Composite cathodes integrating Ni-rich layered oxides and oxide solid electrolytes are essential for highenergy all-solid-state lithium-ion batteries(ASSLBs),yet interfacial degradation during high-temperature co-sint...Composite cathodes integrating Ni-rich layered oxides and oxide solid electrolytes are essential for highenergy all-solid-state lithium-ion batteries(ASSLBs),yet interfacial degradation during high-temperature co-sintering(>600℃)remains a critical challenge.While surface passivation strategies mitigate reactions below 400℃,their effectiveness diminishes at elevated temperatures due to inability to counteract Li^(+)concentration gradients.Here,we introduce in situ lithium compensators,i.e.,LiOH/Li_(2)CO_(3),into NCM-LATP composite cathodes to dynamically replenish Li^(+)during co-sintering.These additives melt to form transient Li^(+)-rich phases that back-diffuse Li^(+)into NCM lattices,suppressing layered-to-rock salt transitions and stabilizing the interface.Quasi in situ XRD confirms retention of the layered structure at temperature up to 700℃,while electrochemical tests demonstrate a reversible capacity of 222.2 mA h g^(-1)—comparable to NCM before co-sintering—and an impressive 65.3% capacity retention improvement over100 cycles.In contrast,uncompensated cathodes exhibit severe degradation to 96.5 mA h g^(-1)due to Li depletion and resistive Li-Ti-O interphases.This strategy integrates sacrificial chemistry with scalable powder-mixing workflows,achieving a 93.4% reduction in interfacial impedance.By addressing Li^(+)flux homogenization and structural stability,this work provides a practical pathway toward industrialscale fabrication of high-performance ASSLBs.展开更多
In electrolyte melts containing K at low temperature, the penetrative and migratory path of alkali metals (K and Na) in pitch, furan, phenolic aldehyde and epoxy based TiB2-C composite cathodes during the electrolys...In electrolyte melts containing K at low temperature, the penetrative and migratory path of alkali metals (K and Na) in pitch, furan, phenolic aldehyde and epoxy based TiB2-C composite cathodes during the electrolysis process were studied by EDS and self-made modified Rapoport apparatus. The electrolysis expansion rates, the diffusion coefficients of the alkali metals and the corrosion rates of the composite cathode were also calculated and discussed. The results show that no matter what kind of binder is used, alkali metals have the same penetrative path in composite cathodes:firstly in pore, then in binder and finally in carbonaceous aggregates. K and Na penetrate into both binder and carbonaceous aggregates, which leads to the expansion of composite cathodes, and K has stronger penetration ability than Na. Electrolysis expansion rate of resin based composite cathode is smaller than that of pitch based composite cathodes, and so do the diffusion coefficient and corrosion rate. Resin based composite cathode has better resistance ability to the penetration of alkali metals than pith based composite cathode, and phenolic aldehyde based composite cathode exhibits the strongest resistance ability. The penetration rate, the diffusion coefficient of alkali metals in phenolic aldehyde based TiB2-C composite cathode and the corresponding corrosion rate are 4.72 mm/h, 2.24×10^-5 cm^2/s and 2.31 mm/a, respectively.展开更多
Vapor-grown carbon fibers (VGCFs) were introduced as conductive additives for sulfur-multiwalled carbon nanotubes (S-MWCNTs) composite cathode of lithium-sulfur batteries. The performance of S-MWCNTs composite cat...Vapor-grown carbon fibers (VGCFs) were introduced as conductive additives for sulfur-multiwalled carbon nanotubes (S-MWCNTs) composite cathode of lithium-sulfur batteries. The performance of S-MWCNTs composite cathodes with carbon black and VGCFs as sole conductive additives was investigated using scanning electron microscopy (SEM), galvanostatic charge-discharge tests and electrochemical impedance spectroscopy (EIS). The results show that the S-MWCNTs composite cathode with VGCFs displays a network-like morphology and exhibits higher activity and better cycle durability compared with the composite cathode with carbon black, delivering an initial discharge capacity of 1254 mA·h/g and a capacity of 716 mA·h/g after 40 cycles at 335 mA/g. The interconnected VGCFs can provide a stable conductive network, suppress the aggregation of cathode materials and residual lithium sulfide and maintain the porosity of cathode, and therefore the electrochemical performance of S-MWCNTs composite cathode is enhanced.展开更多
The solid-state lithium battery is considered as an ideal next-generation energy storage device owing to its high safety,high energy density and low cost.However,the poor ionic conductivity of solid electrolyte and lo...The solid-state lithium battery is considered as an ideal next-generation energy storage device owing to its high safety,high energy density and low cost.However,the poor ionic conductivity of solid electrolyte and low interfacial stability has hindered the application of solid-state lithium battery.Here,a flexible polymer/garnet solid electrolyte is prepared with poly(ethylene oxide),poly(vinylidene fluoride),Li6.75La3 Zr1.75Ta0.25O12,lithium bis(trifluoromethanesulfonyl)imide and oxalate,which exhibits an ionic conductivity of 2.0 ×10^(-4) S cm^(-1) at 55℃,improved mechanical property,wide electrochemical window(4.8 V vs.Li/Li+),enhanced thermal stabilities.Tiny acidic OX was introduced to inhibit the alkalinity reactions between Li6.75La3 Zr1.75Ta0.25O12 and poly(vinylidene fluoride).In order to improve the interfacial stability between cathode and electrolyte,an Al2 O3@LiNi0.5Co0.2Mn0.3O2 based composite cathode framework is also fabricated with poly(ethylene oxide) polymer and lithium salt as additives.The solid-state lithium battery assembled with polymer/garnet solid electrolyte and composite cathode framework demonstrates a high initial discharge capacity of 150.6 mAh g^(-1) and good capacity retention of 86.7% after 80 cycles at 0.2 C and 55℃,which provides a promising choice for achieving the stable electrode/electrolyte interfacial contact in solid-state lithium batteries.展开更多
All-solid-state lithium battery(ASLB)based on sulfide-based electrolyte is considered to be a candidate for the next-generation high-energy storage system.Despite the high ionic conductivity of sulfide solid electroly...All-solid-state lithium battery(ASLB)based on sulfide-based electrolyte is considered to be a candidate for the next-generation high-energy storage system.Despite the high ionic conductivity of sulfide solid electrolyte,the poor interfacial stability(mechanically and chemically)between active materials and sulfide solid electrolytes in composite cathodes leads to inferior electrochemical performances,which impedes the practical application of sulfide electrolytes.In the past years,various of strategies have been carried out to achieve an interface with low impedance in the composite cathodes.Herein,a review of recent progress of composite cathodes for all-solid-state sulfide-based lithium batteries is summarized,including the interfacial issues,design strategies,fabrication methods,and characterization techniques.Finally,the main challenges and perspectives of composite cathodes for high-performance all-solidstate batteries are highlighted for future development.展开更多
The La0.8Sr0.04Ca0.16Co0.6Fe0.4O3-δ (LSCCoF) and La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) powders were synthesized by glycine-nitrate combustion process and conventional solid-state reaction method, respectively. The LSCCoF-LSG...The La0.8Sr0.04Ca0.16Co0.6Fe0.4O3-δ (LSCCoF) and La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) powders were synthesized by glycine-nitrate combustion process and conventional solid-state reaction method, respectively. The LSCCoF-LSGM composite cathode material was successfully elaborated and deposited on dense pellets of the LSGM electrolyte by means of slurry spin-coating process. The cathode films with the best surface morphology and microstructure were obtained when the operating parameters fixed as follows: the content of ethyl cellulose which acted as pore former and binder is 10 wt.%, the content of terpineol which acted as modifier is 5 wt.%, the speed of rotation rate is 3200 r/min and the best post-deposition sintering temperature is 1000°C.展开更多
The performance of multi-layer (1 -x)La0.8Sr0.2MnO3/xYSZ graded composite cathodes was studied as electrode materials for intermediate solid oxide fuel cells (SOFC). The thermal expansion coefficient, electrical c...The performance of multi-layer (1 -x)La0.8Sr0.2MnO3/xYSZ graded composite cathodes was studied as electrode materials for intermediate solid oxide fuel cells (SOFC). The thermal expansion coefficient, electrical conductivity, and electrochemical performance of multi-layer composite cathodes were investigated. The thermal expansion coefficient and electrical conductivity decreased with the increase in YSZ content. The (1 -x)Lao.sSr0.EMnO3/xYSZ composite cathode greatly increased the length of the active triple phase boundary line (TPBL) among electrode, electrolyte, and gas phase, leading to a decrease in polarization resistance and an increase in polarization current density. The polarization current density of the triple-layer graded composite cathode (0.77 A/cm2) was the highest and that of the monolayer cathode (0.13 A/cm2) was the lowest. The polarization resistance (Rp) of the triple-layer graded composite cathode was only 0.182 Ω·cm2 and that of the monolayer composite cathode was 0.323 Ω·cm2. The power density of the triple-layer graded composite cathode was the highest and that of the monolayer composite cathode was the lowest. The triple-layer graded composite cathode had superior performance.展开更多
A Ti-BN complex cathode is made from Ti and h-BN powders by the powder metallurgy technology, and TiBN coating is obtained by plasma immersion ion implantation and deposition with this Ti-BN composite cathode. The TiB...A Ti-BN complex cathode is made from Ti and h-BN powders by the powder metallurgy technology, and TiBN coating is obtained by plasma immersion ion implantation and deposition with this Ti-BN composite cathode. The TiBN coating shows a self-forming multilayered nanocomposite structure while with relative uniform elemental distributions. High resolution transmission electron microscopy images reveal that the multilayered structure is derived from different grain sizes in the nanocomposite. Due to the existence of h-BN phase, the friction coefficient of the coating is about 0.25.展开更多
Pitch and TiB2/C green composite cathode material were respectively analyzed with simultaneous DSC-TGA, and effects of three baking processes of TiB2/C composite cathode material, i.e. K25, K5 and M5, on properties of...Pitch and TiB2/C green composite cathode material were respectively analyzed with simultaneous DSC-TGA, and effects of three baking processes of TiB2/C composite cathode material, i.e. K25, K5 and M5, on properties of TiB2/C composite cathode material were investigated. The results show that thermogravimetrie behavior of pitch and TiB2/C green composite cathode is similar, and appears the largest mass loss rate in the temperature range from 200 to 600 ℃. The bulk density variation of sample K5 before and after baking is the largest (11.9%), that of sample K25 is the second, and that of sample M5 is the smallest (6.7%). The crushing strength of sample M5 is the biggest (51.2 MPa), that of sample K2.5 is the next, and that of sample K5 is the smallest (32.8 MPa). But, the orders of the electrical resistivity and electrolysis expansion of samples are just opposite with the order of crushing strength. The heating rate has a great impact on the microstructure of sample. The faster the heating rate is, the bigger the pore size and porosity of sample are. Compared with the heating rate between 200 and 600℃ of samples K25 and K5, that of sample M5 is slower and suitable for baking process of TiB2/C composite cathode material.展开更多
Solid oxide fuel cells (SOFCs) offer high energy conversion, low noise, low pollutant emission, and low processing cost. Despite many advantages, SOFCs face a major challenge in competing with other types of fuel ce...Solid oxide fuel cells (SOFCs) offer high energy conversion, low noise, low pollutant emission, and low processing cost. Despite many advantages, SOFCs face a major challenge in competing with other types of fuel cells because of their high operating temperature. The necessity to reduce the operational temperature of SOFCs has led to the development of research into the materials and fabrication technology of fuel cells. The use of composite cathodes significantly reduces the cathode polarization resistance and expands the triple phase boundary area available for oxygen reduction. Powder preparation and composite cathode fabrication also affect the overall performance of composite cathodes and fuel cells. Among many types of cathode materials, lanthanum-based materials such as lanthanum strontium cobalt ferrite (Lal_xSrxCOl_yFey03_~) have recently been discovered to offer great compatibility with ceria-based electrolytes in performing as composite cathode materials for intermediate- to low-temperature SOFCs (IT-LTSOFCs). This paper reviews various ceria-based composite cathodes for IT-LTSOFCs and focuses on the aspects of progress and challenges in materials technology.展开更多
The cathode material La1-xSrxCuO3-δ(x=0.15, 0.2, 0.3, 0.4) was synthesized by a sol-gel method. X-ray diffraction reveals that a single phase of perovskite is formed. The investigation of the electrical properties su...The cathode material La1-xSrxCuO3-δ(x=0.15, 0.2, 0.3, 0.4) was synthesized by a sol-gel method. X-ray diffraction reveals that a single phase of perovskite is formed. The investigation of the electrical properties suggests that La0.7Sr0.3CuO3-δ has the highest electrical conductivity. La0.7Sr0.3CuO3-δ powder was mixed with different amount SDC (Sm0.15Ce0.85O1.925) powder (5wt.%-30wt.%) as composite cathodes. Electrochemical properties of the composite cathodes were researched further. Investigation suggests that the addition of appropriate amount SDC to La0.7Sr0.3CuO3-δ can improve the electrochemical properties and obtain better cathodic performance. Using La0.7Sr0.3CuO3-δ-SDC composite materials as a cathode based on SDC electrolyte, higher current density and power density at intermediate temperatures can be obtained.展开更多
La0.8Sr0.2FeO3-δ is a new kind of cathode material for intermediate SOFC, but its electrochemical activity is relative poor for the lanthanum gallate based solid oxide fuel cell. In this paper, a novel composite cath...La0.8Sr0.2FeO3-δ is a new kind of cathode material for intermediate SOFC, but its electrochemical activity is relative poor for the lanthanum gallate based solid oxide fuel cell. In this paper, a novel composite cathode of La0.8Sr0.2FeO3-δ/La0.9Sr0.1Ga0.8Mg0.2O3-δ was prepared on the LSGM electrolyte substrate by screen-printing method. The results of cathodic polarization measurements show that the overpotential decreases significantly when the composite cathode is used instead of the La0.8Sr0.2FeO3-δ single layer cathode. The cathodic overpotential of the composite La0.8Sr0.2FeO3-δ/La0.9Sr0.1Ga0.8Mg0.2O3-δ cathode is 150 mV at the current density of 0.2 A·cm-2 at 800 ℃, while the cathodic overpotential of the La0.8Sr0.2FeO3-δ single layer cathode is higher than 260 mV at the same condition. The electrochemical impedance spectroscopy was employed to investigate the polarization resistance of the cathode. The polarization resistance of the composite cathode is 1.20 Ω·cm2 in open circuit condition, while the value of the single La0.8Sr0.2FeO3-δ cathode is 1.235 Ω·cm2.展开更多
Composites consisting of strontium stabilized bismuth oxide (Bi1.14Sr0.43O2.14, SSB) and silver were investigated as cathodes for intermediate-temperature solid oxide fuel cells with doped ceria electrolyte. There w...Composites consisting of strontium stabilized bismuth oxide (Bi1.14Sr0.43O2.14, SSB) and silver were investigated as cathodes for intermediate-temperature solid oxide fuel cells with doped ceria electrolyte. There were no chemical reactions between the two components. The microstructure of the interfaces between composite cathodes and Ce0.8Sm0.2O1.9 (SDC) electrolytes was examined by scanning electron microscopy (SEM). Impedance spectroscopy measurements show that the performance of cathode fired at 700 ℃ is the best. When the content of Ag2O is 70 wt%, polarization resistance values for the SSB-Ag cathodes are as low as 0.2 Ωcm^2 at 700℃ and 0.29 Ωcm^2 at 650℃. These results are much smaller than some of other reported composite cathodes on doped ceria electrolyte and indicate that SSB-Ag composite is a potential cathode material for intermediate temperature SOFCs.展开更多
The commercialization of solid oxide fuel cells depends on the cathode,which possesses both high catalytic activity and a thermal-expansion coefficient(TEC)that aligns with the electrolyte.Although the cobalt-based ca...The commercialization of solid oxide fuel cells depends on the cathode,which possesses both high catalytic activity and a thermal-expansion coefficient(TEC)that aligns with the electrolyte.Although the cobalt-based cathode La_(0.6)Sr_(0.4)CoO_(3)(LSC)offers excellent catalytic performance,its TEC is significantly larger than that of the electrolyte.In this study,we mechanically mix Sm_(0.2)Ce_(0.8)O_(2−δ)(SDC)with LSC to create a composite cathode.By incorporating 50wt%SDC,the TEC decreases significantly from 18.29×10^(−6) to 13.90×10^(−6) K^(−1).Under thermal-shock conditions ranging from room temperature to 800℃,the growth rate of polarization resistance is only 0.658%per cycle,i.e.,merely 49%that of pure LSC.The button cell comprising the LSC-SDC composite cathode operates stably for over 900 h without Sr segregation,with a voltage growth rate of 1.11%/kh.A commercial flat-tube cell(active area:70 cm^(2))compris-ing the LSC-SDC composite cathode delivers 54.8 W at 750℃.The distribution of relaxation-time shows that the non-electrode portion is the main rate-limiting step.This study demonstrates that the LSC-SDC mixture strategy effectively improves the compatibility with the electrolyte while maintaining a high output,thus rendering it a promising commercial cathode material.展开更多
KVPO_(4)F with excellent structural stability and high operating voltage has been identified as a promising cathode for potassium-ion batteries(PIBs),but limits in sluggish ion transport and severe volume change cause...KVPO_(4)F with excellent structural stability and high operating voltage has been identified as a promising cathode for potassium-ion batteries(PIBs),but limits in sluggish ion transport and severe volume change cause insufficient potassium storage capability.Here,a high-energy and low-strain KVPO_(4)F composite cathode assisted by multifunctional K_(2)C_(4)O_(4)electrode stabilizer is exquisitely designed.Systematical electrochemical investigations demonstrate that this composite cathode can deliver a remarkable energy density up to 530 Wh kg^(-1)with 142.7 mAh g^(-1)of reversible capacity at 25 mA g^(-1),outstanding rate capability of 70.6 mAh g^(-1)at 1000 mA g^(-1),and decent cycling stability.Furthermore,slight volume change(~5%)and increased interfacial stability with thin and even cathode-electrolyte interphase can be observed through in situ and ex situ characterizations,which are attributed to the synergistic effect from in situ potassium compensation and carbon deposition through self-sacrificing K_(2)C_(4)O_(4)additive.Moreover,potassium-ion full cells manifest significant improvement in energy density and cycling stability.This work demonstrates a positive impact of K_(2)C_(4)O_(4)additive on the comprehensive electrochemical enhancement,especially the activation of high-voltage plateau capacity and provides an efficient strategy to enlighten the design of other high-voltage cathodes for advanced high-energy batteries.展开更多
Sodium-ion batteries have received a surge of interests for the alternatives to lithium-ion batteries due to their abundant reserves and low cost.The quest of reliable and high-performance cathode materials is crucial...Sodium-ion batteries have received a surge of interests for the alternatives to lithium-ion batteries due to their abundant reserves and low cost.The quest of reliable and high-performance cathode materials is crucial to future Na storage technologies.Herein,poly(3,4-ethylenedioxythiophene)(PEDOT)was successfully introduced to NaV3O8 via in situ oxidation polymerization,which can effectively enhance electron conductivity and ionic diffusion of NaV3O8 material.As a result,these NaV3O8@-PEDOT composites exhibit a significantly improved electrochemical performance including cycle stability and rate performance.In particular,NaV3O8@20 wt%PEDOT composite demonstrates better dispersibility and lower charge transfer resistance compared with bare NaV3O8,which delivers the first discharge capacity of 142 mAh-g-1and holds about 128.7 mAh·g-1 after 300 cycles at a current density of 120 mA·g-1.Even at a high current density of 300 mA·g-1,a high reversible capacity of 99.6 mAh·g-1 is revealed.All these consequences suggest that NaV3O8@20 wt%PEDOT composite may be a promising candidate to serve as a high-rate and long-lifespan cathode material for sodium-ion batteries.展开更多
Electrocatalysts are an effective strategy to mitigate the shuttling effect of lithium polysulfides(LiPSs)and accelerate the redox kinetics of LiPSs in lithium-sulfur(Li-S)batteries.However,traditional electrocatalyst...Electrocatalysts are an effective strategy to mitigate the shuttling effect of lithium polysulfides(LiPSs)and accelerate the redox kinetics of LiPSs in lithium-sulfur(Li-S)batteries.However,traditional electrocatalysts only have a single active site and often undergo structural collapse and aggregation during charging and discharging,resulting in reduced catalytic performance.Herein,the two-dimensional(2D)polar high-entropy La_(0.71)Sr_(0.29)Co_(0.21)Ni_(0.20)Fe_(0.19)Cr_(0.20)Cu_(0.20)O_(3)(LCO-HEO)nanosheets were rationally designed and successfully synthesized to address this issue.The distinct functional polar sites in LCOHEOs were formed by the d-d orbital hybridization between spatially coupling adjacent transition metals,which can strengthen the dipole-dipole interaction between polar LCO-HEOs and polar LiPSs.2D polar LCO-HEO nanosheets can efficiently capture and trigger the tandem catalysis of polar LiPSs during their sequential conversion.The S/LCO-HEO composite cathode exhibits a high specific capacity of 1161.1 mA h g^(-1)at 1.0 C,with an ultralow capacity attenuation rate of 0.036%per cycle over 1200 cycles,and achieves stable cycling for 1500 cycles even at 8.0 C.Furthermore,even with a high sulfur loading(5.5 mg cm^(-2))and a low electrolyte/sulfur(E/S)ratio(4.0μL mg^(-1)),the S/LCO-HEO composite cathode shows desirable sulfur utilization and good cycle stability.This work demonstrates the feasibility of high entropy-driven multiple distinct functional polar sites for high-rate and long-cycle Li-S batteries.展开更多
Li/garnet/LiFePO_(4) solid-state battery was fabricated.The cathode contains LiFePO_(4),Ketjen black,poly(vinylidene fluoride):LiTFSI polymer as active material,electric conductor and Li-ion conducting binder,respecti...Li/garnet/LiFePO_(4) solid-state battery was fabricated.The cathode contains LiFePO_(4),Ketjen black,poly(vinylidene fluoride):LiTFSI polymer as active material,electric conductor and Li-ion conducting binder,respectively.Polyvinylpyrrolidone was added into the cathode to improve cathode/electrolyte interfacial performance.When combined with polyvinylpyrrolidone additive,poly(vinylidene fluoride):polyvinylpyrrol idone:LiTFSI blend forms,and the cathode/electrolyte interfacial resistance reduces from 10.7 kΩto 3.2 kΩ.The Li/garnet/LiFePO_(4) solid-state battery shows 80%capacity retention after 100 cycles at 30℃and 0.05 C.This study offers a general strategy to improve cathode/electrolyte interfacial performance and may enable the practical application of solid-state Li-metal batteries.展开更多
All-solid-state lithium-sulfur batteries(ASSLSBs)employing sulfide solid electrolytes are one of the most promising next-generation energy storage systems due to their potential for higher energy density and safety.Ho...All-solid-state lithium-sulfur batteries(ASSLSBs)employing sulfide solid electrolytes are one of the most promising next-generation energy storage systems due to their potential for higher energy density and safety.However,scalable fabrication of sheet-type sulfur cathodes with high sulfur loading and excellent performances remains challenging.In this work,sheet-type freestanding sulfur cathodes with high sulfur loading were fabricated by dry electrode technology.The unique fibrous morphologies of polytetrafluoroethylene(PTFE)binders in dry electrodes not only provides excellent mechanical properties but also uncompromised ionic/electronic conductance.Even employed with thickened dry cathodes with high sulfur loading of 2 mg cm^(-2),ASSLSBs still exhibit outstanding rate performance and cycle stability.Moreover,the all-solid-state lithium-sulfur monolayer pouch cells(9.2 m Ah)were also demonstrated and exhibited excellent safety under a harsh test situation.This work verifies the potential of dry electrode technology in the scalable fabrication of thickened sulfur cathodes and will promote the practical applications of ASSLSBs.展开更多
Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorgani...Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorganic solid electrolytes are desirable properties for realizing high-performance safe solid-state batteries by replacing conventional liquid electrolytes.However,the low chemical and electrochemical stability of sulfide-based inorganic solid electrolytes hinder the commercialization of sulfide-based safe solid-state batteries.Particularly,the instability of sulfide-based inorganic solid electrolytes is intensified in the cathode,comprising various materials.In this study,carbonate-based ionic conductive polymers are introduced to the cathode to protect cathode materials and suppress the reactivity of sulfide electrolytes.Several instruments,including electrochemical spectroscopy,X-ray photoelectron spectroscopy,and scanning electron microscopy,confirm the chemical and electrochemical stability of the polymer electrolytes in contact with sulfide-based inorganic solid electrolytes.Sulfide-based solid-state cells show stable electrochemical performance over 100 cycles when the ionic conductive polymers were applied to the cathode.展开更多
基金financially supported by the National Natural Science Foundation of China(52102206)the Natural Science Foundation of Beijing Municipality-Shunyi Innovation Collaborative Joint Fund(L247018)+2 种基金the Natural Science Foundation of Beijing Municipality(2254076 and 2252024)the Central Guidance on Local Science and Technology Development Fund of Hebei Province(246Z4412G)the Fundamental Research Funds for the Central Universities(2025MS022,North China Electric Power University)。
文摘Composite cathodes integrating Ni-rich layered oxides and oxide solid electrolytes are essential for highenergy all-solid-state lithium-ion batteries(ASSLBs),yet interfacial degradation during high-temperature co-sintering(>600℃)remains a critical challenge.While surface passivation strategies mitigate reactions below 400℃,their effectiveness diminishes at elevated temperatures due to inability to counteract Li^(+)concentration gradients.Here,we introduce in situ lithium compensators,i.e.,LiOH/Li_(2)CO_(3),into NCM-LATP composite cathodes to dynamically replenish Li^(+)during co-sintering.These additives melt to form transient Li^(+)-rich phases that back-diffuse Li^(+)into NCM lattices,suppressing layered-to-rock salt transitions and stabilizing the interface.Quasi in situ XRD confirms retention of the layered structure at temperature up to 700℃,while electrochemical tests demonstrate a reversible capacity of 222.2 mA h g^(-1)—comparable to NCM before co-sintering—and an impressive 65.3% capacity retention improvement over100 cycles.In contrast,uncompensated cathodes exhibit severe degradation to 96.5 mA h g^(-1)due to Li depletion and resistive Li-Ti-O interphases.This strategy integrates sacrificial chemistry with scalable powder-mixing workflows,achieving a 93.4% reduction in interfacial impedance.By addressing Li^(+)flux homogenization and structural stability,this work provides a practical pathway toward industrialscale fabrication of high-performance ASSLBs.
基金Project (51304152) supported by the National Natural Science Foundation of ChinaProject (2013JQ7016) supported by the Natural Science Foundation of Shanxi Province,ChinaProject (2013JK0904) supported by Shanxi Provincial Education Department,China
文摘In electrolyte melts containing K at low temperature, the penetrative and migratory path of alkali metals (K and Na) in pitch, furan, phenolic aldehyde and epoxy based TiB2-C composite cathodes during the electrolysis process were studied by EDS and self-made modified Rapoport apparatus. The electrolysis expansion rates, the diffusion coefficients of the alkali metals and the corrosion rates of the composite cathode were also calculated and discussed. The results show that no matter what kind of binder is used, alkali metals have the same penetrative path in composite cathodes:firstly in pore, then in binder and finally in carbonaceous aggregates. K and Na penetrate into both binder and carbonaceous aggregates, which leads to the expansion of composite cathodes, and K has stronger penetration ability than Na. Electrolysis expansion rate of resin based composite cathode is smaller than that of pitch based composite cathodes, and so do the diffusion coefficient and corrosion rate. Resin based composite cathode has better resistance ability to the penetration of alkali metals than pith based composite cathode, and phenolic aldehyde based composite cathode exhibits the strongest resistance ability. The penetration rate, the diffusion coefficient of alkali metals in phenolic aldehyde based TiB2-C composite cathode and the corresponding corrosion rate are 4.72 mm/h, 2.24×10^-5 cm^2/s and 2.31 mm/a, respectively.
基金Project(JCYJ20120618164543322)supported by Strategic Emerging Industries Program of Shenzhen,ChinaProject(2013JSJJ027)supported by the Teacher Research Fund of Central South University,China
文摘Vapor-grown carbon fibers (VGCFs) were introduced as conductive additives for sulfur-multiwalled carbon nanotubes (S-MWCNTs) composite cathode of lithium-sulfur batteries. The performance of S-MWCNTs composite cathodes with carbon black and VGCFs as sole conductive additives was investigated using scanning electron microscopy (SEM), galvanostatic charge-discharge tests and electrochemical impedance spectroscopy (EIS). The results show that the S-MWCNTs composite cathode with VGCFs displays a network-like morphology and exhibits higher activity and better cycle durability compared with the composite cathode with carbon black, delivering an initial discharge capacity of 1254 mA·h/g and a capacity of 716 mA·h/g after 40 cycles at 335 mA/g. The interconnected VGCFs can provide a stable conductive network, suppress the aggregation of cathode materials and residual lithium sulfide and maintain the porosity of cathode, and therefore the electrochemical performance of S-MWCNTs composite cathode is enhanced.
基金Financial supports from the National Natural Science Foundation of China (51575030, 51532002 and 51872027)Beijing Natural Science Foundation (L172023)National Basic Research Program of China (2017YFE0113500)。
文摘The solid-state lithium battery is considered as an ideal next-generation energy storage device owing to its high safety,high energy density and low cost.However,the poor ionic conductivity of solid electrolyte and low interfacial stability has hindered the application of solid-state lithium battery.Here,a flexible polymer/garnet solid electrolyte is prepared with poly(ethylene oxide),poly(vinylidene fluoride),Li6.75La3 Zr1.75Ta0.25O12,lithium bis(trifluoromethanesulfonyl)imide and oxalate,which exhibits an ionic conductivity of 2.0 ×10^(-4) S cm^(-1) at 55℃,improved mechanical property,wide electrochemical window(4.8 V vs.Li/Li+),enhanced thermal stabilities.Tiny acidic OX was introduced to inhibit the alkalinity reactions between Li6.75La3 Zr1.75Ta0.25O12 and poly(vinylidene fluoride).In order to improve the interfacial stability between cathode and electrolyte,an Al2 O3@LiNi0.5Co0.2Mn0.3O2 based composite cathode framework is also fabricated with poly(ethylene oxide) polymer and lithium salt as additives.The solid-state lithium battery assembled with polymer/garnet solid electrolyte and composite cathode framework demonstrates a high initial discharge capacity of 150.6 mAh g^(-1) and good capacity retention of 86.7% after 80 cycles at 0.2 C and 55℃,which provides a promising choice for achieving the stable electrode/electrolyte interfacial contact in solid-state lithium batteries.
基金supported by the National Natural Science Foundation of China of China(No.51771076)Innovative Research Groups of the National Natural Science Foundation of China(No.NSFC51621001)+2 种基金the‘‘1000 plan”from Chinese Government,the Guangdong‘‘Pearl River Talents Plan”(No.2017GC010218)the Guangzhou Science and Technology Plan Projects(No.201804010104)the R&D Program in Key Areas of Guangdong Province(No.2020B0101030005)。
文摘All-solid-state lithium battery(ASLB)based on sulfide-based electrolyte is considered to be a candidate for the next-generation high-energy storage system.Despite the high ionic conductivity of sulfide solid electrolyte,the poor interfacial stability(mechanically and chemically)between active materials and sulfide solid electrolytes in composite cathodes leads to inferior electrochemical performances,which impedes the practical application of sulfide electrolytes.In the past years,various of strategies have been carried out to achieve an interface with low impedance in the composite cathodes.Herein,a review of recent progress of composite cathodes for all-solid-state sulfide-based lithium batteries is summarized,including the interfacial issues,design strategies,fabrication methods,and characterization techniques.Finally,the main challenges and perspectives of composite cathodes for high-performance all-solidstate batteries are highlighted for future development.
基金Project supported by the Natural Science Foundation of Yunnan Province (2009ZC027M)Program for New Century Excellent Talents in University (NCET-07-0387)
文摘The La0.8Sr0.04Ca0.16Co0.6Fe0.4O3-δ (LSCCoF) and La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) powders were synthesized by glycine-nitrate combustion process and conventional solid-state reaction method, respectively. The LSCCoF-LSGM composite cathode material was successfully elaborated and deposited on dense pellets of the LSGM electrolyte by means of slurry spin-coating process. The cathode films with the best surface morphology and microstructure were obtained when the operating parameters fixed as follows: the content of ethyl cellulose which acted as pore former and binder is 10 wt.%, the content of terpineol which acted as modifier is 5 wt.%, the speed of rotation rate is 3200 r/min and the best post-deposition sintering temperature is 1000°C.
基金This project is financially supported by the National Nature Science Foundation of China (No. 90510006).
文摘The performance of multi-layer (1 -x)La0.8Sr0.2MnO3/xYSZ graded composite cathodes was studied as electrode materials for intermediate solid oxide fuel cells (SOFC). The thermal expansion coefficient, electrical conductivity, and electrochemical performance of multi-layer composite cathodes were investigated. The thermal expansion coefficient and electrical conductivity decreased with the increase in YSZ content. The (1 -x)Lao.sSr0.EMnO3/xYSZ composite cathode greatly increased the length of the active triple phase boundary line (TPBL) among electrode, electrolyte, and gas phase, leading to a decrease in polarization resistance and an increase in polarization current density. The polarization current density of the triple-layer graded composite cathode (0.77 A/cm2) was the highest and that of the monolayer cathode (0.13 A/cm2) was the lowest. The polarization resistance (Rp) of the triple-layer graded composite cathode was only 0.182 Ω·cm2 and that of the monolayer composite cathode was 0.323 Ω·cm2. The power density of the triple-layer graded composite cathode was the highest and that of the monolayer composite cathode was the lowest. The triple-layer graded composite cathode had superior performance.
基金Supported by the Fund of National Key Laboratory of High Power Microwave Technology under Grant No 2014-763.xy.kthe National Natural Science Foundation of China under Grant No 21573054the Joint Funds Key Project of the National Natural Science Foundation of China under Grant No U1537214
文摘A Ti-BN complex cathode is made from Ti and h-BN powders by the powder metallurgy technology, and TiBN coating is obtained by plasma immersion ion implantation and deposition with this Ti-BN composite cathode. The TiBN coating shows a self-forming multilayered nanocomposite structure while with relative uniform elemental distributions. High resolution transmission electron microscopy images reveal that the multilayered structure is derived from different grain sizes in the nanocomposite. Due to the existence of h-BN phase, the friction coefficient of the coating is about 0.25.
基金Project (2005CB623703) supported by the Major State Basic Research and Development Program of ChinaProject (2008AA030502) supported by the National High-Tech Research and Development Program of China
文摘Pitch and TiB2/C green composite cathode material were respectively analyzed with simultaneous DSC-TGA, and effects of three baking processes of TiB2/C composite cathode material, i.e. K25, K5 and M5, on properties of TiB2/C composite cathode material were investigated. The results show that thermogravimetrie behavior of pitch and TiB2/C green composite cathode is similar, and appears the largest mass loss rate in the temperature range from 200 to 600 ℃. The bulk density variation of sample K5 before and after baking is the largest (11.9%), that of sample K25 is the second, and that of sample M5 is the smallest (6.7%). The crushing strength of sample M5 is the biggest (51.2 MPa), that of sample K2.5 is the next, and that of sample K5 is the smallest (32.8 MPa). But, the orders of the electrical resistivity and electrolysis expansion of samples are just opposite with the order of crushing strength. The heating rate has a great impact on the microstructure of sample. The faster the heating rate is, the bigger the pore size and porosity of sample are. Compared with the heating rate between 200 and 600℃ of samples K25 and K5, that of sample M5 is slower and suitable for baking process of TiB2/C composite cathode material.
基金Project supported by the Universiti Kebangsaan Malaysia (No. UKM-RF-07-FRGS0260-2010)the Malaysia Government for Research Sponsorship (No. OUP-2012-075)
文摘Solid oxide fuel cells (SOFCs) offer high energy conversion, low noise, low pollutant emission, and low processing cost. Despite many advantages, SOFCs face a major challenge in competing with other types of fuel cells because of their high operating temperature. The necessity to reduce the operational temperature of SOFCs has led to the development of research into the materials and fabrication technology of fuel cells. The use of composite cathodes significantly reduces the cathode polarization resistance and expands the triple phase boundary area available for oxygen reduction. Powder preparation and composite cathode fabrication also affect the overall performance of composite cathodes and fuel cells. Among many types of cathode materials, lanthanum-based materials such as lanthanum strontium cobalt ferrite (Lal_xSrxCOl_yFey03_~) have recently been discovered to offer great compatibility with ceria-based electrolytes in performing as composite cathode materials for intermediate- to low-temperature SOFCs (IT-LTSOFCs). This paper reviews various ceria-based composite cathodes for IT-LTSOFCs and focuses on the aspects of progress and challenges in materials technology.
文摘The cathode material La1-xSrxCuO3-δ(x=0.15, 0.2, 0.3, 0.4) was synthesized by a sol-gel method. X-ray diffraction reveals that a single phase of perovskite is formed. The investigation of the electrical properties suggests that La0.7Sr0.3CuO3-δ has the highest electrical conductivity. La0.7Sr0.3CuO3-δ powder was mixed with different amount SDC (Sm0.15Ce0.85O1.925) powder (5wt.%-30wt.%) as composite cathodes. Electrochemical properties of the composite cathodes were researched further. Investigation suggests that the addition of appropriate amount SDC to La0.7Sr0.3CuO3-δ can improve the electrochemical properties and obtain better cathodic performance. Using La0.7Sr0.3CuO3-δ-SDC composite materials as a cathode based on SDC electrolyte, higher current density and power density at intermediate temperatures can be obtained.
基金This work was financially supported by the National Natural Science Foundation of China (No. 90510006) and the National High-Tech Research and Development of China (No. 2003AA302440).
文摘La0.8Sr0.2FeO3-δ is a new kind of cathode material for intermediate SOFC, but its electrochemical activity is relative poor for the lanthanum gallate based solid oxide fuel cell. In this paper, a novel composite cathode of La0.8Sr0.2FeO3-δ/La0.9Sr0.1Ga0.8Mg0.2O3-δ was prepared on the LSGM electrolyte substrate by screen-printing method. The results of cathodic polarization measurements show that the overpotential decreases significantly when the composite cathode is used instead of the La0.8Sr0.2FeO3-δ single layer cathode. The cathodic overpotential of the composite La0.8Sr0.2FeO3-δ/La0.9Sr0.1Ga0.8Mg0.2O3-δ cathode is 150 mV at the current density of 0.2 A·cm-2 at 800 ℃, while the cathodic overpotential of the La0.8Sr0.2FeO3-δ single layer cathode is higher than 260 mV at the same condition. The electrochemical impedance spectroscopy was employed to investigate the polarization resistance of the cathode. The polarization resistance of the composite cathode is 1.20 Ω·cm2 in open circuit condition, while the value of the single La0.8Sr0.2FeO3-δ cathode is 1.235 Ω·cm2.
基金Funded by the National Natural Science Foundation of China(No.20576063)the 973 Project of Ministry of Science and Technology in China(No.T2000026410)
文摘Composites consisting of strontium stabilized bismuth oxide (Bi1.14Sr0.43O2.14, SSB) and silver were investigated as cathodes for intermediate-temperature solid oxide fuel cells with doped ceria electrolyte. There were no chemical reactions between the two components. The microstructure of the interfaces between composite cathodes and Ce0.8Sm0.2O1.9 (SDC) electrolytes was examined by scanning electron microscopy (SEM). Impedance spectroscopy measurements show that the performance of cathode fired at 700 ℃ is the best. When the content of Ag2O is 70 wt%, polarization resistance values for the SSB-Ag cathodes are as low as 0.2 Ωcm^2 at 700℃ and 0.29 Ωcm^2 at 650℃. These results are much smaller than some of other reported composite cathodes on doped ceria electrolyte and indicate that SSB-Ag composite is a potential cathode material for intermediate temperature SOFCs.
基金the financial support from the National Natural Science Foundation of China(No.22209191)Ningbo Key R&D Project(No.2023Z155).
文摘The commercialization of solid oxide fuel cells depends on the cathode,which possesses both high catalytic activity and a thermal-expansion coefficient(TEC)that aligns with the electrolyte.Although the cobalt-based cathode La_(0.6)Sr_(0.4)CoO_(3)(LSC)offers excellent catalytic performance,its TEC is significantly larger than that of the electrolyte.In this study,we mechanically mix Sm_(0.2)Ce_(0.8)O_(2−δ)(SDC)with LSC to create a composite cathode.By incorporating 50wt%SDC,the TEC decreases significantly from 18.29×10^(−6) to 13.90×10^(−6) K^(−1).Under thermal-shock conditions ranging from room temperature to 800℃,the growth rate of polarization resistance is only 0.658%per cycle,i.e.,merely 49%that of pure LSC.The button cell comprising the LSC-SDC composite cathode operates stably for over 900 h without Sr segregation,with a voltage growth rate of 1.11%/kh.A commercial flat-tube cell(active area:70 cm^(2))compris-ing the LSC-SDC composite cathode delivers 54.8 W at 750℃.The distribution of relaxation-time shows that the non-electrode portion is the main rate-limiting step.This study demonstrates that the LSC-SDC mixture strategy effectively improves the compatibility with the electrolyte while maintaining a high output,thus rendering it a promising commercial cathode material.
基金the financial support from the National Key R&D Program of China(Grant No.2023YFE0202000)the National Natural Science Foundation of China(Grant No.52102213)+1 种基金Natural Science Foundation of Jilin Province(Grant No.20230101128JC)Double-Thousand Talents Plan of Jiangxi Province(jxsq2023102005)
文摘KVPO_(4)F with excellent structural stability and high operating voltage has been identified as a promising cathode for potassium-ion batteries(PIBs),but limits in sluggish ion transport and severe volume change cause insufficient potassium storage capability.Here,a high-energy and low-strain KVPO_(4)F composite cathode assisted by multifunctional K_(2)C_(4)O_(4)electrode stabilizer is exquisitely designed.Systematical electrochemical investigations demonstrate that this composite cathode can deliver a remarkable energy density up to 530 Wh kg^(-1)with 142.7 mAh g^(-1)of reversible capacity at 25 mA g^(-1),outstanding rate capability of 70.6 mAh g^(-1)at 1000 mA g^(-1),and decent cycling stability.Furthermore,slight volume change(~5%)and increased interfacial stability with thin and even cathode-electrolyte interphase can be observed through in situ and ex situ characterizations,which are attributed to the synergistic effect from in situ potassium compensation and carbon deposition through self-sacrificing K_(2)C_(4)O_(4)additive.Moreover,potassium-ion full cells manifest significant improvement in energy density and cycling stability.This work demonstrates a positive impact of K_(2)C_(4)O_(4)additive on the comprehensive electrochemical enhancement,especially the activation of high-voltage plateau capacity and provides an efficient strategy to enlighten the design of other high-voltage cathodes for advanced high-energy batteries.
基金financially supported by the National Natural Science Foundation of China(Nos.21773057,U1704142 and U1904216)the Postdoctoral Science Foundation of China(No.2017M621833)+2 种基金Zhongyuan Thousand People Plan-The Zhongyuan Youth Talent Support Program(in Science andTechnology)of China(No.ZYQR201810139)the Program for Science and Technology Innovation Talents in Universities of Henan Province,China(No.18HASTIT008)the Fundamental Research Funds in Henan University of Technology(No.2018RCJH01)。
文摘Sodium-ion batteries have received a surge of interests for the alternatives to lithium-ion batteries due to their abundant reserves and low cost.The quest of reliable and high-performance cathode materials is crucial to future Na storage technologies.Herein,poly(3,4-ethylenedioxythiophene)(PEDOT)was successfully introduced to NaV3O8 via in situ oxidation polymerization,which can effectively enhance electron conductivity and ionic diffusion of NaV3O8 material.As a result,these NaV3O8@-PEDOT composites exhibit a significantly improved electrochemical performance including cycle stability and rate performance.In particular,NaV3O8@20 wt%PEDOT composite demonstrates better dispersibility and lower charge transfer resistance compared with bare NaV3O8,which delivers the first discharge capacity of 142 mAh-g-1and holds about 128.7 mAh·g-1 after 300 cycles at a current density of 120 mA·g-1.Even at a high current density of 300 mA·g-1,a high reversible capacity of 99.6 mAh·g-1 is revealed.All these consequences suggest that NaV3O8@20 wt%PEDOT composite may be a promising candidate to serve as a high-rate and long-lifespan cathode material for sodium-ion batteries.
基金supported by grants from the National Natural Science Foundation of China(52072099)Team program of the Natural Science Foundation of Heilongjiang Province,China(No.TD2021E005)Joint Guidance Project of the Natural Science Foundation of Heilongjiang Province,China(No.LH2022E093)。
文摘Electrocatalysts are an effective strategy to mitigate the shuttling effect of lithium polysulfides(LiPSs)and accelerate the redox kinetics of LiPSs in lithium-sulfur(Li-S)batteries.However,traditional electrocatalysts only have a single active site and often undergo structural collapse and aggregation during charging and discharging,resulting in reduced catalytic performance.Herein,the two-dimensional(2D)polar high-entropy La_(0.71)Sr_(0.29)Co_(0.21)Ni_(0.20)Fe_(0.19)Cr_(0.20)Cu_(0.20)O_(3)(LCO-HEO)nanosheets were rationally designed and successfully synthesized to address this issue.The distinct functional polar sites in LCOHEOs were formed by the d-d orbital hybridization between spatially coupling adjacent transition metals,which can strengthen the dipole-dipole interaction between polar LCO-HEOs and polar LiPSs.2D polar LCO-HEO nanosheets can efficiently capture and trigger the tandem catalysis of polar LiPSs during their sequential conversion.The S/LCO-HEO composite cathode exhibits a high specific capacity of 1161.1 mA h g^(-1)at 1.0 C,with an ultralow capacity attenuation rate of 0.036%per cycle over 1200 cycles,and achieves stable cycling for 1500 cycles even at 8.0 C.Furthermore,even with a high sulfur loading(5.5 mg cm^(-2))and a low electrolyte/sulfur(E/S)ratio(4.0μL mg^(-1)),the S/LCO-HEO composite cathode shows desirable sulfur utilization and good cycle stability.This work demonstrates the feasibility of high entropy-driven multiple distinct functional polar sites for high-rate and long-cycle Li-S batteries.
基金Funded by the National Natural Science Foundation of China(Nos.51772314,51532002,51771222 and 51702346)the Natural Science Foundation of Shanghai City(17ZR1434600)。
文摘Li/garnet/LiFePO_(4) solid-state battery was fabricated.The cathode contains LiFePO_(4),Ketjen black,poly(vinylidene fluoride):LiTFSI polymer as active material,electric conductor and Li-ion conducting binder,respectively.Polyvinylpyrrolidone was added into the cathode to improve cathode/electrolyte interfacial performance.When combined with polyvinylpyrrolidone additive,poly(vinylidene fluoride):polyvinylpyrrol idone:LiTFSI blend forms,and the cathode/electrolyte interfacial resistance reduces from 10.7 kΩto 3.2 kΩ.The Li/garnet/LiFePO_(4) solid-state battery shows 80%capacity retention after 100 cycles at 30℃and 0.05 C.This study offers a general strategy to improve cathode/electrolyte interfacial performance and may enable the practical application of solid-state Li-metal batteries.
基金supported by the National Key Research and Development Program of China(2021YFB2500300)the National Natural Science Foundation of China(22075029,22108151,22109084)the China Postdoctoral Science Foundation(2021TQ0164)。
文摘All-solid-state lithium-sulfur batteries(ASSLSBs)employing sulfide solid electrolytes are one of the most promising next-generation energy storage systems due to their potential for higher energy density and safety.However,scalable fabrication of sheet-type sulfur cathodes with high sulfur loading and excellent performances remains challenging.In this work,sheet-type freestanding sulfur cathodes with high sulfur loading were fabricated by dry electrode technology.The unique fibrous morphologies of polytetrafluoroethylene(PTFE)binders in dry electrodes not only provides excellent mechanical properties but also uncompromised ionic/electronic conductance.Even employed with thickened dry cathodes with high sulfur loading of 2 mg cm^(-2),ASSLSBs still exhibit outstanding rate performance and cycle stability.Moreover,the all-solid-state lithium-sulfur monolayer pouch cells(9.2 m Ah)were also demonstrated and exhibited excellent safety under a harsh test situation.This work verifies the potential of dry electrode technology in the scalable fabrication of thickened sulfur cathodes and will promote the practical applications of ASSLSBs.
基金supported by the Enhancement of Performance and Production Technology of Lithium-based Next-generation Rechargeable Battery(project number 20012371)from the Ministry of Trade,Industry and Energy(MOTIE)of Koreasupported by project number KS2322-20(A Study on the Convergence Materials for Off-Grid Energy Conversion/Storage Integrated Devices)of the Korea Research Institute of Chemical Technology(KRICT).
文摘Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorganic solid electrolytes are desirable properties for realizing high-performance safe solid-state batteries by replacing conventional liquid electrolytes.However,the low chemical and electrochemical stability of sulfide-based inorganic solid electrolytes hinder the commercialization of sulfide-based safe solid-state batteries.Particularly,the instability of sulfide-based inorganic solid electrolytes is intensified in the cathode,comprising various materials.In this study,carbonate-based ionic conductive polymers are introduced to the cathode to protect cathode materials and suppress the reactivity of sulfide electrolytes.Several instruments,including electrochemical spectroscopy,X-ray photoelectron spectroscopy,and scanning electron microscopy,confirm the chemical and electrochemical stability of the polymer electrolytes in contact with sulfide-based inorganic solid electrolytes.Sulfide-based solid-state cells show stable electrochemical performance over 100 cycles when the ionic conductive polymers were applied to the cathode.