Flat optics have attracted interest for decades due to their flexibility in manipulating optical wave properties,which allows the miniaturization of bulky optical assemblies into integrated planar components.Recent ad...Flat optics have attracted interest for decades due to their flexibility in manipulating optical wave properties,which allows the miniaturization of bulky optical assemblies into integrated planar components.Recent advances in achromatic flat lenses have shown promising applications in various fields.However,it is a significant challenge for achromatic flat lenses with a high numerical aperture to simultaneously achieve broad bandwidth and expand the aperture sizes.Here,we present the zone division multiplex of the meta-atoms on a stepwise phase dispersion compensation(SPDC)layer to address the above challenge.In principle,the aperture size can be freely enlarged by increasing the optical thickness difference between the central and marginal zones of the SPDC layer,without the limit of the achromatic bandwidth.The SPDC layer also serves as the substrate,making the device thinner.Two achromatic flat lenses of 500 nm thickness with a bandwidth of 650–1000 nm are experimentally achieved:one with a numerical aperture of 0.9 and a radius of 20.1µm,and another with a numerical aperture of 0.7 and a radius of 30.0µm.To the best of our knowledge,they are the broadband achromatic flat lenses with highest numerical apertures,the largest aperture sizes and thinnest thickness reported so far.Microscopic imaging with a 1.10µm resolution has also been demonstrated by white light illumination,surpassing any previously reported resolution attained by achromatic metalenses and multi-level diffractive lenses.These unprecedented performances mark a substantial step toward practical applications of flat lenses.展开更多
基金supported by the National Key R&D Program of China(No.2021YFA1400800)National Natural Science Foundation of China(Nos.12374363,12074444,and 11704421)+2 种基金Guangdong Basic and Applied Basic Research Foundation(No.2020B0301030009)Guangdong Provincial Natural Science Fund Projects(2024B1515040013)Guangdong Provincial Quantum Science Strategic Initiative(GDZX2306002,GDZX2206001)。
文摘Flat optics have attracted interest for decades due to their flexibility in manipulating optical wave properties,which allows the miniaturization of bulky optical assemblies into integrated planar components.Recent advances in achromatic flat lenses have shown promising applications in various fields.However,it is a significant challenge for achromatic flat lenses with a high numerical aperture to simultaneously achieve broad bandwidth and expand the aperture sizes.Here,we present the zone division multiplex of the meta-atoms on a stepwise phase dispersion compensation(SPDC)layer to address the above challenge.In principle,the aperture size can be freely enlarged by increasing the optical thickness difference between the central and marginal zones of the SPDC layer,without the limit of the achromatic bandwidth.The SPDC layer also serves as the substrate,making the device thinner.Two achromatic flat lenses of 500 nm thickness with a bandwidth of 650–1000 nm are experimentally achieved:one with a numerical aperture of 0.9 and a radius of 20.1µm,and another with a numerical aperture of 0.7 and a radius of 30.0µm.To the best of our knowledge,they are the broadband achromatic flat lenses with highest numerical apertures,the largest aperture sizes and thinnest thickness reported so far.Microscopic imaging with a 1.10µm resolution has also been demonstrated by white light illumination,surpassing any previously reported resolution attained by achromatic metalenses and multi-level diffractive lenses.These unprecedented performances mark a substantial step toward practical applications of flat lenses.