期刊文献+
共找到149篇文章
< 1 2 8 >
每页显示 20 50 100
Design of Low-Resistance Composite Electrolytes for Solid-State Batteries Based on Machine Learning
1
作者 Yu Xiong Zizhang Lin +3 位作者 Jinxing Li Zijian Li Ao Cheng Xin Zhang 《Acta Mechanica Solida Sinica》 2025年第3期549-557,共9页
Determining the optimal ceramic content of the ceramics-in-polymer composite electrolytes and the appropriate stack pressure can effectively improve the interfacial contact of solid-state batteries(SSBs).Based on the ... Determining the optimal ceramic content of the ceramics-in-polymer composite electrolytes and the appropriate stack pressure can effectively improve the interfacial contact of solid-state batteries(SSBs).Based on the contact mechanics model and constructed by the conjugate gradient method,continuous convolution,and fast Fourier transform,this paper analyzes and compares the interfacial contact responses involving the polymers commonly used in SSBs,which provides the original training data for machine learning.A support vector regression model is established to predict the relationship between the content of ceramics and the interfacial resistance.The Bayesian optimization and K-fold cross-validation are introduced to find the optimal combination of hyperparameters,which accelerates the training process and improves the model’s accuracy.We found the relationship between the content of ceramics,the stack pressure,and the interfacial resistance.The results can be taken as a reference for the design of the low-resistance composite electrolytes for solid-state batteries. 展开更多
关键词 Solid-state batteries composite electrolyte design Stack pressure Machine learning Support vector regression
原文传递
Endowing rapid Na^(+)conduction by architecture design of Na_(3)Zr_(2)Si_(2)PO_(12)in composite electrolytes for ultralong lifespan quasi-solid-state sodium metal batteries
2
作者 Kang-Qiang He Xin-Gan Liao +5 位作者 Hao-Jian Lian Xiang Guan Da-Zhu Chen Yi-Kun Su Robert K.Y.Li Chen Liu 《Rare Metals》 2025年第6期3795-3805,共11页
Solid-state sodium batteries offer new opportunities for emerging applications with sensitivity to safety and cost.However,the prevailing composite electrolyte structure,as a core component,is still poorly conductive ... Solid-state sodium batteries offer new opportunities for emerging applications with sensitivity to safety and cost.However,the prevailing composite electrolyte structure,as a core component,is still poorly conductive to Na ions.Herein,a 3D architecture design of Na^(+)conductive Na_(3)Zr_(2)Si_(2)PO_(12)framework is introduced to in situ compound with polymer electrolyte,subtly inducing an anion-enriched interface that acts as rapid ion immigration channel.Multiple continuous and fast Na^(+)transport pathways are built via the amorphization of polymer matrix,the consecutive skeleton,and the induced anion-adsorbed interface,resulting in a high ionic conductivity of4.43×10^(-4)S.cm^(-1).Notably,the design of 3D skeleton not only enables the content of inorganic part exceeds 60wt%without any sign of agglomeration,but also endows the composite electrolyte reach a high transference number of 0.61 by immobilizing the anions.The assembled quasisolid-state cells exhibit high practical safety and can stably work for over 1500 cycles with 83.1%capacity retention.This tactic affords new insights in designing Na^(+)conductive composite electrolytes suffering from slow ion immigration for quasi-solid-state sodium batteries. 展开更多
关键词 composite electrolyte Quasi-solid-state sodium battery Architecture design
原文传递
High-performance room temperature solid-state lithium battery enabled by PP-PVDF multilayer composite electrolyte
3
作者 Sheng Zhao Junjie Lu +4 位作者 Bifu Sheng Siying Zhang Hao Li Jizhang Chen Xiang Han 《Chinese Chemical Letters》 2025年第6期729-732,共4页
Solid-state batteries(SSBs)with thermal stable solid-state electrolytes(SSEs)show intrinsic capacity and great potential in energy density improvement.SSEs play critical role,however,their low ionic conductivity at ro... Solid-state batteries(SSBs)with thermal stable solid-state electrolytes(SSEs)show intrinsic capacity and great potential in energy density improvement.SSEs play critical role,however,their low ionic conductivity at room temperature and high brittleness hinder their further development.In this paper,polypropylene(PP)-polyvinylidene fluoride(PVDF)-Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)(LATP)-Lithium bis(trifluoromethane sulphonyl)imide(LiTFSI)multi-layered composite solid electrolyte(CSE)is prepared by a simple separator coating strategy.The incorporation of LATP nanoparticle fillers and high concentration LiTFSI not only reduces the crystallinity of PVDF,but also forms a solvation structure,which contributes to high ionic conductivity in a wide temperature.In addition,using a PP separator as the supporting film,the mechanical strength of the electrolyte was improved and the growth of lithium dendrites are effectively inhibited.The results show that the CSE prepared in this paper has a high ionic conductivity of 6.38×10^(-4)S/cm at room temperature and significantly improves the mechanical properties,the tensile strength reaches 11.02 MPa.The cycle time of Li/Li symmetric cell assembled by CSE at room temperature can exceed 800 h.The Li/LFP full cell can cycle over 800 cycles and the specific capacity of Li/LFP full cell can still reach 120 m Ah/g after 800 cycles at 2 C.This CSE has good cycle stability and excellent mechanical strength at room temperature,which provides an effective method to improve the performance of solid electrolytes under moderate condition. 展开更多
关键词 Lithium-ion batteries composite solid electrolyte Interface stability Mechanical properties Room temperature cycling
原文传递
Synergistic Li_(6)PS_(5)Cl@Li_(3)OCl composite electrolyte for high-performance all-solid-state lithium batteries
4
作者 Yuzhe Zhang Haolong Chang +8 位作者 Aiguo Han Shijie Xu Xinyu Wang Shunjin Yang Xiaohu Hu Yujiang Sun Xiao Sun Xing Chen Yongan Yang 《Green Energy & Environment》 2025年第4期793-803,共11页
Li_(6)PS_(5)Cl is a highly wanted sulfide-solid-electrolyte(SSE)for developing all-solid-state lithium batteries,due to its high ionic conductivity,good processability and abundant compositional elements.However,its c... Li_(6)PS_(5)Cl is a highly wanted sulfide-solid-electrolyte(SSE)for developing all-solid-state lithium batteries,due to its high ionic conductivity,good processability and abundant compositional elements.However,its cyclability is poor because of harmful side reactions at the Li_(6)PS_(5)Cl/Li interface and growth of lithium dendrites inside Li_(6)PS_(5)Cl phase.Herein,we report a simple interface-engineering remedy to boost the electrochemical performance of Li_(6)PS_(5)Cl,by coating its surface with a Li-compatible electrolyte Li3OCl having low electronic conductivity.The obtainedLi_(6)PS_(5)Cl@Li_(3)OCl core@shell structure exhibits a synergistic effect.Consequently,compared with the bare Li_(6)PS_(5)Cl,this composite electrolyte exhibits great performance improvements:1)In Li|electrolyte|Li symmetric cells,the critical current density at 30℃gets increased from 0.6 mA cm^(-2)to 1.6 mA cm^(-2),and the lifetime gets prolonged from 320 h to 1400 h at the cycling current of 0.2 mA cm^(-2)or from 10 h to 900 h at the cycling current of 0.5 mA cm^(-2);2)In Li|electrolyte|NCM721 full cells running at 30℃,the cycling capacity at 0.2 C(or 0.5 C)gets enhanced by 20%(or from unfeasible to be feasible)for 100 cycles and the rate capability reaches up to 2 C from 0.2 C;and in full cells running at 60℃,the cycling capacity is increased by 7%at 0.2 C and the rate capability is enhanced to 3.0 C from 0.5 C.The experimental studies and theoretical computations show that the performance enhancements are due to the confined electron penetration and suppressed lithium dendrites growth at theLi_(6)PS_(5)Cl@Li_(3)OCl interface. 展开更多
关键词 Li_(6)PS_(5)Cl Li_(3)OCl composite solid electrolytes All-solid-state lithium batteries Synergism Core@Shell structure
在线阅读 下载PDF
One dimensional CeO_(2) nanorods/poly(ethylene oxide) solid composite electrolyte for all-solid-state lithium-ion batteries 被引量:2
5
作者 Yudi Guo Erqing Zhao +1 位作者 Xiaofang Zhao Shuailei Liu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第3期570-577,I0005,共9页
The research of poly(ethylene oxide)(PEO)-based solid composite electrolyte with high ionic conductivity and excellent interfacial stability is the key to the development of all-solid-state lithium-ion batteries(ASSLI... The research of poly(ethylene oxide)(PEO)-based solid composite electrolyte with high ionic conductivity and excellent interfacial stability is the key to the development of all-solid-state lithium-ion batteries(ASSLIBs). Herein, uniform nanorod structured CeO_(2) fillers were controllably synthesized by electrospinning, which were subsequently filled into PEO polymer to prepare CeO_(2)/PEO solid composite electrolyte. The addition of CeO_(2) nanorods can reduce both the glass transition temperature and the melting point of PEO polymer, and also interact with PEO and lithium bis(trifluoromethanesulphonyl)imide(LITFSI) by Lewis acid—base reaction. Therefore, the solid composite electrolyte exhibits a high ionic conductivity of 4.52 × 10^(-4)S/cm, a wide electrochemical stability window of about 4.8 V, and a good interfacial stability with Li at 55℃. Moreover, the LiFePO_4/Li ASSLIB divulges the discharging specific capacity of 165, 162, 156 and 146 mA,h/g at 0.2, 0.5, 1 and 2 C, respectively, and achieves the capacity retention of 90.3% after 150 cycles at 0.5 C. Consequently, one dimensional CeO_(2) nanorods can be considered as an alternative filler for polymeric solid electrolyte. 展开更多
关键词 Poly(ethylene oxide) Solid composite electrolyte CeO_(2)nanorods Ionic conductivity Rare earths
原文传递
A"Concentrated lonogel-in-Ceramic"Silanization Composite Electrolyte with Superior Bulk Conductivity and Low Interfacial Resistance for Quasi-Solid-State Li Metal Batteries
6
作者 Wangshu Hou Zongyuan Chen +4 位作者 Shengxian Wang Fengkun Wei Yanfang Zhai Ning Hu Shufeng Song 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期20-28,共9页
The ideal composite electrolyte for the pursued safe and high-energy-density lithium metal batteries(LMBs)is expected to demonstrate peculiarity of superior bulk conductivity,low interfacial resistances,and good compa... The ideal composite electrolyte for the pursued safe and high-energy-density lithium metal batteries(LMBs)is expected to demonstrate peculiarity of superior bulk conductivity,low interfacial resistances,and good compatibility against both Li-metal anode and high-voltage cathode.There is no composite electrolyte to synchronously meet all these requirements yet,and the battery performance is inhibited by the absence of effective electrolyte design.Here we report a unique"concentrated ionogel-in-ceramic"silanization composite electrolyte(SCE)and validate an electrolyte design strategy based on the coupling of high-content silane-conditioning garnet and concentrated ionogel that builds well-percolated Li+transport pathways and tackles the interface issues to respond all the aforementioned requirements.It is revealed that the silane conditioning enables the uniform dispersion of garnet nanoparticles at high content(70 wt%)and forms mixed-lithiophobic-conductive LiF-Li3N solid electrolyte interphase.Notably,the yielding SCE delivers an ultrahigh ionic conductivity of 1.76 X 10^(-3)S cm^(-1)at 25℃,an extremely low Li-metal/electrolyte interfacial area-specific resistance of 13Ωcm^(2),and a distinctly excellent long-term 1200 cycling without any capacity decay in 4.3 V Li‖LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM523)quasi-solid-state LMB.This composite electrolyte design strategy can be extended to other quasi-/solid-state LMBs. 展开更多
关键词 composite electrolyte concentrated ionogel-in-ceramic interfacial resistance SILANE solid electrolyte interphase
在线阅读 下载PDF
A Tri-Salt Composite Electrolyte with Temperature Switch Function for Intelligently Temperature-Controlled Lithium Batteries
7
作者 Ende Fu Huimin Wang +4 位作者 Yating Zhang Zhenxue Xiao Xiu Zheng Shuai Hao Xueping Gao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期84-93,共10页
The intense research of lithium-ion batteries has been motivated by their successful applications in mobile devices and electronic vehicles.The emerging of intelligent control in kinds of devices brings new requiremen... The intense research of lithium-ion batteries has been motivated by their successful applications in mobile devices and electronic vehicles.The emerging of intelligent control in kinds of devices brings new requirements for battery systems.The high-energy lithium batteries are expected to respond or react under different environmental conditions.In this work,a tri-salt composite electrolyte is designed with a temperature switch function for intelligently temperature-controlled lithium batteries.Specifically,the halide Li_(3)YBr_(6)together with LiTFSI and LiNO_(3)works as active fillers in a low-melting-point polymer matrix(polyethyleneglycol dimethyl ether(PEGDME)and polyethylene oxide(PEO)),which is further filled into the pre-lithiated alumina fiber skeleton.Above 60°C,the composite electrolyte exists in the liquid state and fully contacts with the working electrodes on the liquid–solid interface,effectively minimizing the interfacial resistance and leading to high discharge capacity in the cell.The electrolyte is changed into a solid state below 30°C so that the ionic conductivity is significantly reduced and the interface resistance is increased dramatically on the solid–solid interface.Therefore,by simply adjusting the temperature,the cell can be turned“ON”or“OFF”intentionally.This novel function of the composite electrolyte has enlightening significance in developing intelligently temperature-controlled lithium batteries. 展开更多
关键词 composite electrolyte halide electrolyte low melting point solid-state battery temperature switch function
在线阅读 下载PDF
12.6μm-Thick Asymmetric Composite Electrolyte with Superior Interfacial Stability for Solid-State Lithium-Metal Batteries 被引量:3
8
作者 Zheng Zhang Jingren Gou +4 位作者 Kaixuan Cui Xin Zhang Yujian Yao Suqing Wang Haihui Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期397-409,共13页
Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage ... Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage cathodes/Li anodes,and to minimize the electrolyte thickness to achieve highenergy-density of SSLMBs.Herein,we develop an ultrathin(12.6μm)asymmetric composite solid-state electrolyte with ultralight areal density(1.69 mg cm^(−2))for SSLMBs.The electrolyte combining a garnet(LLZO)layer and a metal organic framework(MOF)layer,which are fabricated on both sides of the polyethylene(PE)separator separately by tape casting.The PE separator endows the electrolyte with flexibility and excellent mechanical properties.The LLZO layer on the cathode side ensures high chemical stability at high voltage.The MOF layer on the anode side achieves a stable electric field and uniform Li flux,thus promoting uniform Li^(+)deposition.Thanks to the well-designed structure,the Li symmetric battery exhibits an ultralong cycle life(5000 h),and high-voltage SSLMBs achieve stable cycle performance.The assembled pouch cells provided a gravimetric/volume energy density of 344.0 Wh kg^(−1)/773.1 Wh L^(−1).This simple operation allows for large-scale preparation,and the design concept of ultrathin asymmetric structure also reveals the future development direction of SSLMBs. 展开更多
关键词 Solid-state lithium metal batteries composite solid-state electrolyte Ultrathin asymmetric structure Pouch cells
在线阅读 下载PDF
Composite electrolytes and interface designs for progressive solid-state sodium batteries 被引量:1
9
作者 Junyu Hou Tianke Zhu +6 位作者 Gang Wang Rongrong Cheacharoen Wu Sun Xingyu Lei Qunyao Yuan Dalin Sun Jie Zhao 《Carbon Energy》 CSCD 2024年第10期301-338,共38页
Solid-state sodium batteries(SSSBs)are poised to replace lithium-ion batteries as viable alternatives for energy storage systems owing to their high safety and reliability,abundance of raw material,and low costs.Howev... Solid-state sodium batteries(SSSBs)are poised to replace lithium-ion batteries as viable alternatives for energy storage systems owing to their high safety and reliability,abundance of raw material,and low costs.However,as the core constituent of SSSBs,solid-state electrolytes(SSEs)with low ionic conductivities at room temperature(RT)and unstable interfaces with electrodes hinder the development of SSSBs.Recently,composite SSEs(CSSEs),which inherit the desirable properties of two phases,high RT ionic conductivity,and high interfacial stability,have emerged as viable alternatives;however,their governing mechanism remains unclear.In this review,we summarize the recent research progress of CSSEs,classified into inorganic-inorganic,polymer-polymer,and inorganic-polymer types,and discuss their structure-property relationship in detail.Moreover,the CSSE-electrode interface issues and effective strategies to promote intimate and stable interfaces are summarized.Finally,the trends in the design of CSSEs and CSSE-electrode interfaces are presented,along with the future development prospects of high-performance SSSBs. 展开更多
关键词 composite solid-state electrolytes electrolyte-electrode interface solid-state sodium batteries
在线阅读 下载PDF
Tailoring Practically Accessible Polymer/Inorganic Composite Electrolytes for All-Solid-State Lithium Metal Batteries:A Review 被引量:19
10
作者 Hongmei Liang Li Wang +4 位作者 Aiping Wang Youzhi Song Yanzhou Wu Yang Yang Xiangming He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第3期266-297,共32页
Solid-state electrolytes(SSEs)are widely considered the essential components for upcoming rechargeable lithium-ion batteries owing to the potential for great safety and energy density.Among them,polymer solid-state el... Solid-state electrolytes(SSEs)are widely considered the essential components for upcoming rechargeable lithium-ion batteries owing to the potential for great safety and energy density.Among them,polymer solid-state electrolytes(PSEs)are competitive candidates for replacing commercial liquid electrolytes due to their flexibility,shape versatility and easy machinability.Despite the rapid development of PSEs,their practical application still faces obstacles including poor ionic conductivity,narrow electrochemical stable window and inferior mechanical strength.Polymer/inorganic composite electrolytes(PIEs)formed by adding ceramic fillers in PSEs merge the benefits of PSEs and inorganic solid-state electrolytes(ISEs),exhibiting appreciable comprehensive properties due to the abundant interfaces with unique characteristics.Some PIEs are highly compatible with high-voltage cathode and lithium metal anode,which offer desirable access to obtaining lithium metal batteries with high energy density.This review elucidates the current issues and recent advances in PIEs.The performance of PIEs was remarkably influenced by the characteristics of the fillers including type,content,morphology,arrangement and surface groups.We focus on the molecular interaction between different components in the composite environment for designing high-performance PIEs.Finally,the obstacles and opportunities for creating high-performance PIEs are outlined.This review aims to provide some theoretical guidance and direction for the development of PIEs. 展开更多
关键词 POLYMER Inorganic composite electrolytes All-solid-state lithium metal batteries FILLERS Ionic conductivity High voltage
在线阅读 下载PDF
Status and prospect of garnet/polymer solid composite electrolytes for all-solid-state lithium batteries 被引量:19
11
作者 Liansheng Li Yuanfu Deng Guohua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期154-177,共24页
Solid polymer electrolytes(SPEs), such as polyethylene oxide(PEO), are characteristic of good flexibility and excellent processability, but they suffer from low ionic conductivity and small Li+transference number at a... Solid polymer electrolytes(SPEs), such as polyethylene oxide(PEO), are characteristic of good flexibility and excellent processability, but they suffer from low ionic conductivity and small Li+transference number at ambient temperature. Inorganic solid electrolytes(ISEs), garnet-type Li7La3Zr2O12 and its derivatives(LLZO-based) in particular, possess high ionic conductivity at room temperature, wide electrochemical stability window, large Li+transference number as well as good stability against Li metal anode.Nevertheless, lithium dendrites growth, interfacial contact issue and brittle nature of LLZO-based ceramic electrolytes prevent their practical applications. In response to these shortcomings, LLZO-based/polymer solid composite electrolytes(SCEs), taking complementary advantages of two kinds of electrolytes, and thus simultaneously improving the electrode wettability, ionic conductivity and mechanical strength, have been made to develop high-performance SCEs in recent years. Herein, the intrinsic properties and research progress of LLZO-based/polymer SCEs, including LLZO-based/PEO SCEs(LLZO-based/PEO SCEs with uniform dispersion of LLZO-based fillers and LLZO-based/PEO layered SCEs) and LLZO-based/novel polymers SCEs, are summarized. Besides, comprehensive updates on their applications in solid-state batteries are also presented. Finally, challenges and perspectives of LLZO-based/polymer SCEs for advanced allsolid-state lithium batteries(ASSLBs) are suggested. This review paper aims to provide systematic research progress of LLZO-based/polymer SCEs, to allow for more efficient and target-oriented research on improving LLZO-based/polymer SCEs. 展开更多
关键词 Solid polymer electrolyte Garnet-type electrolyte Solid composite electrolyte All-solid-state battery
在线阅读 下载PDF
Oxygen ionic conductivity of a composite electrolyte SDC-LSGM prepared via glycine-nitrate process
12
作者 邬理伟 郑颖平 +3 位作者 王绍荣 王振荣 景尧 孙岳明 《Journal of Southeast University(English Edition)》 EI CAS 2010年第1期87-90,共4页
Ce0.8Sm0.2O1.9-δ-La0.9Sr0.1Ga0.8Mg0.2O3-δ(SDC-LSGM)is prepared by the glycine-nitrate process(GNP).SDC-LSGM composite electrolyte samples with different weight ratios are prepared by the co-combustion method so ... Ce0.8Sm0.2O1.9-δ-La0.9Sr0.1Ga0.8Mg0.2O3-δ(SDC-LSGM)is prepared by the glycine-nitrate process(GNP).SDC-LSGM composite electrolyte samples with different weight ratios are prepared by the co-combustion method so as to obtain homogeneous nano-sized precursor powders. The X-ray diffraction (XRD) and the scan electron microscope (SEM) are used to investigate the phases and microstructures. The measurements and analyses of oxygen ionic conductivity of SDC-LSGM are carried out through the four-terminal direct current (DC) method and the electrochemical impendence spectroscopy, respectively. The optimum weight ratio of SDC-LSGM is 8∶2, of which the ionic conductivity is 0.113 S/cm at 800℃ and the conductivity activation energy is 0.620 eV. The impendence spectra shows that the grain boundary resistance becomes the main barrier for the ionic conductivity of electrolyte at lower temperatures. The appropriate introduction of LSGM to the electrolyte SDC can not only decrease the electronic conductivity but also improve the conditions of the grain and grain boundary, which is advantageous to cause an increase in oxygen ionic conductivity. 展开更多
关键词 Ce0.8Sm0.2O1.9-δ La0.9Sr0.1Ga0.8Mg0.2O3-δ composite electrolyte oxygen ionic conductivity
在线阅读 下载PDF
Quasi-Solid-State Ion-Conducting Arrays Composite Electrolytes with Fast Ion Transport Vertical-Aligned Interfaces for All-Weather Practical Lithium-Metal Batteries 被引量:12
13
作者 Xinyang Li Yong Wang +9 位作者 Kai Xi Wei Yu Jie Feng Guoxin Gao Hu Wu Qiu Jiang Amr Abdelkader Weibo Hua Guiming Zhong Shujiang Ding 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期401-414,共14页
The rapid improvement in the gel polymer electrolytes(GPEs)with high ionic conductivity brought it closer to practical applications in solid-state Li-metal batteries.The combination of solvent and polymer enables quas... The rapid improvement in the gel polymer electrolytes(GPEs)with high ionic conductivity brought it closer to practical applications in solid-state Li-metal batteries.The combination of solvent and polymer enables quasi-liquid fast ion transport in the GPEs.However,different ion transport capacity between solvent and polymer will cause local nonuniform Li+distribution,leading to severe dendrite growth.In addition,the poor thermal stability of the solvent also limits the operating-temperature window of the electrolytes.Optimizing the ion transport environment and enhancing the thermal stability are two major challenges that hinder the application of GPEs.Here,a strategy by introducing ion-conducting arrays(ICA)is created by vertical-aligned montmorillonite into GPE.Rapid ion transport on the ICA was demonstrated by 6Li solid-state nuclear magnetic resonance and synchrotron X-ray diffraction,combined with computer simulations to visualize the transport process.Compared with conventional randomly dispersed fillers,ICA provides continuous interfaces to regulate the ion transport environment and enhances the tolerance of GPEs to extreme temperatures.Therefore,GPE/ICA exhibits high room-temperature ionic conductivity(1.08 mS cm^(−1))and long-term stable Li deposition/stripping cycles(>1000 h).As a final proof,Li||GPE/ICA||LiFePO_(4) cells exhibit excellent cycle performance at wide temperature range(from 0 to 60°C),which shows a promising path toward all-weather practical solid-state batteries. 展开更多
关键词 Solid-state batteries composite electrolytes Vertical-aligned ion-conducting arrays Interfacial ion-conduction mechanism All-weather practical electrolyte design
在线阅读 下载PDF
Anion-immobilized solid composite electrolytes based on metal-organic frameworks and superacid ZrO_(2) fillers for high-performance all solid-state lithium metal batteries 被引量:9
14
作者 Tao Wei Zao-hong Zhang +6 位作者 Qi Zhang Jia-hao Lu Qi-ming Xiong Feng-yue Wang Xin-ping Zhou Wen-jia Zhao Xiang-yun Qiu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第10期1636-1646,共11页
Anion-immobilized solid composite electrolytes(SCEs)are important to restrain the propagation of lithium dendrites for all solid-state lithium metal batteries(ASSLMBs).Herein,a novel SCEs based on metal-organic framew... Anion-immobilized solid composite electrolytes(SCEs)are important to restrain the propagation of lithium dendrites for all solid-state lithium metal batteries(ASSLMBs).Herein,a novel SCEs based on metal-organic frameworks(MOFs,UiO-66-NH_(2))and superacid ZrO_(2)(S-ZrO_(2))fillers are proposed,and the samples were characterized by X-ray diffraction(XRD),scanning electron microscope(SEM),energy dispersive X-ray spectroscopy(EDS),thermo-gravimetric analyzer(TGA)and some other electrochemical measurements.The-NH_(2) groups of UiO-66-NH_(2) combines with F atoms of poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)chains by hydrogen bonds,leading to a high electrochemical stability window of 5 V.Owing to the incorporation of UiO-66-NH_(2) and S-ZrO_(2) in PVDF-HFP polymer,the open metal sites of MOFs and acid surfaces of S-ZrO_(2) can immobilize anions by strong Lewis acid-base interaction,which enhances the effect of immobilization anions,achieving a high Li-ion transference number(t_(+))of 0.72,and acquiring a high ionic conductivity of 1.05×10^(-4) S·cm^(-1) at 60℃.The symmetrical Li/Li cells with the anion-immobilized SCEs may steadily operate for over 600 h at 0.05 mA·cm^(-2) without the shortcircuit occurring.Besides,the solid composite Li/LiFePO_(4)(LFP)cell with the anion-immobilized SCEs shows a superior discharge specific capacity of 158 mAh·g^(-1) at 0.2 C.The results illustrate that the anion-immobilized SCEs are one of the most promising choices to optimize the performances of ASSLMBs. 展开更多
关键词 solid composite electrolytes poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP) all solid-state lithium metal batteries metal-organic frameworks anion-immobilized
在线阅读 下载PDF
Protecting lithium metal anode in all-solid-state batteries with a composite electrolyte 被引量:7
15
作者 Wen-Qing Wei Bing-Qiang Liu +2 位作者 Yi-Qiang Gan Hai-Jian Ma Da-Wei Cui 《Rare Metals》 SCIE EI CAS CSCD 2021年第2期409-416,共8页
The volume of the metallic lithium anode in allsolid-state Li metal batteries increases significantly due to the lithium dendrite formation during the battery cycling,and the rough surface of lithium metal also reduce... The volume of the metallic lithium anode in allsolid-state Li metal batteries increases significantly due to the lithium dendrite formation during the battery cycling,and the rough surface of lithium metal also reduces Li-ion transport in Li/electrolyte interface.In this work,we developed a solid polymer composite by adding the lowcost Si_(3)N_(4)particles to protect the lithium anode in allsolid-state batteries.The Fourier transform infrared spectroscopy(FTIR)data show that the surface of 10 wt%Si_(3)N_(4)particles interacts with the polyethylene oxide(PEO)and lithium bis(trifluoromethanesulfonyl)imide(LiTFSI)salt;the interaction restricts the anion mobility and improves the ionic conductivity(1×10^(-4)S·cm^(-1))and lithium-ion transference number(0.28)of the composite electrolyte.The lithium metal anode is well protected by the composite electrolyte in all-solid-state cells,including symmetric and Li/LiFePO_(4)cells.The lithium dendrite growth suppression by this composite electrolyte indicates the possible application of these low-cost composite electrolytes for lithium metal protection. 展开更多
关键词 Lithium metal anode Lithium dendrite growth composite electrolyte Symmetric cell
原文传递
Recent advances of composite electrolytes for solid-state Li batteries 被引量:6
16
作者 Laiqiang Xu Jiayang Li +7 位作者 Honglei Shuai Zheng Luo Baowei Wang Susu Fang Guoqiang Zou Hongshuai Hou Hongjian Peng Xiaobo Ji 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期524-548,共25页
All-solid-state lithium batteries(ASSLBs)are recognized as high energy density batteries system without safety issues within the next generation of batteries.The development of solid electrolytes is the crucial step o... All-solid-state lithium batteries(ASSLBs)are recognized as high energy density batteries system without safety issues within the next generation of batteries.The development of solid electrolytes is the crucial step of ASSLBs.The composite electrolyte has stable physical and electrochemical characteristics,and its comprehensive performance surpasses the individual solid electrolyte,bringing unique vitality to the solid electrolyte.However,their intrinsic weakness limits the development of composite electrolytes.In this review,we provide a comprehensive and in-depth understanding of the challenges and opportunities of composite electrolytes,with special focus on mechanisms of ion transport,nanostructure design towards high ionic conductivity,interfacial issues within electrolytes and electrodes.Furthermore,future development is prospected,which can shed light on researchers in this field and accelerate the industrial production of composite electrolytes. 展开更多
关键词 High energy density composite electrolytes Ion transport High ionic conductivity Interfacial issues
在线阅读 下载PDF
The critical role of inorganic nanofillers in solid polymer composite electrolyte for Li+transportation 被引量:11
17
作者 Zhichuan Shen Yifeng Cheng +3 位作者 Shuhui Sun Xi Ke Liying Liu Zhicong Shi 《Carbon Energy》 CAS 2021年第3期482-508,共27页
Compared with commercial lithium batteries with liquid electrolytes,all-solidstate lithium batteries(ASSLBs)possess the advantages of higher safety,better electrochemical stability,higher energy density,and longer cyc... Compared with commercial lithium batteries with liquid electrolytes,all-solidstate lithium batteries(ASSLBs)possess the advantages of higher safety,better electrochemical stability,higher energy density,and longer cycle life;therefore,ASSLBs have been identified as promising candidates for next-generation safe and stable high-energy-storage devices.The design and fabrication of solid-state electrolytes(SSEs)are vital for the future commercialization of ASSLBs.Among various SSEs,solid polymer composite electrolytes(SPCEs)consisting of inorganic nanofillers and polymer matrix have shown great application prospects in the practice of ASSLBs.The incorporation of inorganic nanofillers into the polymer matrix has been considered as a crucial method to achieve high ionic conductivity for SPCE.In this review,the mechanisms of Li+transport variation caused by incorporating inorganic nanofillers into the polymer matrix are discussed in detail.On the basis of the recent progress,the respective contributions of polymer chains,passive ceramic nanofillers,and active ceramic nanofillers in affecting the Li+transport process of SPCE are reviewed systematically.The inherent relationship between the morphological characteristics of inorganic nanofillers and the ionic conductivity of the resultant SPCE is discussed.Finally,the challenges and future perspectives for developing high-performance SPCE are put forward.This review aims to provide possible strategies for the further improvement of ionic conductivity in inorganic nanoscale filler-reinforced SPCE and highlight their inspiration for future research directions. 展开更多
关键词 all-solid-state lithium batteries inorganic nanofillers Li+transportation solid polymer composite electrolyte
在线阅读 下载PDF
Ameliorating the interfacial issues of all-solid-state lithium metal batteries by constructing polymer/inorganic composite electrolyte 被引量:5
18
作者 Su Wang Qifang Sun +7 位作者 Wenxiu Peng Yue Ma Ying Zhou Dawei Song Hongzhou Zhang Xixi Shi Chunliang Li Lianqi Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期85-93,共9页
Lithium metal is one of the most promising anodes for next-generation batteries due to its high capacity and low reduction potential.However,the notorious Li dendrites can cause the short life span and safety issues,h... Lithium metal is one of the most promising anodes for next-generation batteries due to its high capacity and low reduction potential.However,the notorious Li dendrites can cause the short life span and safety issues,hindering the extensive application of lithium batteries.Herein,Li_(7)La_(3)Zr_(2)O_(12)(LLZO)ceramics are integrated into polyethylene oxide(PEO)to construct a facile polymer/inorganic composite solid-state electrolyte(CSSE)to inhibit the growth of Li dendrites and widen the electrochemical stability window.Given the feasibility of our strategy,the designed PEO-LLZO-LiTFSI composite solid-state electrolyte(PLLCSSE)exhibits an outstanding cycling property of 134.2 mAh g^(-1) after 500 cycles and the Coulombic efficiency of 99.1%after 1000 cycles at 1 C in LiFePO_(4)-Li cell.When cooperated with LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622)cathode,the PLL-CSSE renders a capacity retention of 82.4%after 200 cycles at 0.2 C.More importantly,the uniform dispersion of LLZO in PEO matrix is tentative tested via Raman and FT-IR spectra and should be responsible for the improved electrochemical performance.The same conclusion can be drawn from the interface investigation after cycling.This work presents an intriguing solid-state electrolyte with high electrochemical performance,which will boost the development of all-solid-state lithium batteries with high energy density. 展开更多
关键词 All-solid-state lithium battery Polymer/inorganic composite electrolyte Uniformly dispersion Interface compatibility
在线阅读 下载PDF
Enhanced ionic conductivity in a novel composite electrolyte based on Gd-doped SnO_(2) nanotubes for ultra-long-life all-solid-state lithium metal batteries
19
作者 Lugang Zhang Nanping Deng +7 位作者 Junbao Kang Xiaoxiao Wang Hongjing Gao Yarong Liu Hao Wang Gang Wang Bowen Cheng Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期326-337,I0009,共13页
All-solid-state electrolytes are exceedingly attractive because of the outstanding inherent safety and energy density compared to liquid electrolytes.Whereas,it is still formidable to simultaneously design solid elect... All-solid-state electrolytes are exceedingly attractive because of the outstanding inherent safety and energy density compared to liquid electrolytes.Whereas,it is still formidable to simultaneously design solid electrolytes with favorable electrode/electrolyte interface compatibility and high ionic conductivity in a simple and scalable manner.Hence,the oxygen-vacancy-rich Gd-doped SnO_(2) nanotubes(GDS NTs)are innovatively prepared and applied to the electrolyte of all-solid-state lithium metal batteries for the first time.The addition of GDS NTs can validly construct long-range co ntinuous ion transport networks in the poly(ethylene oxide)(PEO)-based system and greatly improve the mechanical properties of the electrolyte.Compared to the PEO-based electrolyte,the composite electrolyte displays a higher lithium ion conductivity of 2.41×10^(-4) S cm^(-1) at 30℃,a higher lithium ion transference number up to 0.62 and a wider electrochemical window of 5 V at 50℃.In addition,the composite electrolyte manifests outstanding compatibility with high-voltage LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)cathode,LiFePO4 cathode and lithium metal anode.The assembled Li/Li symmetric battery exhibits stable Li plating/stripping cycling performance,which can cycle steadily for 1500 h at a capacity of 0.3 mA h cm^(-2).And Li/LiFePO4 battery still maintains a high capacity of 131.54 mA h g^(-1) at 0.5C after 800 cycles,which has a superior capacity retention rate of 93.2%.The obtained novel composite electrolyte has promising application prospects in the field of all-solid-state lithium metal cells. 展开更多
关键词 All-solid-state lithium metal batteries Gd-doped SnO2 nanotubes Interfacial stability Oxygen vacancies Solid-state composite electrolytes
在线阅读 下载PDF
Performance Evaluation of Composite Electrolyte with GQD for All-Solid-State Lithium Batteries
20
作者 Sung Won Hwang Dae-Ki Hong 《Computers, Materials & Continua》 SCIE EI 2023年第1期55-66,共12页
The use a stabilized lithium structure as cathode material for batteries could be a fundamental alternative in the development of next-generation energy storage devices.However,the lithium structure severely limits ba... The use a stabilized lithium structure as cathode material for batteries could be a fundamental alternative in the development of next-generation energy storage devices.However,the lithium structure severely limits battery life causes safety concerns due to the growth of lithium(Li)dendrites during rapid charge/discharge cycles.Solid electrolytes,which are used in highdensity energy storage devices and avoid the instability of liquid electrolytes,can be a promising alternative for next-generation batteries.Nevertheless,poor lithium ion conductivity and structural defects at room temperature have been pointed out as limitations.In this study,through the application of a low-dimensional graphene quantum dot(GQD)layer structure,stable operation characteristics were demonstrated based on Li^(+)ion conductivity and excellent electrochemical performance.Moreover,the device based on the modified graphene quantum dots(GQDs)in solid state exhibited retention properties of 95.3%for 100 cycles at 0.5 C and room temperature(RT).Transmission electronmicroscopy analysis was performed to elucidate the Li^(+)ion action mechanism in the modified GQD/electrolyte heterostructure.The low-dimensional structure of theGQD-based solid electrolyte has provided an important strategy for stably-scalable solid-state lithium battery applications at room temperature.It was demonstrated that lithiated graphene quantum dots(Li-GQDs)inhibit the growth of Li dendrites by regulating the modified Li^(+)ion flux during charge/discharge cycling at current densities of 2.2–5.5 mA cm,acting as a modified Li diffusion heterointerface.A full Li GQDbased device was fabricated to demonstrate the practicality of the modified Li structure using the Li–GQD hetero-interface.This study indicates that the low-dimensional carbon structure in Li–GQDs can be an effective approach for stabilization of solid-state Li matrix architecture. 展开更多
关键词 SOLID-STATE lithium batteries composite electrolyte quantum dot GRAPHENE
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部