. It is expected that WSNs will be integrated into the Internet of Things(IoT...Wireless Sensor Networks(WSNs) have many applications, such as climate monitoring systems, fire detection, smart homes, and smart cities. It is expected that WSNs will be integrated into the Internet of Things(IoT)and participate in various tasks. WSNs play an important role monitoring and reporting environment information and collecting surrounding context. In this paper we consider a WSN deployed for an application such as environment monitoring, and a mobile sink which acts as the gateway between the Internet and the WSN. Data gathering is a challenging problem in WSNs and in the IoT because the information has to be available quickly and effectively without delays and redundancies. In this paper we propose several distributed algorithms for composite event detection and reporting to a mobile sink. Once data is collected by the sink, it can be shared using the IoT infrastructure. We analyze the performance of our algorithms using WSNet simulator, which is specially designed for event-based WSNs. We measure various metrics such as average residual energy, percentage of composite events processed successfully at the sink, and the average number of hops to reach the sink.展开更多
基金supported by the National Natural Science Foundation of China(Grants No.42371354,42375129,42371115)the Fundamental Research Funds for National Universities,China Uni-versity of Geosciences,Wuhan.
文摘In recent years,there has been a pronounced increase in the frequency of extreme weather events.To compre hensively examine the impact of extreme weather on ecosystem services within the Wuhan Urban Agglomera tion(WUA),this study utilized meteorological station data,the Mann-Kendall(MK)test,and the Standardized Precipitation-Evapotranspiration Index(SPEI)to quantify the variation trends in heatwaves(HW)and droughts from 1961 to 2020.Then the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model was employed to evaluate and compare the differences in water yield and climate regulation ecosystem services un der various HW,droughts,and HW-drought combination scenarios.The results show that over the past 60 years,the temperature,duration,and frequency of HW have significantly increased in the WUA.Specifically,the high est HW temperature,total HW days,HW frequency,and average HW temperature showed changing trend of+0.17℃/decade,+1.4 day/decade,+0.19 event/decade,and+0.07℃/decade,respectively.The year 2000 was identified as a mutation year for HW,characterized by increased frequency and heightened severity thereafter.The SPEI value exhibited an insignificant upward trend,with 1980 marked as a mutation year,indicating a de creasing trend in drought occurrences after 1980.Heatwaves have a weakening effect on both water yield and climate regulation services,while drought significantly weakened water yield and had a relatively modest effect on climate regulation.During HW-drought composite period,the average monthly water yield showed a notable discrepancy of 60 mm compared to humid years.Besides,as heatwaves intensify,the area of low aggregation for ecosystem services expands,whereas the area of high aggregation decreases.This study provides a preliminary understanding of the impact of urban extreme weather on urban ecosystem services under changing climatic conditions.
文摘Wireless Sensor Networks(WSNs) have many applications, such as climate monitoring systems, fire detection, smart homes, and smart cities. It is expected that WSNs will be integrated into the Internet of Things(IoT)and participate in various tasks. WSNs play an important role monitoring and reporting environment information and collecting surrounding context. In this paper we consider a WSN deployed for an application such as environment monitoring, and a mobile sink which acts as the gateway between the Internet and the WSN. Data gathering is a challenging problem in WSNs and in the IoT because the information has to be available quickly and effectively without delays and redundancies. In this paper we propose several distributed algorithms for composite event detection and reporting to a mobile sink. Once data is collected by the sink, it can be shared using the IoT infrastructure. We analyze the performance of our algorithms using WSNet simulator, which is specially designed for event-based WSNs. We measure various metrics such as average residual energy, percentage of composite events processed successfully at the sink, and the average number of hops to reach the sink.