Conventional nanoparticles incorporated into epoxy coatings suffer from poor compatibility and insufficient corrosion improvement,hindering their practical applications.A dual-strategy approach integrating in-situ hos...Conventional nanoparticles incorporated into epoxy coatings suffer from poor compatibility and insufficient corrosion improvement,hindering their practical applications.A dual-strategy approach integrating in-situ host–vip nanoconfinement and surface self-assembly was devised to fabricate 8HQ@ZIF-8/PDA smart nanocontainers.The vip 8-hydroxyquinoline(8HQ)was encapsulated within the zeolitic imidazolate framework-8(ZIF-8)host,leveraging nanoconfinement effects.A bioinspired polydopamine(PDA)layer was then self-assembled on the 8HQ@ZIF-8 surface through dopamine oxidative self-polymerization,resulting in a robust nanocontainer architecture.Density functional theory(DFT)calculations verify that the molecular interactions between the PDA and the ZIF-8 surface was the chemical adsorption.The resultant 8HQ@ZIF-8/PDA retained the rhombic dodecahedral morphology and crystallinity of ZIF-8,demonstrating controlled pH-responsive release behavior.When incorporated into an epoxy(EP)resin matrix on magnesium alloy,the 8HQ@ZIF-8/PDA/EP smart composite coatings exhibited outstanding interfacial compatibility and long-term stability,achieving a low-frequency impedance(|Z|_(n.n1Hz))of 2.49×10^(7)Ωcm^(2),a maximum phase angle of 82.8°,and a breakpoint frequency(f_(b))of 63.34 Hz after 50 days of immersion in a 3.5 wt%NaCl solution.These findings highlight the exceptional self-healing and corrosion-resistant properties of the 8HQ@ZIF-8/PDA/EP smart composite coatings,underscoring its potential for protecting magnesium alloys in aggressive environments.展开更多
We synthesized tungsten-doped vanadium dioxide(W-VO_(2))particles via a one-step hydrothermal method,followed by their integration with antimony-doped tin oxide(ATO)nanoparticles to formulate a composite coating.Subse...We synthesized tungsten-doped vanadium dioxide(W-VO_(2))particles via a one-step hydrothermal method,followed by their integration with antimony-doped tin oxide(ATO)nanoparticles to formulate a composite coating.Subsequently,the VO_(2)/ATO composite coating was fabricated through a spin-coating process.The impact of varying W-VO_(2) content and coating thickness on the performance of the composite coatings was systematically investigated by employing X-ray diffraction,particle size distribution analysis,spectrometry,and other pertinent test methodologies.Our findings revealed that an escalation in both W-VO_(2) content and coating thickness retained high transmittance in the near-infrared band at lower temperatures.However,as the temperature increased,a notable reduction in transmittance in the near-infrared band was observed,alongside a slight decrease in transmittance within the visible band.Remarkably,when the W-VO_(2) content reached 5%and the coating thickness was 1253 nm,the transmittance of the composite coating surpassed 80%.Furthermore,the heat insulation effect achieved a remarkable 10.0℃increase.Consequently,the synthesized composite coating demonstrates significant potential for smart glass applications,particularly in the realm of heat-insulating glass.展开更多
This study successfully developed a series of carbon-sol-reinforced copper(Cu-CS)composite coatings by electrodeposition employing a superiorly dispersed carbon sol(CS)to avoid nanoparticle aggregation.The CS,characte...This study successfully developed a series of carbon-sol-reinforced copper(Cu-CS)composite coatings by electrodeposition employing a superiorly dispersed carbon sol(CS)to avoid nanoparticle aggregation.The CS,characterized using transmission electron microscopy and zeta potential analysis,consisted of carbon particles with an approximate diameter of 300 nm uniformly distributed in the electrolytes.The characteristics of the composite coatings were examined via scanning electron microscopy to observe its microstructures,X-ray diffraction to detect its phase constituents,and durability testing to determine the wear and corrosion resistance.Results indicated a significant improvement in coating thickness,density,and uniformity achieved for the Cu-CS composite coating with the addition of 20m L/L CS.Moreover,the Cu-CS composite coating exhibited a low wear volume(1.15×10^(-3)mm^(3)),a high hardness(HV_(0.5)137.1),and a low corrosion rate(0.191 mm/a).The significant contribution of carbon particles to the improvement of coating performance is mainly influenced by two factors,namely,the strengthening and lubricating effects resulting from the incorporated carbon particles.Nevertheless,overdosage of CS can compromise the microstructure of the Cu-CS composite coating,creating defects and undermining its functionality.展开更多
Because of an unfortunate mistake by authors,the Project(5227010679)of Foundation item was wrong.The corrected Project is shown as follows:Project(52271073).
This work used the in-situ synthesis of molten-state nitride ceramic phase-reinforced Ni-based alloy coat-ings,aiming to improve the phase-interface bonding through the interdependent co-solidification be-tween molten...This work used the in-situ synthesis of molten-state nitride ceramic phase-reinforced Ni-based alloy coat-ings,aiming to improve the phase-interface bonding through the interdependent co-solidification be-tween molten droplets.The XRD was used to analyze the physical phases of the composite coatings.The microstructure and phase-interface structure were characterized in detail by combining SEM,TEM,HRTEM,FFT,and SAED techniques.Microhardness tester and microforce microhardness tester were em-ployed to measure the surface hardness and elastic modulus of the composite coatings.The fracture be-havior of the composite coatings was characterized by observing the fracture morphology of the coatings using SEM combined with the EDS technique.It was found that the formation mechanisms of inter-facial misfit dislocation assistance,lattice distortion,aggregation of stacking faults,and specific growth orientation between theγ-Ni matrix phase and each ceramic phase in NiCrBSi-TiCrN composite coat-ings improved the lattice matching between the two-phase interface,which resulted in the formation of atomically corresponding coherent lattice relations and stepped interfacial semi-coherent lattice relations,and enhanced the degree of phase-interface bonding.On this basis,the composite coatings with high Cr content further inhibited the expansion of interphase penetration cracks due to the existence of Cr-rich zones at the phase interface,thus exhibiting high fracture toughness.This work provides new opinions on the improvement of phase-interface bonding and composition design of Ni-based composite coatings.展开更多
Integrating different active substances through carriers and fully exerting their synergistic corrosion inhibition ability is an efficient anticor-rosion strategy.Biotemplate(diatomite)was used to integrate polyanilin...Integrating different active substances through carriers and fully exerting their synergistic corrosion inhibition ability is an efficient anticor-rosion strategy.Biotemplate(diatomite)was used to integrate polyaniline and sodium phosphate,an active antisepticfiller(PANI/DM/SP)was prepared in this work.Moreover,activefillers were combined with epoxy resins to prepare high-efficiency anti-corrosion coatings for mag-nesium alloy protection.The stability of the corrosion inhibitor(sodium phosphate)released by the activefiller was analyzed by establishing a mathematical model.Simultaneously,electrochemical impedance spectroscopy tests demonstrate excellent corrosion inhibition properties of activefillers and the impedance modulus of composite coatings was three orders of magnitude higher than that of the EP coating,due to the synergistic effect of each component of the activefiller.In addition,the mechanical properties of the composite coating were significantly improved,with tests showing a 51.31%increase in rub resistance and two grades of adhesion improvement(ASTM standard).The key of this work was to give full play to the slow-release characteristics of diatomite through scientific methods and promote the synergistic anticorrosion effect of sodium phosphate and polyaniline.展开更多
A novel type of microcapsule-encapsulated corrosion inhibitor was prepared in a water-based solution with a pH range of 7-8,and it was applied to the composite organic coating of magnesium alloy plasma electrolytic ox...A novel type of microcapsule-encapsulated corrosion inhibitor was prepared in a water-based solution with a pH range of 7-8,and it was applied to the composite organic coating of magnesium alloy plasma electrolytic oxidation to enhance its corrosion resistance and self-healing properties.The morphology,chemical composition,structure,and functional properties of the composite coating were investigated by scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDS),Fourier transform infrared spectroscopy(FTIR),polarization curve,alternating current impedance,and salt immersion test.The experimental results showed that,after immersion in a 3.5 wt%NaCl solution for 12 h,the coating could effectively protect AZ91D from corrosion.When the coating was damaged,the exposed alloy surface would release metal ions in the corrosive environment and react with the corrosion inhibitor 8-hydroxyquinoline to form a Mg(8-HQ)_(2) chelate,exhibiting significant self-healing behavior.The study results demonstrate the broad application prospects of microcapsule technology in the coating field,providing new ideas for the development of efficient anti-corrosion coatings.展开更多
Combining Mg and Al dissimilar metals further reduces structural weight,but the formation of intermetallic compounds(IMCs)affectsAl/Mg joint properties.To prevent IMCs,a Ni-Al_(2)O_(3)composite coating was pre-plated ...Combining Mg and Al dissimilar metals further reduces structural weight,but the formation of intermetallic compounds(IMCs)affectsAl/Mg joint properties.To prevent IMCs,a Ni-Al_(2)O_(3)composite coating was pre-plated on the Mg alloy substrate,and then Sn_(3.0)Ag_(0.5)Cu(SAC 305)solder was utilized to facilitate the joining of AZ31 Mg/6061 Al through ultrasonic-assisted soldering.We investigated the impactof Al_(2)O_(3)nano sol content in the coating on microstructure evolution,IMCs formation,and mechanical properties.Results indicated that theNi-Al_(2)O_(3)composite coating effectively suppressed the Mg-Sn reaction,thereby preventing the formation of Mg_(2)Sn IMC and significantlyenhancing joint strength.In joints with a Ni-Al_(2)O_(3)composite coating containing 50 mL/L Al_(2)O_(3)nano sol,no Mg_(2)Sn IMC was detectedafter 50 min of holding at 260℃,achieving a maximum shear strength of approximately 67.2 MPa.Increasing the Al_(2)O_(3)concentrationfurther expanded the soldering process window.For the joint with Ni-Al_(2)O_(3)(100 mL/L Al_(2)O_(3)nano sol)composite coating held at 260℃for 70 min,the coating was dissolved to a thickness of about 5.8μm,but no Mg_(2)Sn IMC was observed.The Ni-based solid solution formednear the coating/solder interface was strengthened,leading to fractures occurring within the SAC solder,and the maximum shear strengthfurther increased to 73.9 MPa.The strengthening mechanism of the joints facilitated by using the Ni-Al_(2)O_(3)composite coating was revealedby comparing with pure Ni-assisted joints.Therefore,employing a Ni-Al_(2)O_(3)composite coating as a barrier layer represents a promisingstrategy for inhibiting IMC formation during the joining of dissimilar metals.展开更多
Metal wear and corrosion require a protective coating with good corrosion and wear resistance.The inorganic adhesive of methyltriethoxysilane modified silica sol(SMP)was first synthesized by the dehydration condensati...Metal wear and corrosion require a protective coating with good corrosion and wear resistance.The inorganic adhesive of methyltriethoxysilane modified silica sol(SMP)was first synthesized by the dehydration condensation of silica sol(S30)with methyltriethoxysilane in propyl alcohol.Then,SMP was used to modify the organic polyurethane(PU)by adjusting the volume ratio.The optimal ratio of the organic–inorganic hybrid adhesive PU-SMP was obtained by measuring its film-forming,mechanical,and corrosion-resistant properties.Then,PU-SMP and zirconia nanoparticles(ZrO_(2))were used as an adhesive and functional filler to prepare the organic–inorganic composite coating of PU-SMP@ZrO_(2)via spraying on various substrates.The fabricated PU-SMP@ZrO_(2)performed superior mechanical strength,good wear performance,and excellent anti-corrosion property.The pencil hardness of the coating PU-SMP@2.5ZrO_(2)is 7H,the wear mass is reduced from 0.7 to 0.2 mg,and the impedance modulus reached 10^(7)Ωcm^(2).The synthesized organic–inorganic hybrid adhesive and its composite coatings provide a promising approach for constructing functional protective coatings on mechanical engineering material.展开更多
Ni-P-SiC_(P) coatings were deposited on 42CrMo steel by electroless plating.The surface morphologies and phase structures of the Ni-P-SiC_(P) coatings processed under different SiC_(P) concentrations at different heat...Ni-P-SiC_(P) coatings were deposited on 42CrMo steel by electroless plating.The surface morphologies and phase structures of the Ni-P-SiC_(P) coatings processed under different SiC_(P) concentrations at different heat treatment temperatures were analyzed.The microhardness,corrosion resistance,and wear resistance of the Ni-P-SiC_(P) coatings were studied.Results show that Ni-P-SiC_(P) coatings exhibit cauliflower-like morphology.Increasing the SiC_(P) concentration can reduce the size of cellular structure.The microhardness and corrosion resistance are initially increased and then decreased with the increase in SiC_(P) concentration.The maximum microhardness and corrosion potential are 7379 MPa and−0.363 V,respectively,when the SiC_(P) concentration is 5 g/L.The Ni-P-SiC_(P) coatings exhibit an amorphous structure,and the width of the diffuse diffraction peak becomes narrower with the increase in SiC_(P) concentration.It is suggested that SiC_(P) inhibits the deposition of P and promotes the microcrystalline transformation.After heat treatment at 350℃,the Ni-P-SiC_(P) coatings are crystallized,resulting in the precipitation of Ni3P phase.Heat treatment at 400℃ for 1 h maximizes the structure.The synergistic effect of the Ni3P precipitate phase and SiC_(P) dispersion phase promotes the densification of the cellular structure,leading to the optimal microhardness(13828 MPa),optimal corrosion resistance(−0.277 V),and excellent wear resistance.The wear mechanism is dominated by micro-cutting abrasive wear with slight adhesive and oxidative wear.展开更多
The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on acti...The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on active anodic oxide film and the structure and properties of the composite coating were studied by several surface and electrochemical techniques.The results showed that Ag nanograins with an average size of 10 nm were embedded into the anodic oxide film with pores of 0.1−2μm.Ag nanoparticles provided a catalytic site for the deposition of Ni-B alloy,and the Ni crystal nucleus was first grown in horizontal mode and then in cylindrical mode.The corrosion potential of the composite coating increased by 1.37 V and the corrosion current reduced two orders of magnitude due to the subsequent deposition of Ni-P alloy.The high corrosion resistance was attributed to the misaligning of these micro defects in the three different layers and the amorphous structure of the Ni-P alloy in the outer layer.These findings provide a new idea for electroless nickel plating on anodic oxide film.展开更多
Ni-based coating,a kind of surface material,is characterized by high hardness,outstanding wear resistance,and excellent corrosion resistance.Ni-based coatings doped with hard phases can improve the coating quality.Thi...Ni-based coating,a kind of surface material,is characterized by high hardness,outstanding wear resistance,and excellent corrosion resistance.Ni-based coatings doped with hard phases can improve the coating quality.This is an important topic in related fields.Compared with traditional Ni-based coatings,Ni-based coatings doped with a hard phase have stronger competitive advantages.Among these,Ni-based diamond composite coatings have superior performance.Hence,it has become a kind of excellent functional coating.We outline the current state of research on Ni-based diamond composite coatings.Advances in seven preparation processes for Ni-based diamond composite coatings were discussed.These processes mainly include brazing,electrodeposition,sintering,laser cladding,plasma spraying,supersonic laser deposition,and vacuum cladding.The latest studies on the interfacial behavior,microstructure,and bond strength of these composite coatings are also summarized.The deficiencies for present Ni-based diamond composite coatings are pointed out.Meanwhile,the developmental directions of related fields are envisioned.That could provide theoretical guidance and reference information for research and technological development in the near future.展开更多
In order to reduce the friction coefficient of Ni-base alloy coating and further improve its wear resistance,Ni-base alloy composite coatings modified by both graphite and TiC particles were prepared by plasma spray t...In order to reduce the friction coefficient of Ni-base alloy coating and further improve its wear resistance,Ni-base alloy composite coatings modified by both graphite and TiC particles were prepared by plasma spray technology on the surface of 45 carbon steel.The results show that friction coefficient of the composite coating is 47.45% lower than that of the Ni-base alloy coating,and the wear mass loss is reduced by 59.1%.Slip lines and severe adhesive plastic deformation are observed on the worn surface of the Ni-base alloy coating,indicating that the wear mechanisms of the Ni-base alloy coating are multi-plastic deformation wear and adhesive wear.A soft transferred layer abundant in graphite and ferric oxide is developed on the worn surface of the composite coating,which reduces the friction coefficient and wear loss in a great deal.The main wear mechanism of the composite coating is fatigue delamination of the transferred layer.展开更多
The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and trib...The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and tribological properties of the composite coatings were researched. The results show that the composite coatings mainly consist of γ-Ni, α-Al2O3, γ-Al2O3 and rutile-TiO2 etc, and exhibit lower friction coefficients and wear losses than the Ni-based alloy coatings at different loads and speeds. The composite coating bears low contact stress at 3 N and its wear mechanism is micro-cutting wear. As loads increase to 6-12 N, the contact stress is higher than the elastic limit stress of worn surface, and the wear mechanisms change into multi-plastic deformation wear, micro-brittle fracture wear and abrasive wear. With the increase of speeds, the contact temperature of worn surface increases. The composite coating experiences multi-plastic deformation wear, fatigue wear and adhesive wear.展开更多
TiN-matrix composite coating was prepared on 45# steel by reactive high-velocity oxy-fuel (HVOF) spraying. Its microstructure, phase composition, micro-hardness, corrosion resistance in 3.5% NaC1 solution and wear r...TiN-matrix composite coating was prepared on 45# steel by reactive high-velocity oxy-fuel (HVOF) spraying. Its microstructure, phase composition, micro-hardness, corrosion resistance in 3.5% NaC1 solution and wear resistance were analyzed. The results suggest that the TiN-matrix composite coating is well bonded with the substrate. The micro-hardness measured decreases with the increase of applied test loads. And the micro-hardness of the coating under heavy loads is relatively high. The TiN-matrix composite coating exhibits an excellent corrosion resistance in 3.5% NaC1 solution. The corrosion potential of coating is positive and the passivation zone is broad, which indicates that the TiN-matrix composite coating is stable in the electrolyte and provides excellent protection to the substrate. The wear coefficient of the coating under all loads maintains at 0.49-0.50. The wear mechanism of the coating is revealed to be three-body abrasive wear. Yet the failure forms of TiN-matrix composite coating under different loads have an obvious difference. The failure form of coating under light loads is particle spallation due to the stress concentration while that of coating under heavy loads is crackin~ between inter-lamellae.展开更多
Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribologi...Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribological performances of the composite coatings under dry condition were investigated in comparison with 45 steel and conventional Ni-P coating, Micrographs show that short MWNTs with uniform length and open tips were obtained through the wet-milling process. The results of wear test reveal that the Ni-P-MWNTs composite coatings posses much better friction reduction and anti-wear performances when compared with 45 steel and Ni-P coating. Within the MWNTs content range of 0.74%-1.97%, the friction coefficient and the volume wear rate of the composite coatings decrease gradually and reach the minimum values of 0.08 and 6.22x10-15 m3/(N.m), respectively. The excellent tribological performances of the composite coatings can be attributed to the introduction of MWNTs, which play both roles of reinforcements and solid lubricant during the wear process.展开更多
In order to reduce the friction coefficients and improve the wear resistance of mechanical parts, which work in the severe friction and wear conditions at heavy loads, the graphite/CaFg/TiC/Ni-base alloy composite coa...In order to reduce the friction coefficients and improve the wear resistance of mechanical parts, which work in the severe friction and wear conditions at heavy loads, the graphite/CaFg/TiC/Ni-base alloy composite coatings were prepared by plasma spray and their tribological behavior and mechanisms were investigated. The results show that the friction coefficients of the composite coatings are in the range of 0.22-0.288, which are reduced by 25.9% to 53% compared with those of the pure Ni-base alloy coatings, and the wear rates of the former are 18.6%-70.1% less than those of the latter. When wear against GCr15 steel balls, a transferred layer mainly composed of ferric oxides, graphite and CaF2 may gradually develop on the worn surface of the composite coatings, which made the friction and wear between GCr15 steel ball and the composite coatings change into that between the former and the transferred layer. So the friction coefficients and the wear lubrication effect of the transferred layer. The main wear layer in friction process. rates of the composite coatings are greatly reduced because of the solid mechanism of the composite coatings is delamination of the transferred展开更多
In order to improve the corrosion resistance and microhardness of AZ91D magnesium alloy, TiN nanoparticles were addedto fabricate Ni-P-TiN composite coating by electrodeposition. The surface, cross-section morphology ...In order to improve the corrosion resistance and microhardness of AZ91D magnesium alloy, TiN nanoparticles were addedto fabricate Ni-P-TiN composite coating by electrodeposition. The surface, cross-section morphology and composition wereexamined using SEM, EDS and XRD, and the corrosion resistance was checked by electrochemical technology. The results indicatethat TiN nanoparticles were doped successfully in the Ni-P matrix after a series of complex pretreatments including activation, zincimmersion and pre-electroplating, which enhances the stability of magnesium alloy in electrolyte and the adhesion betweenmagnesium alloy and composite coating. The microhardness of the Ni-P coating increases dramatically by adding TiN nanoparticlesand subsequent heat treatment. The corrosion experimental results indicate that the corrosion resistance of Ni-P-TiN compositecoating is much higher than that of uncoated AZ91D magnesium alloy and similar with Ni-P coating in short immersion time.However, TiN nanoparticles play a significant role in long-term corrosion resistance of composite coatings.展开更多
In order to reduce the friction coefficients and further improve the anti-wear properties of Ni-base alloy coatings reinforced by TiC particles,graphite/TiC/Ni-base alloy(GTN) coatings were prepared on the surface o...In order to reduce the friction coefficients and further improve the anti-wear properties of Ni-base alloy coatings reinforced by TiC particles,graphite/TiC/Ni-base alloy(GTN) coatings were prepared on the surface of 45 carbon steel.The effects of graphite content on the microstructure and tribological properties of the GTN coatings were investigated.The results show that the addition of graphite to the GTN coatings may greatly reduce the friction coefficients and improve their wear resistance.The 6.56GTN and 12.71GTN coatings exhibit excellent integrated properties of anti-friction and wear resistance under low and high loads,respectively.Under a low load,the wear mechanisms of the GTN coatings are mainly multi-plastic deformation with slight abrasive wear and gradually change into mixture of multi-plastic deformation,delamination and micro-cutting wear with the increase of graphite fraction.As the load increases,the main wear mechanisms gradually change from micro-cracks,micro-cutting and adhesive wear to micro-cutting and micro-fracture with the increase of graphite fraction.展开更多
TiC particles reinforced Ni-based alloy composite coatings were prepared on 7005 aluminum alloy by plasma spray. The effects of load, speed and temperature on the tribological behavior and mechanisms of the composite ...TiC particles reinforced Ni-based alloy composite coatings were prepared on 7005 aluminum alloy by plasma spray. The effects of load, speed and temperature on the tribological behavior and mechanisms of the composite coatings under dry friction were researched. The wear prediction model of the composite coatings was established based on the least square support vector machine (LS-SVM). The results show that the composite coatings exhibit smaller friction coefficients and wear losses than the Ni-based alloy coatings under different friction conditions. The predicting time of the LS-SVM model is only 12.93%of that of the BP-ANN model, and the predicting accuracies on friction coefficients and wear losses of the former are increased by 58.74%and 41.87%compared with the latter. The LS-SVM model can effectively predict the tribological behavior of the TiCP/Ni-base alloy composite coatings under dry friction.展开更多
基金the Natural Science Foundation of Hunan Province(2024JJ6364)the National Natural Science Foundation of China(52271073)+1 种基金the Sichuan Science and Technology Program(2024NSFJQ0034)the Innovation Team Funds of China West Normal University(KCXTD2024-1).
文摘Conventional nanoparticles incorporated into epoxy coatings suffer from poor compatibility and insufficient corrosion improvement,hindering their practical applications.A dual-strategy approach integrating in-situ host–vip nanoconfinement and surface self-assembly was devised to fabricate 8HQ@ZIF-8/PDA smart nanocontainers.The vip 8-hydroxyquinoline(8HQ)was encapsulated within the zeolitic imidazolate framework-8(ZIF-8)host,leveraging nanoconfinement effects.A bioinspired polydopamine(PDA)layer was then self-assembled on the 8HQ@ZIF-8 surface through dopamine oxidative self-polymerization,resulting in a robust nanocontainer architecture.Density functional theory(DFT)calculations verify that the molecular interactions between the PDA and the ZIF-8 surface was the chemical adsorption.The resultant 8HQ@ZIF-8/PDA retained the rhombic dodecahedral morphology and crystallinity of ZIF-8,demonstrating controlled pH-responsive release behavior.When incorporated into an epoxy(EP)resin matrix on magnesium alloy,the 8HQ@ZIF-8/PDA/EP smart composite coatings exhibited outstanding interfacial compatibility and long-term stability,achieving a low-frequency impedance(|Z|_(n.n1Hz))of 2.49×10^(7)Ωcm^(2),a maximum phase angle of 82.8°,and a breakpoint frequency(f_(b))of 63.34 Hz after 50 days of immersion in a 3.5 wt%NaCl solution.These findings highlight the exceptional self-healing and corrosion-resistant properties of the 8HQ@ZIF-8/PDA/EP smart composite coatings,underscoring its potential for protecting magnesium alloys in aggressive environments.
基金Funded by Beijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park(No.Z221100006722022)。
文摘We synthesized tungsten-doped vanadium dioxide(W-VO_(2))particles via a one-step hydrothermal method,followed by their integration with antimony-doped tin oxide(ATO)nanoparticles to formulate a composite coating.Subsequently,the VO_(2)/ATO composite coating was fabricated through a spin-coating process.The impact of varying W-VO_(2) content and coating thickness on the performance of the composite coatings was systematically investigated by employing X-ray diffraction,particle size distribution analysis,spectrometry,and other pertinent test methodologies.Our findings revealed that an escalation in both W-VO_(2) content and coating thickness retained high transmittance in the near-infrared band at lower temperatures.However,as the temperature increased,a notable reduction in transmittance in the near-infrared band was observed,alongside a slight decrease in transmittance within the visible band.Remarkably,when the W-VO_(2) content reached 5%and the coating thickness was 1253 nm,the transmittance of the composite coating surpassed 80%.Furthermore,the heat insulation effect achieved a remarkable 10.0℃increase.Consequently,the synthesized composite coating demonstrates significant potential for smart glass applications,particularly in the realm of heat-insulating glass.
基金financially supported by the Jiangsu Provincial Outstanding Overseas Talent Project,China(No.BX2023029)the Jiangsu Provincial Natural Science Fund Research Project,China(No.BK20211344)+2 种基金the Project of Jiangsu Provincial Department of Science and Technology,Chinathe Jiangsu Provincial Postgraduate Research&Practice Innovation Program,China(No.KYCX22_3795)the Jiangsu Provincial Postgraduate Research&Practice Innovation Program,China(No.SJCX23_2171)。
文摘This study successfully developed a series of carbon-sol-reinforced copper(Cu-CS)composite coatings by electrodeposition employing a superiorly dispersed carbon sol(CS)to avoid nanoparticle aggregation.The CS,characterized using transmission electron microscopy and zeta potential analysis,consisted of carbon particles with an approximate diameter of 300 nm uniformly distributed in the electrolytes.The characteristics of the composite coatings were examined via scanning electron microscopy to observe its microstructures,X-ray diffraction to detect its phase constituents,and durability testing to determine the wear and corrosion resistance.Results indicated a significant improvement in coating thickness,density,and uniformity achieved for the Cu-CS composite coating with the addition of 20m L/L CS.Moreover,the Cu-CS composite coating exhibited a low wear volume(1.15×10^(-3)mm^(3)),a high hardness(HV_(0.5)137.1),and a low corrosion rate(0.191 mm/a).The significant contribution of carbon particles to the improvement of coating performance is mainly influenced by two factors,namely,the strengthening and lubricating effects resulting from the incorporated carbon particles.Nevertheless,overdosage of CS can compromise the microstructure of the Cu-CS composite coating,creating defects and undermining its functionality.
文摘Because of an unfortunate mistake by authors,the Project(5227010679)of Foundation item was wrong.The corrected Project is shown as follows:Project(52271073).
基金supported by the National Natural Science Foundation of China(No.52271055)the Natural Science Foundation of Hebei Province(No.E2021202130).
文摘This work used the in-situ synthesis of molten-state nitride ceramic phase-reinforced Ni-based alloy coat-ings,aiming to improve the phase-interface bonding through the interdependent co-solidification be-tween molten droplets.The XRD was used to analyze the physical phases of the composite coatings.The microstructure and phase-interface structure were characterized in detail by combining SEM,TEM,HRTEM,FFT,and SAED techniques.Microhardness tester and microforce microhardness tester were em-ployed to measure the surface hardness and elastic modulus of the composite coatings.The fracture be-havior of the composite coatings was characterized by observing the fracture morphology of the coatings using SEM combined with the EDS technique.It was found that the formation mechanisms of inter-facial misfit dislocation assistance,lattice distortion,aggregation of stacking faults,and specific growth orientation between theγ-Ni matrix phase and each ceramic phase in NiCrBSi-TiCrN composite coat-ings improved the lattice matching between the two-phase interface,which resulted in the formation of atomically corresponding coherent lattice relations and stepped interfacial semi-coherent lattice relations,and enhanced the degree of phase-interface bonding.On this basis,the composite coatings with high Cr content further inhibited the expansion of interphase penetration cracks due to the existence of Cr-rich zones at the phase interface,thus exhibiting high fracture toughness.This work provides new opinions on the improvement of phase-interface bonding and composition design of Ni-based composite coatings.
基金support provided by the National Natural Science Foundation of China(Grant No.51908092)Projects(No.2020CDJXZ001,2021CDJJMRH-005 and SKLMT-ZZKT-2021M04)supported by the Fundamental Research Funds for the Central Universities+6 种基金the Joint Funds of the National Natural Science Foundation of China-Guangdong(Grant No.U1801254)the project funded by Chongqing Special Postdoctoral Science Foundation(XmT2018043)the Chongqing Research Program of Basic Research and Frontier Technology(cstc2017jcyjBX0080)Natural Science Foundation Project of Chongqing for Post-doctor(cstc2019jcyjbsh0079,cstc2019jcyjbshX0085)Technological projects of Chongqing Municipal Education Commission(KJZDK201800801)the Innovative Research Team of Chongqing(CXTDG201602014)the Innovative technology of New materials and metallurgy(2019CDXYCL0031)。
文摘Integrating different active substances through carriers and fully exerting their synergistic corrosion inhibition ability is an efficient anticor-rosion strategy.Biotemplate(diatomite)was used to integrate polyaniline and sodium phosphate,an active antisepticfiller(PANI/DM/SP)was prepared in this work.Moreover,activefillers were combined with epoxy resins to prepare high-efficiency anti-corrosion coatings for mag-nesium alloy protection.The stability of the corrosion inhibitor(sodium phosphate)released by the activefiller was analyzed by establishing a mathematical model.Simultaneously,electrochemical impedance spectroscopy tests demonstrate excellent corrosion inhibition properties of activefillers and the impedance modulus of composite coatings was three orders of magnitude higher than that of the EP coating,due to the synergistic effect of each component of the activefiller.In addition,the mechanical properties of the composite coating were significantly improved,with tests showing a 51.31%increase in rub resistance and two grades of adhesion improvement(ASTM standard).The key of this work was to give full play to the slow-release characteristics of diatomite through scientific methods and promote the synergistic anticorrosion effect of sodium phosphate and polyaniline.
基金Funded by the National Natural Science Foundation of China(No.52271066)Basic Research and Innovation Project for Vehicle Power+1 种基金Key Project of"Two-Chain Integration"in Shaanxi Province(No.2023-LL-QY-33-3)Xi'an Key Laboratory of Corrosion Protection and Functional Coating Technology for Military and Civil Light Alloy and Key Project of Shaanxi Natural Science Foundation Research Program(No.2021JZ-54)。
文摘A novel type of microcapsule-encapsulated corrosion inhibitor was prepared in a water-based solution with a pH range of 7-8,and it was applied to the composite organic coating of magnesium alloy plasma electrolytic oxidation to enhance its corrosion resistance and self-healing properties.The morphology,chemical composition,structure,and functional properties of the composite coating were investigated by scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDS),Fourier transform infrared spectroscopy(FTIR),polarization curve,alternating current impedance,and salt immersion test.The experimental results showed that,after immersion in a 3.5 wt%NaCl solution for 12 h,the coating could effectively protect AZ91D from corrosion.When the coating was damaged,the exposed alloy surface would release metal ions in the corrosive environment and react with the corrosion inhibitor 8-hydroxyquinoline to form a Mg(8-HQ)_(2) chelate,exhibiting significant self-healing behavior.The study results demonstrate the broad application prospects of microcapsule technology in the coating field,providing new ideas for the development of efficient anti-corrosion coatings.
基金support from the National Natural Science Foundation of China(grant numbers 52275385 and U2167216).
文摘Combining Mg and Al dissimilar metals further reduces structural weight,but the formation of intermetallic compounds(IMCs)affectsAl/Mg joint properties.To prevent IMCs,a Ni-Al_(2)O_(3)composite coating was pre-plated on the Mg alloy substrate,and then Sn_(3.0)Ag_(0.5)Cu(SAC 305)solder was utilized to facilitate the joining of AZ31 Mg/6061 Al through ultrasonic-assisted soldering.We investigated the impactof Al_(2)O_(3)nano sol content in the coating on microstructure evolution,IMCs formation,and mechanical properties.Results indicated that theNi-Al_(2)O_(3)composite coating effectively suppressed the Mg-Sn reaction,thereby preventing the formation of Mg_(2)Sn IMC and significantlyenhancing joint strength.In joints with a Ni-Al_(2)O_(3)composite coating containing 50 mL/L Al_(2)O_(3)nano sol,no Mg_(2)Sn IMC was detectedafter 50 min of holding at 260℃,achieving a maximum shear strength of approximately 67.2 MPa.Increasing the Al_(2)O_(3)concentrationfurther expanded the soldering process window.For the joint with Ni-Al_(2)O_(3)(100 mL/L Al_(2)O_(3)nano sol)composite coating held at 260℃for 70 min,the coating was dissolved to a thickness of about 5.8μm,but no Mg_(2)Sn IMC was observed.The Ni-based solid solution formednear the coating/solder interface was strengthened,leading to fractures occurring within the SAC solder,and the maximum shear strengthfurther increased to 73.9 MPa.The strengthening mechanism of the joints facilitated by using the Ni-Al_(2)O_(3)composite coating was revealedby comparing with pure Ni-assisted joints.Therefore,employing a Ni-Al_(2)O_(3)composite coating as a barrier layer represents a promisingstrategy for inhibiting IMC formation during the joining of dissimilar metals.
基金supported by National Key R&D Project of China(No.2024YFB4600167)the National Natural Science Foundation of China(No.52205313)+1 种基金Natural Science Foundation of Shandong Province(Nos.ZR2022ZD07 and ZR2022QE161)China Postdoctoral Science Foundation(No.2023M734093).
文摘Metal wear and corrosion require a protective coating with good corrosion and wear resistance.The inorganic adhesive of methyltriethoxysilane modified silica sol(SMP)was first synthesized by the dehydration condensation of silica sol(S30)with methyltriethoxysilane in propyl alcohol.Then,SMP was used to modify the organic polyurethane(PU)by adjusting the volume ratio.The optimal ratio of the organic–inorganic hybrid adhesive PU-SMP was obtained by measuring its film-forming,mechanical,and corrosion-resistant properties.Then,PU-SMP and zirconia nanoparticles(ZrO_(2))were used as an adhesive and functional filler to prepare the organic–inorganic composite coating of PU-SMP@ZrO_(2)via spraying on various substrates.The fabricated PU-SMP@ZrO_(2)performed superior mechanical strength,good wear performance,and excellent anti-corrosion property.The pencil hardness of the coating PU-SMP@2.5ZrO_(2)is 7H,the wear mass is reduced from 0.7 to 0.2 mg,and the impedance modulus reached 10^(7)Ωcm^(2).The synthesized organic–inorganic hybrid adhesive and its composite coatings provide a promising approach for constructing functional protective coatings on mechanical engineering material.
基金Science Research Project of Handan Bureau of Science and Technology(21422075242)。
文摘Ni-P-SiC_(P) coatings were deposited on 42CrMo steel by electroless plating.The surface morphologies and phase structures of the Ni-P-SiC_(P) coatings processed under different SiC_(P) concentrations at different heat treatment temperatures were analyzed.The microhardness,corrosion resistance,and wear resistance of the Ni-P-SiC_(P) coatings were studied.Results show that Ni-P-SiC_(P) coatings exhibit cauliflower-like morphology.Increasing the SiC_(P) concentration can reduce the size of cellular structure.The microhardness and corrosion resistance are initially increased and then decreased with the increase in SiC_(P) concentration.The maximum microhardness and corrosion potential are 7379 MPa and−0.363 V,respectively,when the SiC_(P) concentration is 5 g/L.The Ni-P-SiC_(P) coatings exhibit an amorphous structure,and the width of the diffuse diffraction peak becomes narrower with the increase in SiC_(P) concentration.It is suggested that SiC_(P) inhibits the deposition of P and promotes the microcrystalline transformation.After heat treatment at 350℃,the Ni-P-SiC_(P) coatings are crystallized,resulting in the precipitation of Ni3P phase.Heat treatment at 400℃ for 1 h maximizes the structure.The synergistic effect of the Ni3P precipitate phase and SiC_(P) dispersion phase promotes the densification of the cellular structure,leading to the optimal microhardness(13828 MPa),optimal corrosion resistance(−0.277 V),and excellent wear resistance.The wear mechanism is dominated by micro-cutting abrasive wear with slight adhesive and oxidative wear.
基金Project(5227010679)supported by the National Natural Science Foundation of China。
文摘The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on active anodic oxide film and the structure and properties of the composite coating were studied by several surface and electrochemical techniques.The results showed that Ag nanograins with an average size of 10 nm were embedded into the anodic oxide film with pores of 0.1−2μm.Ag nanoparticles provided a catalytic site for the deposition of Ni-B alloy,and the Ni crystal nucleus was first grown in horizontal mode and then in cylindrical mode.The corrosion potential of the composite coating increased by 1.37 V and the corrosion current reduced two orders of magnitude due to the subsequent deposition of Ni-P alloy.The high corrosion resistance was attributed to the misaligning of these micro defects in the three different layers and the amorphous structure of the Ni-P alloy in the outer layer.These findings provide a new idea for electroless nickel plating on anodic oxide film.
基金financially supported by the National Program of Foreign Experts of China(G2023026003L)the National Natural Science Foundation of China(52475347,52071165,51705151)+4 种基金China Postdoctoral Fund(2023M740475)sponsored by the Program for Science&Technology Innovation Talents in Universities of Henan Province,China(22HASTIT026)International Science and Technology Cooperation Project of Henan Province(242102521057),Chinasupported by the Program for the Top Young Talents of Henan Province,ChinaFrontier Exploration Project of Longmen Laboratory(LMQYTSKT016),China.
文摘Ni-based coating,a kind of surface material,is characterized by high hardness,outstanding wear resistance,and excellent corrosion resistance.Ni-based coatings doped with hard phases can improve the coating quality.This is an important topic in related fields.Compared with traditional Ni-based coatings,Ni-based coatings doped with a hard phase have stronger competitive advantages.Among these,Ni-based diamond composite coatings have superior performance.Hence,it has become a kind of excellent functional coating.We outline the current state of research on Ni-based diamond composite coatings.Advances in seven preparation processes for Ni-based diamond composite coatings were discussed.These processes mainly include brazing,electrodeposition,sintering,laser cladding,plasma spraying,supersonic laser deposition,and vacuum cladding.The latest studies on the interfacial behavior,microstructure,and bond strength of these composite coatings are also summarized.The deficiencies for present Ni-based diamond composite coatings are pointed out.Meanwhile,the developmental directions of related fields are envisioned.That could provide theoretical guidance and reference information for research and technological development in the near future.
文摘In order to reduce the friction coefficient of Ni-base alloy coating and further improve its wear resistance,Ni-base alloy composite coatings modified by both graphite and TiC particles were prepared by plasma spray technology on the surface of 45 carbon steel.The results show that friction coefficient of the composite coating is 47.45% lower than that of the Ni-base alloy coating,and the wear mass loss is reduced by 59.1%.Slip lines and severe adhesive plastic deformation are observed on the worn surface of the Ni-base alloy coating,indicating that the wear mechanisms of the Ni-base alloy coating are multi-plastic deformation wear and adhesive wear.A soft transferred layer abundant in graphite and ferric oxide is developed on the worn surface of the composite coating,which reduces the friction coefficient and wear loss in a great deal.The main wear mechanism of the composite coating is fatigue delamination of the transferred layer.
文摘The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and tribological properties of the composite coatings were researched. The results show that the composite coatings mainly consist of γ-Ni, α-Al2O3, γ-Al2O3 and rutile-TiO2 etc, and exhibit lower friction coefficients and wear losses than the Ni-based alloy coatings at different loads and speeds. The composite coating bears low contact stress at 3 N and its wear mechanism is micro-cutting wear. As loads increase to 6-12 N, the contact stress is higher than the elastic limit stress of worn surface, and the wear mechanisms change into multi-plastic deformation wear, micro-brittle fracture wear and abrasive wear. With the increase of speeds, the contact temperature of worn surface increases. The composite coating experiences multi-plastic deformation wear, fatigue wear and adhesive wear.
基金Project(KFJJ10-15M) supported by the Open Fund of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,ChinaProject(E2013208101) supported by the Nature Science Fund of Hebei Province,China+1 种基金Project(Z2012100) supported by Colleges and Universities Science and Technology Research Fund of Hebei Province,ChinaProject supported by the Outstanding Youth Fund of Hebei University of Science and Technology,China
文摘TiN-matrix composite coating was prepared on 45# steel by reactive high-velocity oxy-fuel (HVOF) spraying. Its microstructure, phase composition, micro-hardness, corrosion resistance in 3.5% NaC1 solution and wear resistance were analyzed. The results suggest that the TiN-matrix composite coating is well bonded with the substrate. The micro-hardness measured decreases with the increase of applied test loads. And the micro-hardness of the coating under heavy loads is relatively high. The TiN-matrix composite coating exhibits an excellent corrosion resistance in 3.5% NaC1 solution. The corrosion potential of coating is positive and the passivation zone is broad, which indicates that the TiN-matrix composite coating is stable in the electrolyte and provides excellent protection to the substrate. The wear coefficient of the coating under all loads maintains at 0.49-0.50. The wear mechanism of the coating is revealed to be three-body abrasive wear. Yet the failure forms of TiN-matrix composite coating under different loads have an obvious difference. The failure form of coating under light loads is particle spallation due to the stress concentration while that of coating under heavy loads is crackin~ between inter-lamellae.
基金Project (JPPT-115-5-1759) supported by the National Defense Science and Technology Industry Committee of China Project (20090162120080) supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject (2010FJ3012) supported by the Program of Science and Technology of Hunan Province, China
文摘Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribological performances of the composite coatings under dry condition were investigated in comparison with 45 steel and conventional Ni-P coating, Micrographs show that short MWNTs with uniform length and open tips were obtained through the wet-milling process. The results of wear test reveal that the Ni-P-MWNTs composite coatings posses much better friction reduction and anti-wear performances when compared with 45 steel and Ni-P coating. Within the MWNTs content range of 0.74%-1.97%, the friction coefficient and the volume wear rate of the composite coatings decrease gradually and reach the minimum values of 0.08 and 6.22x10-15 m3/(N.m), respectively. The excellent tribological performances of the composite coatings can be attributed to the introduction of MWNTs, which play both roles of reinforcements and solid lubricant during the wear process.
文摘In order to reduce the friction coefficients and improve the wear resistance of mechanical parts, which work in the severe friction and wear conditions at heavy loads, the graphite/CaFg/TiC/Ni-base alloy composite coatings were prepared by plasma spray and their tribological behavior and mechanisms were investigated. The results show that the friction coefficients of the composite coatings are in the range of 0.22-0.288, which are reduced by 25.9% to 53% compared with those of the pure Ni-base alloy coatings, and the wear rates of the former are 18.6%-70.1% less than those of the latter. When wear against GCr15 steel balls, a transferred layer mainly composed of ferric oxides, graphite and CaF2 may gradually develop on the worn surface of the composite coatings, which made the friction and wear between GCr15 steel ball and the composite coatings change into that between the former and the transferred layer. So the friction coefficients and the wear lubrication effect of the transferred layer. The main wear layer in friction process. rates of the composite coatings are greatly reduced because of the solid mechanism of the composite coatings is delamination of the transferred
基金Projects(51171172,51131005)supported by the National Natural Science Foundation of ChinaProject(R16E010001)supported by Zhejiang Provincial Natural Science Foundation of China+1 种基金Project(2015QNA3011)supported by Fundamental Research Funds for the Central Universities,ChinaProject(14DZ2261000)supported by Science and Technology Commission of Shanghai Municipality,China
文摘In order to improve the corrosion resistance and microhardness of AZ91D magnesium alloy, TiN nanoparticles were addedto fabricate Ni-P-TiN composite coating by electrodeposition. The surface, cross-section morphology and composition wereexamined using SEM, EDS and XRD, and the corrosion resistance was checked by electrochemical technology. The results indicatethat TiN nanoparticles were doped successfully in the Ni-P matrix after a series of complex pretreatments including activation, zincimmersion and pre-electroplating, which enhances the stability of magnesium alloy in electrolyte and the adhesion betweenmagnesium alloy and composite coating. The microhardness of the Ni-P coating increases dramatically by adding TiN nanoparticlesand subsequent heat treatment. The corrosion experimental results indicate that the corrosion resistance of Ni-P-TiN compositecoating is much higher than that of uncoated AZ91D magnesium alloy and similar with Ni-P coating in short immersion time.However, TiN nanoparticles play a significant role in long-term corrosion resistance of composite coatings.
文摘In order to reduce the friction coefficients and further improve the anti-wear properties of Ni-base alloy coatings reinforced by TiC particles,graphite/TiC/Ni-base alloy(GTN) coatings were prepared on the surface of 45 carbon steel.The effects of graphite content on the microstructure and tribological properties of the GTN coatings were investigated.The results show that the addition of graphite to the GTN coatings may greatly reduce the friction coefficients and improve their wear resistance.The 6.56GTN and 12.71GTN coatings exhibit excellent integrated properties of anti-friction and wear resistance under low and high loads,respectively.Under a low load,the wear mechanisms of the GTN coatings are mainly multi-plastic deformation with slight abrasive wear and gradually change into mixture of multi-plastic deformation,delamination and micro-cutting wear with the increase of graphite fraction.As the load increases,the main wear mechanisms gradually change from micro-cracks,micro-cutting and adhesive wear to micro-cutting and micro-fracture with the increase of graphite fraction.
文摘TiC particles reinforced Ni-based alloy composite coatings were prepared on 7005 aluminum alloy by plasma spray. The effects of load, speed and temperature on the tribological behavior and mechanisms of the composite coatings under dry friction were researched. The wear prediction model of the composite coatings was established based on the least square support vector machine (LS-SVM). The results show that the composite coatings exhibit smaller friction coefficients and wear losses than the Ni-based alloy coatings under different friction conditions. The predicting time of the LS-SVM model is only 12.93%of that of the BP-ANN model, and the predicting accuracies on friction coefficients and wear losses of the former are increased by 58.74%and 41.87%compared with the latter. The LS-SVM model can effectively predict the tribological behavior of the TiCP/Ni-base alloy composite coatings under dry friction.