Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con...Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.展开更多
BACKGROUND Esophageal stricture ranks among the most significant complications following endoscopic submucosal dissection(ESD).Excessive fibrotic repair is a typical pathological feature leading to stenosis after ESD....BACKGROUND Esophageal stricture ranks among the most significant complications following endoscopic submucosal dissection(ESD).Excessive fibrotic repair is a typical pathological feature leading to stenosis after ESD.AIM To examine the effectiveness and underlying mechanism of Kangfuxin solution(KFX)in mitigating excessive fibrotic repair of the esophagus post-ESD.METHODS Pigs received KFX at 0.74 mL/kg/d for 21 days after esophageal full circumferential ESD.Endoscopic examinations occurred on days 7 and 21 post-ESD.In vitro,recombinant transforming growth factor(TGF)-β1(5 ng/mL)induced a fibrotic microenvironment in primary esophageal fibroblasts(pEsF).After 24 hours of KFX treatment(at 1.5%,1%,and 0.5%),expression ofα-smooth muscle actin-2(ACTA2),fibronectin(FN),and type collagen I was assessed.Profibrotic signaling was analyzed,including TGF-β1,Smad2/3,and phosphor-smad2/3(p-Smad2/3).RESULTS Compared to the Control group,the groups treated with KFX and prednisolone exhibited reduced esophageal stenosis,lower weight loss rates,and improved food tolerance 21 d after ESD.After treatment,Masson staining revealed thinner and less dense collagen fibers in the submucosal layer.Additionally,the expression of fibrotic effector molecules was notably inhibited.Mechanistically,KFX downregulated the transduction levels of fibrotic functional molecules such as TGF-β1,Smad2/3,and p-Smad2/3.In vitro,pEsF exposed to TGF-β1-induced fibrotic microenvironment displayed increased fibrotic activity,which was reversed by KFX treatment,leading to reduced activation of ACTA2,FN,and collagen I.The 1.5%KFX treatment group showed decreased expression of p-Smad 2/3 in TGF-β1-activated pEsF.CONCLUSION KFX showed promise as a therapeutic option for post-full circumferential esophageal ESD strictures,potentially by suppressing fibroblast fibrotic activity through modulation of the TGF-β1/Smads signaling pathway.展开更多
The operation of deep-sea underwater vehicles relies entirely on onboard batteries.However,the extreme deep-sea conditions,characterized by ultrahigh hydraulic pressure,low temperature,and seawater conductivity,pose s...The operation of deep-sea underwater vehicles relies entirely on onboard batteries.However,the extreme deep-sea conditions,characterized by ultrahigh hydraulic pressure,low temperature,and seawater conductivity,pose significant challenges for battery development.These conditions drive the need for specialized designs in deep-sea batteries,incorporating critical aspects of power generation,protection,distribution,and management.Over time,deep-sea battery technology has evolved through multiple generations,with lithium(Li)batteries emerging in recent decades as the preferred power source due to their high energy and reduced operational risks.Although the rapid progress of Li batteries has notably advanced the capabilities of underwater vehicles,critical technical issues remain unresolved.This review first systematically presents the whole picture of deep-sea battery manufacturing,focusing on Li batteries as the current mainstream solution for underwater power.It examines the key aspects of deep-sea Li battery development,including materials selection informed by electro-chemo-mechanics models,component modification and testing,and battery management systems specialized in software and hardware.Finally,it discusses the main challenges limiting the utilization of deep-sea batteries and outlines promising directions for future development.Based on the systematic reflection on deep-sea batteries and discussion on deep-sea Li batteries,this review aims to provide a research foundation for developing underwater power tailored for extreme environmental exploration.展开更多
In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology bas...In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology based on the principle of high-throughput sequencing,and established a multi-locus 10 animalderived components identification method of cattle,goat,sheep,donkey,horse,chicken,duck,goose,pigeon,quail in meat and meat products.The specific loci of each species could be detected and the species could be accurately identified,including 5 loci for cattle and duck,3 loci for sheep,9 loci for chicken and horse,10 loci for goose and pigeon,6 loci for quail and 1 locus for donkey and goat,and an adulteration model was established to simulate commercially available samples.The results showed that the method established in this study had high throughput,good repeatability and accuracy,and was able to identify 10 animalderived components simultaneously with 100%repeatability accuracy.The detection limit was 0.1%(m/m)in simulated samples of chicken,duck and horse.Using the method established in this study to test commercially available samples,4 samples from 14 commercially available samples were detected to be inconsistent with the labels,of which 2 did not contain the target ingredient and 2 were adulterated with small amounts of other ingredients.展开更多
Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post–traumatic stress disorder. Monoamines and amino acids are important types...Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post–traumatic stress disorder. Monoamines and amino acids are important types of neurotransmitters. Our previous results have shown that disco-interacting protein 2 homolog A(Dip2a) knockout mice exhibit brain development disorders and abnormal amino acid metabolism in serum. This suggests that DIP2A is involved in the metabolism of amino acid–associated neurotransmitters. Therefore, we performed targeted neurotransmitter metabolomics analysis and found that Dip2a deficiency caused abnormal metabolism of tryptophan and thyroxine in the basolateral amygdala and medial prefrontal cortex. In addition, acute restraint stress induced a decrease in 5-hydroxytryptamine in the basolateral amygdala. Additionally, Dip2a was abundantly expressed in excitatory neurons of the basolateral amygdala, and deletion of Dip2a in these neurons resulted in hopelessness-like behavior in the tail suspension test. Altogether, these findings demonstrate that DIP2A in the basolateral amygdala may be involved in the regulation of stress susceptibility. This provides critical evidence implicating a role of DIP2A in affective disorders.展开更多
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev...Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.展开更多
Background:Rosa chinensis Jacq.and Rosa rugosa Thunb.are not only of ornamental value,but also edible flowers and the flower buds have been listed in the Chinese Pharmacopoeia as traditional medicines.The two plants h...Background:Rosa chinensis Jacq.and Rosa rugosa Thunb.are not only of ornamental value,but also edible flowers and the flower buds have been listed in the Chinese Pharmacopoeia as traditional medicines.The two plants have some differences in efficacy,but the flower buds are easily confused for similar traits.In addition,large-scale cultivation of ornamental rose flowers may lead to a decrease in the effective components of medicinal roses.Therefore,it is necessary to study the chemical composition and make quality evaluation of Rosae Chinensis Flos(Yueji)and Rosae Rugosae Flos(Meigui).Methods:In this study,40 batches of samples including Meigui and Yueji from different regions in China were collected to establish high-performance liquid chromatography fingerprints.Then,the fingerprints data was analyzed using principal component analysis,hierarchical cluster analysis,and partial least squares discriminant analysis analysis chemometrics to obtain information on intergroup differences,and non-targeted metabolomic techniques were applied to identify and compare chemical compositions of samples which were chosen from groups with large differences.Differential compounds were screened by orthogonal partial least-squares discriminant analysis and S-plot,and finally multi-component quantification was performed to comprehensively evaluate the quality of Yueji and Meigui.Results:The similarity between the fingerprints of 40 batches roses and the reference print R was 0.73 to 0.93,indicating that there were similarities and differences between the samples.Through principal component analysis and hierarchical cluster analysis of fingerprints data,the samples from different origins and varieties were intuitively divided into four groups.Partial least-squares discriminant analysis analysis showed that Meigui and Yueji cluster into two categories and the model was reliable.A total of 89 compounds were identified by high resolution mass spectrometry,mainly were flavonoids and flavonoid glycosides,as well as phenolic acids.Eight differential components were screened out by orthogonal partial least-squares discriminant analysis and S-plot analysis.Quantitative analyses of the eight compounds,including gallic acid,ellagic acid,hyperoside,isoquercitrin,etc.,showed that Yueji was generally richer in phenolic acids and flavonoids than Meigui,and the quality of Yueji from Shandong and Hebei was better.It is worth noting that Xinjiang rose is rich in various components,which is worth focusing on more in-depth research.Conclusion:In this study,the fingerprints of Meigui and Yueji were established.The chemical components information of roses was further improved based on non-targeted metabolomics and mass spectrometry technology.At the same time,eight differential components of Meigui and Yueji were screened out and quantitatively analyzed.The research results provided a scientific basis for the quality control and rational development and utilization of Rosae Chinensis Flos and Rosae Rugosae Flos,and also laid a foundation for the study of their pharmacodynamic material basis.展开更多
Restoration of phase aberrations is crucial for addressing atmospheric turbulence in light propagation.Traditional restoration algorithms based on Zernike polynomials(ZPs)often encounter challenges related to high com...Restoration of phase aberrations is crucial for addressing atmospheric turbulence in light propagation.Traditional restoration algorithms based on Zernike polynomials(ZPs)often encounter challenges related to high computational complexity and insufficient capture of high-frequency phase aberration components,so we proposed a Principal-Component-Analysis-based method for representing phase aberrations.This paper discusses the factors influencing the accuracy of restoration,mainly including the sample space size and the sampling interval of D/r_(0),on the basis of characterizing phase aberrations by Principal Components(PCs).The experimental results show that a larger D/r_(0)sampling interval can ensure the generalization ability and robustness of the principal components in the case of a limited amount of original data,which can help to achieve high-precision deployment of the model in practical applications quickly.In the environment with relatively strong turbulence in the test set of D/r_(0)=24,the use of 34 terms of PCs can improve the corrected Strehl ratio(SR)from 0.007 to 0.1585,while the Strehl ratio of the light spot after restoration using 34 terms of ZPs is only 0.0215,demonstrating almost no correction effect.The results indicate that PCs can serve as a better alternative in representing and restoring the characteristics of atmospheric turbulence induced phase aberrations.These findings pave the way to use PCs of phase aberrations with fewer terms than traditional ZPs to achieve data dimensionality reduction,and offer a reference to accelerate and stabilize the model and deep learning based adaptive optics correction.展开更多
BACKGROUND Chronic kidney disease(CKD)is an incapacitating illness associated with distressing symptoms(DS)that have negative impact on patients’health-related quality of life(HRQOL).AIM To assess the severity of DS ...BACKGROUND Chronic kidney disease(CKD)is an incapacitating illness associated with distressing symptoms(DS)that have negative impact on patients’health-related quality of life(HRQOL).AIM To assess the severity of DS and their relationships with HRQOL among patients with CKD in Jordan.METHODS A descriptive cross-sectional design was used.A convenience sampling approach was used to recruit the participants.Patients with CKD(n=140)who visited the outpatient clinics in four hospitals in Amman between November 2021 and December 2021 were included.RESULTS The Edmonton Symptom Assessment System was used to measure the severity of the DS while the Short Form-36 tool was used to measure the HRQOL.Participants’mean age was 50.9(SD=15.14).Most of them were males(n=92,65.7%),married(n=95,67.9%),and unemployed(n=93,66.4%).The highest DS were tiredness(mean=4.68,SD=2.98)and worse well-being(mean=3.69,SD=2.43).The highest HRQOL mean score was for the bodily pain scale with a mean score of 68.50 out of 100(SD=32.02)followed by the emotional well-being scale with mean score of 67.60(SD=18.57).CONCLUSION Patients with CKD had suboptimal HRQOL,physically and mentally.They suffer from multiple DS that have a strong association with diminished HRQOL such as tiredness and depression.Therefore,healthcare providers should be equipped with the essential knowledge and skills to promote individualized strategies that focusing on symptom management.展开更多
This paper reviews the history and lessons of global oil crises while exploring the establishment of a quantitative evaluation model for oil security with Chinese characteristics.Using principal component analysis,it ...This paper reviews the history and lessons of global oil crises while exploring the establishment of a quantitative evaluation model for oil security with Chinese characteristics.Using principal component analysis,it constructs an oil security evaluation indicator system for China with two main-level indicators:foreign oil dependency and its impacts,and market intervention and security assurance.展开更多
Aspergillus species produce aflatoxins and raise concerns about food safety in departmental stores and manufacturing mills.To address the risks posed by aflatoxins,and to advise the public on the highest quality rice ...Aspergillus species produce aflatoxins and raise concerns about food safety in departmental stores and manufacturing mills.To address the risks posed by aflatoxins,and to advise the public on the highest quality rice that serves as a nutritious food source,an inquiry following the guidelines outlined in both local and international standards of food safety for the presence of aflatoxins is an essential requirement.Therefore,16 white rice samples were selected randomly from low/high socio-economic departmental stores from 16 different localities.Grind powdered rice filtrate was extracted using chloroform.The filtrate applied on TLC plates and the amount of aflatoxin and moisture contents were determined.In the non-infected rice,moisture content was low(9.08%)whereas high[13.65%>12%(standard>value)]in infected ones.Four out of 8 samples of low-quality rice were contaminated with AFB_(1) and AFB_(2)(ranging from 22.2 to 29.3μg/kg).All the samples except one(22.3μg/kg)from high-quality rice were certified fit despite the contamination with AFB_(1).Furthermore,phylogenetic analysis showed Aspergillus flavus from unfit low(Long grain brown and Brown basmati)and high-quality(Basmati-198)rice whereas A.parasiticus from unfit low-quality Medium-grain brown rice.The presented research proves that the detection of fungi and aflatoxins in rice grains poses a huge risk to the health of consumers.Therefore,it is necessary to check the rice grains before distribution.展开更多
[Objectives]To investigate the content and distribution of inorganic elements in Astragalus membranaceus sourced from various regions in Gansu Province.[Methods]28 batches of A.membranaceus samples were collected and ...[Objectives]To investigate the content and distribution of inorganic elements in Astragalus membranaceus sourced from various regions in Gansu Province.[Methods]28 batches of A.membranaceus samples were collected and subsequently digested using the Multiwave 7000 super microwave digestion system.The contents of aluminum(Al),barium(Ba),beryllium(Be),cobalt(Co),chromium(Cr),iron(Fe),gallium(Ga),magnesium(Mg),manganese(Mn),nickel(Ni),antimony(Sb),tin(Sn),strontium(Sr),titanium(Ti),thallium(Tl),vanadium(V),and zinc(Zn)were quantified utilizing a PerkinElmer 2000 inductively coupled plasma mass spectrometer.Principal component analysis was performed utilizing SPSS 25.0 to identify the distinctive characteristic elements of A.membranaceus.Additionally,systematic cluster analysis was conducted using these characteristic elements as variables to investigate the relationship between the primary inorganic elements and the geographical origin of A.membranaceus.[Results]17 inorganic elements were identified in A.membranaceus specimens collected from Gansu Province,with characteristic elements including Ba,Co,Fe,Ga,Mn,Zn,and Sn.The contents of inorganic elements in various sources of A.membranaceus exhibited significant variability and demonstrated distinct clustering characteristics.[Conclusions]A.membranaceus,originating from Gansu Province,exhibits a high content of inorganic elements.However,variations in ecological environments can lead to differences in the specific inorganic elements that are enriched.This study aims to provide a reference for the further development and application of A.membranaceus.展开更多
Acupuncture,a therapeutic practice rooted in traditional Chinese medicine and integrated with modern neuroscience,achieves its effects by stimulating sensory nerves at specific anatomical points known as acupoints.Thi...Acupuncture,a therapeutic practice rooted in traditional Chinese medicine and integrated with modern neuroscience,achieves its effects by stimulating sensory nerves at specific anatomical points known as acupoints.This review systematically explores the therapeutic components of acupuncture,emphasizing the interplay between sensory nerve characteristics and neural signaling pathways.Key factors such as acupoint location,needling depth,stimulation intensity,retention time,and the induction of sensations(e.g.,Deqi)are analyzed for their roles in neural activation and clinical outcomes.The review highlights how variations in spinal segment targeting,tissue-specific receptor activation,and stimulation modalities(e.g.,manual acupuncture,electroacupuncture,moxibustion)influence therapeutic effects.Emerging evidence underscores the significance of ion channels,dermatomes,myotomes,and genespecific pathways in mediating systemic effects.Additionally,the differential roles of mechanical,thermal and nociceptive stimuli and the temporal dynamics of sensory and immune responses are addressed.While insights from animal models have advanced our understanding,their translation to clinical practice requires further investigation.This comprehensive review identifies critical parameters for optimizing acupuncture therapy,advocating for individualized treatment strategies informed by neuroanatomical and neurophysiological principles,ultimately enhancing its precision and efficacy in modern medicine.展开更多
The widespread use of lithium batteries has led to frequent fire hazards,which significantly threaten both human lives and property safety.One of the primary challenges in enhancing the fire safety of lithium batterie...The widespread use of lithium batteries has led to frequent fire hazards,which significantly threaten both human lives and property safety.One of the primary challenges in enhancing the fire safety of lithium batteries lies in the flammability of their organic components.As electronic devices continue to proliferate,the integration of liquid electrolytes and separators has become common.However,these components are prone to high volatility and leakage,which limits their safety.Fortunately,recent advancements in solid-state and gel electrolytes have demonstrated promising performance in laboratory settings,providing solutions to these issues.Typically,improving the flame retardancy and fire safety of lithium batteries involves careful design of the formulations or molecular structures of the organic materials.Moreover,the internal interfacial interactions also play a vital role in ensuring safety.This review examines the innovative design strategies developed over the past 5 years to address the fire safety concerns associated with lithium batteries.Future advancements in the next generation of high-safety lithium batteries should not only focus on optimizing component design but also emphasize rigorous operational testing.This dual approach will drive further progress in battery safety research and development,enhancing the overall reliability of lithium battery systems.展开更多
This article summarizes the epidemiological characteristics and clinical manifest-ations of nonalcoholic fatty liver disease(NAFLD).The incidence of NAFLD has been increased dramatically and become the leading cause o...This article summarizes the epidemiological characteristics and clinical manifest-ations of nonalcoholic fatty liver disease(NAFLD).The incidence of NAFLD has been increased dramatically and become the leading cause of chronic liver disease worldwide.In addition to its adverse outcomes of liver fibrosis,cirrhosis,and hepatocellular carcinoma,and related complications,NAFLD has recently been found to be associated with the high-risk extrahepatic carcinomas,such as various types of lung cancer(i.e.,lung adenocarcinoma,squamous cell carcinoma,and small cell lung cancer).The presence of hepatic steatosis also predisposes lung cancer to liver metastasis,but has better response to immune checkpoint inhibi-tors.Whether other factors(i.e.,gender,smoking,etc.)are associated with NAFLD and lung cancer remains controversial.We also comment on the reciprocal rela-tionships between NAFLD and components of metabolic syndrome.Most meta-bolic syndrome components are suggested to facilitate lung cancer development via activating insulin/insulin-like growth factor axis.In addition,suppressed anti-tumor immunity and accelerated tumor progression could be attributed to the cell-specific metabolic reprogramming in condition of high-fat diet and related obesity.These findings may reveal the role of NAFLD in pulmonary carcinoma and help develop new treatment strategies for this disease.展开更多
In-depth study of the components of polymyxins is the key to controlling the quality of this class of antibiotics.Similarities and variations of components present significant analytical challenges.A two-dimensional(2...In-depth study of the components of polymyxins is the key to controlling the quality of this class of antibiotics.Similarities and variations of components present significant analytical challenges.A two-dimensional(2D)liquid chromatography-mass spectrometry(LC-MS)method was established for screening and comprehensive profiling of compositions of the antibiotic colistimethate sodium(CMS).A high concentration of phosphate buffer mobile phase was used in the first-dimensional LC system to get the components well separated.For efficient and high-accuracy screening of CMS,a targeted method based on a self-constructed high resolution(HR)mass spectrum database of CMS components was established.The database was built based on the commercial MassHunter Personal Compound Database and Library(PCDL)software and its accuracy of the compound matching result was verified with six known components before being applied to genuine sample screening.On this basis,the unknown peaks in the CMS chromatograms were deduced and assigned.The molecular formula,group composition,and origins of a total of 99 compounds,of which the combined area percentage accounted for more than 95%of CMS components,were deduced by this 2D-LC-MS method combined with the MassHunter PCDL.This profiling method was highly efficient and could distinguish hundreds of components within 3 h,providing reliable results for quality control of this kind of complex drugs.展开更多
[Objectives]To analyze the main chemical components in Cocculus laurifolius DC.by ultra-high performance liquid chromatography-quaternary rod/electrostatic field orbital hydrazine high resolution mass spectrometry.[Me...[Objectives]To analyze the main chemical components in Cocculus laurifolius DC.by ultra-high performance liquid chromatography-quaternary rod/electrostatic field orbital hydrazine high resolution mass spectrometry.[Methods]Using Welch AQ-C 18 chromatographic column(150 mm×2.1 mm,1.8μm),gradient elution was performed with 0.1%formic acid aqueous solution(A)-methanol(B)as the mobile phase,and electrospray ESI ionization source and simultaneous mass spectrometry scanning mode of positive and negative ions were used.[Results]26 kinds of chemical component were identified or inferred,including 3 organic acids,5 flavonoids,4 alkaloids,1 coumarin and 13 others.[Conclusions]The UPLC-Q-Exactive HRMS technique is simple,which lays a foundation for the drug-efficacy material basis and medicinal quality evaluation of C.laurifolius DC.展开更多
Diversifying crop rotation aims to balance production and ecological concerns.However,yield and water use efficiency(WUE)of crop in diversified rotation systems have not been well documented,especially under limited i...Diversifying crop rotation aims to balance production and ecological concerns.However,yield and water use efficiency(WUE)of crop in diversified rotation systems have not been well documented,especially under limited irrigation.Here,we conducted a 6-year experiment with five treatments:1)wheatmaize cropping system(WM),as control;2)WMME,spring maize→WM rotation;3)WMML,spring millet→WM rotation;4)WMMP,spring peanut→WM rotation;and 5)WMMS,spring soybean→WM rotation,to explore how diversified rotations affected yield and WUE of wheat.Results showed that approximately 60% higher precipitation during wheat growing season in Cycle 1(2015-2017)resulted in yield increases by 33.8%-55.7% compared to those in Cycle 2(2017-2019)and Cycle3(2019-2021).Grain yield and WUE of wheat were 16.7% and 9.6% higher in Cycle 1,81.5% and 86.8% higher in Cycle 2,and 56.1% and 78.7% higher in Cycle 3 on average in diversified rotations compared to those in WM,respectively.Further analysis revealed that spike number and aboveground biomass were the main contributors to the increments,which can be explained by the increased evapotranspiration during the middle-late wheat growth stages(e.g.,regreening,jointing,and anthesis)in diversified rotations.In general,diversified rotations enhanced synchronization of soil water supply with crop water demand by affecting the spatiotemporal dynamics of soil moisture under varied precipitation conditions,thereby increasing yield and WUE of wheat.Hence,diversified spring crops→WM rotations offer a sustainable and efficient strategy for enhancing wheat production and water conservation in dry areas.展开更多
Spike length(SL)is an important factor affecting yield in wheat(Triticum aestivum L.).Here,a recombinant inbred line(RIL)population derived from a cross between Shannong 4155(SN4155)and Shimai 12(SM12)was used to map ...Spike length(SL)is an important factor affecting yield in wheat(Triticum aestivum L.).Here,a recombinant inbred line(RIL)population derived from a cross between Shannong 4155(SN4155)and Shimai 12(SM12)was used to map quantitative trait loci(QTL)controlling SL.A QTL,q SL2B,on chromosome 2B was identified in all experiments and explained 9.92%–12.71%of the phenotypic variation.Through transcriptome and gene expression analysis,we identified a gene encoding Elongation Factor 1-alpha(Tae EF1A)as the candidate gene for q SL2B.Genome editing of Tae EF1A demonstrated that Tae EF1A positively regulates SL,spikelet number per spike(SNS),and grain number per spike(GN).Transcriptome analysis showed that Tae EF1A may affect the protein translation process and photosynthesis to regulate spike development.We used haplotype analysis of wheat germplasm to identify seven types of genetic variations in Tae EF1A,with TypeⅠ,TypeⅡ,and TypeⅢbeing the major haplotypes.Screening of 428 cultivars and breeding lines identified 225 and 203 accessions as TypeⅠand TypeⅡhaplotypes,respectively,with TypeⅢnot detected.Comparison of SL,SNS,and GN between the TypeⅠand TypeⅡhaplotypes revealed that the TypeⅠallele can increase SL,SNS,and GN simultaneously,and is thus preferred for use in wheat molecular breeding efforts to increase SL,SNS,and GN.展开更多
The Global Navigation Satellite System(GNSS)is vital for monitoring terrestrial water storage(TWS).However,effectively extracting hydrological load deformation from GNSS observations poses a significant challenge.This...The Global Navigation Satellite System(GNSS)is vital for monitoring terrestrial water storage(TWS).However,effectively extracting hydrological load deformation from GNSS observations poses a significant challenge.This study proposes a novel strategy;the seasonal hydrological load signals are removed from the raw data,and the remaining signals use principal component analysis(PCA).Simulation results from Yunnan Province demonstrate that the spatial distribution of the root mean square error(RMSE)is improved by approximately 15% compared with traditional PCA extraction from raw data.From January 2013 to December 2022,TWS was inverted from 24 GNSS stations in Yunnan Province.The spatial distribution and time series of TWS inverted from GNSS align well with those TWS inferred from the Gravity Recovery and Climate Experiment(GRACE),GRACE Follow-On(GFO),and the Global Land Data Assimilation System(GLDAS)land surface model.However,the amplitude of the GNSS-inverted TWS is slightly higher.Since GNSS ground stations are more sensitive to hydrological load signals,they show correlations with precipitation data that are 8.6%and 6.0%higher than those of GRACE and GLDAS,respectively.In the power spectral density analysis of GRACE/GFO,GLDAS,and GNSS,the signal strength of GNSS is much higher than that of GRACE/GFO and GLDAS in the June and February cycles.These findings suggest that the new data extraction strategy can capture higher frequency hydrological signals in TWS,and GNSS observations can help address limitations in GRACE/GFO observations.This study demonstrates the potential of GNSS TWS in capturing higher-frequency hydrological signals and climate extremes application.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52377026 and No.52301192)Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)+4 种基金Postdoctoral Fellowship Program of CPSF under Grant Number(No.GZB20240327)Shandong Postdoctoral Science Foundation(No.SDCXZG-202400275)Qingdao Postdoctoral Application Research Project(No.QDBSH20240102023)China Postdoctoral Science Foundation(No.2024M751563)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites).
文摘Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.
基金Supported by Science and Technology Department of Sichuan Province,No.2020YFS0376National Natural Science Foundation of China,No.81900599Science and Technology Program of Hospital of TCM,Southwest Medical University,No.2022-CXTD-01.
文摘BACKGROUND Esophageal stricture ranks among the most significant complications following endoscopic submucosal dissection(ESD).Excessive fibrotic repair is a typical pathological feature leading to stenosis after ESD.AIM To examine the effectiveness and underlying mechanism of Kangfuxin solution(KFX)in mitigating excessive fibrotic repair of the esophagus post-ESD.METHODS Pigs received KFX at 0.74 mL/kg/d for 21 days after esophageal full circumferential ESD.Endoscopic examinations occurred on days 7 and 21 post-ESD.In vitro,recombinant transforming growth factor(TGF)-β1(5 ng/mL)induced a fibrotic microenvironment in primary esophageal fibroblasts(pEsF).After 24 hours of KFX treatment(at 1.5%,1%,and 0.5%),expression ofα-smooth muscle actin-2(ACTA2),fibronectin(FN),and type collagen I was assessed.Profibrotic signaling was analyzed,including TGF-β1,Smad2/3,and phosphor-smad2/3(p-Smad2/3).RESULTS Compared to the Control group,the groups treated with KFX and prednisolone exhibited reduced esophageal stenosis,lower weight loss rates,and improved food tolerance 21 d after ESD.After treatment,Masson staining revealed thinner and less dense collagen fibers in the submucosal layer.Additionally,the expression of fibrotic effector molecules was notably inhibited.Mechanistically,KFX downregulated the transduction levels of fibrotic functional molecules such as TGF-β1,Smad2/3,and p-Smad2/3.In vitro,pEsF exposed to TGF-β1-induced fibrotic microenvironment displayed increased fibrotic activity,which was reversed by KFX treatment,leading to reduced activation of ACTA2,FN,and collagen I.The 1.5%KFX treatment group showed decreased expression of p-Smad 2/3 in TGF-β1-activated pEsF.CONCLUSION KFX showed promise as a therapeutic option for post-full circumferential esophageal ESD strictures,potentially by suppressing fibroblast fibrotic activity through modulation of the TGF-β1/Smads signaling pathway.
基金support provided by National Key Research and Development Program of China(2023YFE0203000 and 2016YFC0300200)the NSAF(Grant No.U2330205)+3 种基金Full-Sea-Depth Battery Project(2020-XXXX-XX-246-00)Open project of Shaanxi Laboratory of Aerospace Power(2022ZY2-JCYJ-01-09)Fundamental Research Funds for the Central Universities,ND Basic Research Funds(G2022WD)the Innovation Team of Shaanxi Province。
文摘The operation of deep-sea underwater vehicles relies entirely on onboard batteries.However,the extreme deep-sea conditions,characterized by ultrahigh hydraulic pressure,low temperature,and seawater conductivity,pose significant challenges for battery development.These conditions drive the need for specialized designs in deep-sea batteries,incorporating critical aspects of power generation,protection,distribution,and management.Over time,deep-sea battery technology has evolved through multiple generations,with lithium(Li)batteries emerging in recent decades as the preferred power source due to their high energy and reduced operational risks.Although the rapid progress of Li batteries has notably advanced the capabilities of underwater vehicles,critical technical issues remain unresolved.This review first systematically presents the whole picture of deep-sea battery manufacturing,focusing on Li batteries as the current mainstream solution for underwater power.It examines the key aspects of deep-sea Li battery development,including materials selection informed by electro-chemo-mechanics models,component modification and testing,and battery management systems specialized in software and hardware.Finally,it discusses the main challenges limiting the utilization of deep-sea batteries and outlines promising directions for future development.Based on the systematic reflection on deep-sea batteries and discussion on deep-sea Li batteries,this review aims to provide a research foundation for developing underwater power tailored for extreme environmental exploration.
基金financially supported by National Key R&D Program(2021YFF0701905)。
文摘In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology based on the principle of high-throughput sequencing,and established a multi-locus 10 animalderived components identification method of cattle,goat,sheep,donkey,horse,chicken,duck,goose,pigeon,quail in meat and meat products.The specific loci of each species could be detected and the species could be accurately identified,including 5 loci for cattle and duck,3 loci for sheep,9 loci for chicken and horse,10 loci for goose and pigeon,6 loci for quail and 1 locus for donkey and goat,and an adulteration model was established to simulate commercially available samples.The results showed that the method established in this study had high throughput,good repeatability and accuracy,and was able to identify 10 animalderived components simultaneously with 100%repeatability accuracy.The detection limit was 0.1%(m/m)in simulated samples of chicken,duck and horse.Using the method established in this study to test commercially available samples,4 samples from 14 commercially available samples were detected to be inconsistent with the labels,of which 2 did not contain the target ingredient and 2 were adulterated with small amounts of other ingredients.
基金supported by the STI 2030—Major Projects 2021ZD0204000,No.2021ZD0204003 (to XZ)the National Natural Science Foundation of China,Nos.32170973 (to XZ),32071018 (to ZH)。
文摘Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post–traumatic stress disorder. Monoamines and amino acids are important types of neurotransmitters. Our previous results have shown that disco-interacting protein 2 homolog A(Dip2a) knockout mice exhibit brain development disorders and abnormal amino acid metabolism in serum. This suggests that DIP2A is involved in the metabolism of amino acid–associated neurotransmitters. Therefore, we performed targeted neurotransmitter metabolomics analysis and found that Dip2a deficiency caused abnormal metabolism of tryptophan and thyroxine in the basolateral amygdala and medial prefrontal cortex. In addition, acute restraint stress induced a decrease in 5-hydroxytryptamine in the basolateral amygdala. Additionally, Dip2a was abundantly expressed in excitatory neurons of the basolateral amygdala, and deletion of Dip2a in these neurons resulted in hopelessness-like behavior in the tail suspension test. Altogether, these findings demonstrate that DIP2A in the basolateral amygdala may be involved in the regulation of stress susceptibility. This provides critical evidence implicating a role of DIP2A in affective disorders.
基金supported by the National Natural Science Foundation of China,Nos.81871836(to MZ),82172554(to XH),and 81802249(to XH),81902301(to JW)the National Key R&D Program of China,Nos.2018YFC2001600(to JX)and 2018YFC2001604(to JX)+3 种基金Shanghai Rising Star Program,No.19QA1409000(to MZ)Shanghai Municipal Commission of Health and Family Planning,No.2018YQ02(to MZ)Shanghai Youth Top Talent Development PlanShanghai“Rising Stars of Medical Talent”Youth Development Program,No.RY411.19.01.10(to XH)。
文摘Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.
基金supported by the key project at the central government level:The ability establishment of sustainable use for valuable Chinese medicine resources(Grant number 2060302)the National Natural Science Foundation of China(Grant number 82373982,82173929).
文摘Background:Rosa chinensis Jacq.and Rosa rugosa Thunb.are not only of ornamental value,but also edible flowers and the flower buds have been listed in the Chinese Pharmacopoeia as traditional medicines.The two plants have some differences in efficacy,but the flower buds are easily confused for similar traits.In addition,large-scale cultivation of ornamental rose flowers may lead to a decrease in the effective components of medicinal roses.Therefore,it is necessary to study the chemical composition and make quality evaluation of Rosae Chinensis Flos(Yueji)and Rosae Rugosae Flos(Meigui).Methods:In this study,40 batches of samples including Meigui and Yueji from different regions in China were collected to establish high-performance liquid chromatography fingerprints.Then,the fingerprints data was analyzed using principal component analysis,hierarchical cluster analysis,and partial least squares discriminant analysis analysis chemometrics to obtain information on intergroup differences,and non-targeted metabolomic techniques were applied to identify and compare chemical compositions of samples which were chosen from groups with large differences.Differential compounds were screened by orthogonal partial least-squares discriminant analysis and S-plot,and finally multi-component quantification was performed to comprehensively evaluate the quality of Yueji and Meigui.Results:The similarity between the fingerprints of 40 batches roses and the reference print R was 0.73 to 0.93,indicating that there were similarities and differences between the samples.Through principal component analysis and hierarchical cluster analysis of fingerprints data,the samples from different origins and varieties were intuitively divided into four groups.Partial least-squares discriminant analysis analysis showed that Meigui and Yueji cluster into two categories and the model was reliable.A total of 89 compounds were identified by high resolution mass spectrometry,mainly were flavonoids and flavonoid glycosides,as well as phenolic acids.Eight differential components were screened out by orthogonal partial least-squares discriminant analysis and S-plot analysis.Quantitative analyses of the eight compounds,including gallic acid,ellagic acid,hyperoside,isoquercitrin,etc.,showed that Yueji was generally richer in phenolic acids and flavonoids than Meigui,and the quality of Yueji from Shandong and Hebei was better.It is worth noting that Xinjiang rose is rich in various components,which is worth focusing on more in-depth research.Conclusion:In this study,the fingerprints of Meigui and Yueji were established.The chemical components information of roses was further improved based on non-targeted metabolomics and mass spectrometry technology.At the same time,eight differential components of Meigui and Yueji were screened out and quantitatively analyzed.The research results provided a scientific basis for the quality control and rational development and utilization of Rosae Chinensis Flos and Rosae Rugosae Flos,and also laid a foundation for the study of their pharmacodynamic material basis.
文摘Restoration of phase aberrations is crucial for addressing atmospheric turbulence in light propagation.Traditional restoration algorithms based on Zernike polynomials(ZPs)often encounter challenges related to high computational complexity and insufficient capture of high-frequency phase aberration components,so we proposed a Principal-Component-Analysis-based method for representing phase aberrations.This paper discusses the factors influencing the accuracy of restoration,mainly including the sample space size and the sampling interval of D/r_(0),on the basis of characterizing phase aberrations by Principal Components(PCs).The experimental results show that a larger D/r_(0)sampling interval can ensure the generalization ability and robustness of the principal components in the case of a limited amount of original data,which can help to achieve high-precision deployment of the model in practical applications quickly.In the environment with relatively strong turbulence in the test set of D/r_(0)=24,the use of 34 terms of PCs can improve the corrected Strehl ratio(SR)from 0.007 to 0.1585,while the Strehl ratio of the light spot after restoration using 34 terms of ZPs is only 0.0215,demonstrating almost no correction effect.The results indicate that PCs can serve as a better alternative in representing and restoring the characteristics of atmospheric turbulence induced phase aberrations.These findings pave the way to use PCs of phase aberrations with fewer terms than traditional ZPs to achieve data dimensionality reduction,and offer a reference to accelerate and stabilize the model and deep learning based adaptive optics correction.
文摘BACKGROUND Chronic kidney disease(CKD)is an incapacitating illness associated with distressing symptoms(DS)that have negative impact on patients’health-related quality of life(HRQOL).AIM To assess the severity of DS and their relationships with HRQOL among patients with CKD in Jordan.METHODS A descriptive cross-sectional design was used.A convenience sampling approach was used to recruit the participants.Patients with CKD(n=140)who visited the outpatient clinics in four hospitals in Amman between November 2021 and December 2021 were included.RESULTS The Edmonton Symptom Assessment System was used to measure the severity of the DS while the Short Form-36 tool was used to measure the HRQOL.Participants’mean age was 50.9(SD=15.14).Most of them were males(n=92,65.7%),married(n=95,67.9%),and unemployed(n=93,66.4%).The highest DS were tiredness(mean=4.68,SD=2.98)and worse well-being(mean=3.69,SD=2.43).The highest HRQOL mean score was for the bodily pain scale with a mean score of 68.50 out of 100(SD=32.02)followed by the emotional well-being scale with mean score of 67.60(SD=18.57).CONCLUSION Patients with CKD had suboptimal HRQOL,physically and mentally.They suffer from multiple DS that have a strong association with diminished HRQOL such as tiredness and depression.Therefore,healthcare providers should be equipped with the essential knowledge and skills to promote individualized strategies that focusing on symptom management.
文摘This paper reviews the history and lessons of global oil crises while exploring the establishment of a quantitative evaluation model for oil security with Chinese characteristics.Using principal component analysis,it constructs an oil security evaluation indicator system for China with two main-level indicators:foreign oil dependency and its impacts,and market intervention and security assurance.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2025R317),Princess Nourah bintAbdulrahman University,Riyadh,Saudi Arabia.
文摘Aspergillus species produce aflatoxins and raise concerns about food safety in departmental stores and manufacturing mills.To address the risks posed by aflatoxins,and to advise the public on the highest quality rice that serves as a nutritious food source,an inquiry following the guidelines outlined in both local and international standards of food safety for the presence of aflatoxins is an essential requirement.Therefore,16 white rice samples were selected randomly from low/high socio-economic departmental stores from 16 different localities.Grind powdered rice filtrate was extracted using chloroform.The filtrate applied on TLC plates and the amount of aflatoxin and moisture contents were determined.In the non-infected rice,moisture content was low(9.08%)whereas high[13.65%>12%(standard>value)]in infected ones.Four out of 8 samples of low-quality rice were contaminated with AFB_(1) and AFB_(2)(ranging from 22.2 to 29.3μg/kg).All the samples except one(22.3μg/kg)from high-quality rice were certified fit despite the contamination with AFB_(1).Furthermore,phylogenetic analysis showed Aspergillus flavus from unfit low(Long grain brown and Brown basmati)and high-quality(Basmati-198)rice whereas A.parasiticus from unfit low-quality Medium-grain brown rice.The presented research proves that the detection of fungi and aflatoxins in rice grains poses a huge risk to the health of consumers.Therefore,it is necessary to check the rice grains before distribution.
基金Supported by Project of NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine(2023GSMPA-KL06,2024GSMPA-KL16).
文摘[Objectives]To investigate the content and distribution of inorganic elements in Astragalus membranaceus sourced from various regions in Gansu Province.[Methods]28 batches of A.membranaceus samples were collected and subsequently digested using the Multiwave 7000 super microwave digestion system.The contents of aluminum(Al),barium(Ba),beryllium(Be),cobalt(Co),chromium(Cr),iron(Fe),gallium(Ga),magnesium(Mg),manganese(Mn),nickel(Ni),antimony(Sb),tin(Sn),strontium(Sr),titanium(Ti),thallium(Tl),vanadium(V),and zinc(Zn)were quantified utilizing a PerkinElmer 2000 inductively coupled plasma mass spectrometer.Principal component analysis was performed utilizing SPSS 25.0 to identify the distinctive characteristic elements of A.membranaceus.Additionally,systematic cluster analysis was conducted using these characteristic elements as variables to investigate the relationship between the primary inorganic elements and the geographical origin of A.membranaceus.[Results]17 inorganic elements were identified in A.membranaceus specimens collected from Gansu Province,with characteristic elements including Ba,Co,Fe,Ga,Mn,Zn,and Sn.The contents of inorganic elements in various sources of A.membranaceus exhibited significant variability and demonstrated distinct clustering characteristics.[Conclusions]A.membranaceus,originating from Gansu Province,exhibits a high content of inorganic elements.However,variations in ecological environments can lead to differences in the specific inorganic elements that are enriched.This study aims to provide a reference for the further development and application of A.membranaceus.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.NRF-2020R1C1C1004107)。
文摘Acupuncture,a therapeutic practice rooted in traditional Chinese medicine and integrated with modern neuroscience,achieves its effects by stimulating sensory nerves at specific anatomical points known as acupoints.This review systematically explores the therapeutic components of acupuncture,emphasizing the interplay between sensory nerve characteristics and neural signaling pathways.Key factors such as acupoint location,needling depth,stimulation intensity,retention time,and the induction of sensations(e.g.,Deqi)are analyzed for their roles in neural activation and clinical outcomes.The review highlights how variations in spinal segment targeting,tissue-specific receptor activation,and stimulation modalities(e.g.,manual acupuncture,electroacupuncture,moxibustion)influence therapeutic effects.Emerging evidence underscores the significance of ion channels,dermatomes,myotomes,and genespecific pathways in mediating systemic effects.Additionally,the differential roles of mechanical,thermal and nociceptive stimuli and the temporal dynamics of sensory and immune responses are addressed.While insights from animal models have advanced our understanding,their translation to clinical practice requires further investigation.This comprehensive review identifies critical parameters for optimizing acupuncture therapy,advocating for individualized treatment strategies informed by neuroanatomical and neurophysiological principles,ultimately enhancing its precision and efficacy in modern medicine.
基金supported by the National Natural Science Foundation of China(No.22375023)Natural Science Foundation of Chongqing(CSTB2024NSCQ-MSX0452)+5 种基金Hebei Natural Science Foundation(E2024105006)Shandong Province Natural Science Foundation(ZR2024ME040)the Fundamental Research Funds for the Central Universities(2024CX06053)National College Students'Innovation and Entrepreneurship Training Program(202410007038X)funded by the Australian Research Council/Discovery Early Career Researcher Award(DECRA)funding scheme(project number DE230100180)the Australian Research Council/Industrial Transformation Research Hubs funding scheme(project number IH220100002).
文摘The widespread use of lithium batteries has led to frequent fire hazards,which significantly threaten both human lives and property safety.One of the primary challenges in enhancing the fire safety of lithium batteries lies in the flammability of their organic components.As electronic devices continue to proliferate,the integration of liquid electrolytes and separators has become common.However,these components are prone to high volatility and leakage,which limits their safety.Fortunately,recent advancements in solid-state and gel electrolytes have demonstrated promising performance in laboratory settings,providing solutions to these issues.Typically,improving the flame retardancy and fire safety of lithium batteries involves careful design of the formulations or molecular structures of the organic materials.Moreover,the internal interfacial interactions also play a vital role in ensuring safety.This review examines the innovative design strategies developed over the past 5 years to address the fire safety concerns associated with lithium batteries.Future advancements in the next generation of high-safety lithium batteries should not only focus on optimizing component design but also emphasize rigorous operational testing.This dual approach will drive further progress in battery safety research and development,enhancing the overall reliability of lithium battery systems.
基金Supported by National Science and Technology Major Project of China,No.2023ZD0508700National Natural Science Foundation of China,No.81470859and Program of Taizhou Science and Technology Grant,No.24ywb33.
文摘This article summarizes the epidemiological characteristics and clinical manifest-ations of nonalcoholic fatty liver disease(NAFLD).The incidence of NAFLD has been increased dramatically and become the leading cause of chronic liver disease worldwide.In addition to its adverse outcomes of liver fibrosis,cirrhosis,and hepatocellular carcinoma,and related complications,NAFLD has recently been found to be associated with the high-risk extrahepatic carcinomas,such as various types of lung cancer(i.e.,lung adenocarcinoma,squamous cell carcinoma,and small cell lung cancer).The presence of hepatic steatosis also predisposes lung cancer to liver metastasis,but has better response to immune checkpoint inhibi-tors.Whether other factors(i.e.,gender,smoking,etc.)are associated with NAFLD and lung cancer remains controversial.We also comment on the reciprocal rela-tionships between NAFLD and components of metabolic syndrome.Most meta-bolic syndrome components are suggested to facilitate lung cancer development via activating insulin/insulin-like growth factor axis.In addition,suppressed anti-tumor immunity and accelerated tumor progression could be attributed to the cell-specific metabolic reprogramming in condition of high-fat diet and related obesity.These findings may reveal the role of NAFLD in pulmonary carcinoma and help develop new treatment strategies for this disease.
基金support from the Science Research Program Project for Drug Regulation,Jiangsu Medical Products Administration,China(Grant No.:202207)the National Drug Standards Revision Project,China(Grant No.:2023Y41)+1 种基金the National Natural Science Foundation of China(Grant No.:22276080)the Foreign Expert Project,China(Grant No.:G2022014096L).
文摘In-depth study of the components of polymyxins is the key to controlling the quality of this class of antibiotics.Similarities and variations of components present significant analytical challenges.A two-dimensional(2D)liquid chromatography-mass spectrometry(LC-MS)method was established for screening and comprehensive profiling of compositions of the antibiotic colistimethate sodium(CMS).A high concentration of phosphate buffer mobile phase was used in the first-dimensional LC system to get the components well separated.For efficient and high-accuracy screening of CMS,a targeted method based on a self-constructed high resolution(HR)mass spectrum database of CMS components was established.The database was built based on the commercial MassHunter Personal Compound Database and Library(PCDL)software and its accuracy of the compound matching result was verified with six known components before being applied to genuine sample screening.On this basis,the unknown peaks in the CMS chromatograms were deduced and assigned.The molecular formula,group composition,and origins of a total of 99 compounds,of which the combined area percentage accounted for more than 95%of CMS components,were deduced by this 2D-LC-MS method combined with the MassHunter PCDL.This profiling method was highly efficient and could distinguish hundreds of components within 3 h,providing reliable results for quality control of this kind of complex drugs.
基金Supported by Scientific Research Project of China Medical Association of Minorities(2022M2038-310401)Guangxi First-class Discipline Project for Traditional Chinese Medicine(GuiJiaoKeYan 202201)+3 种基金Scientific Research and Training Project for College Students of Guangxi University of Chinese Medicine(2023DXS14)Funding Project for High-level Innovation Team and Outstanding Scholars in Guangxi Universities(GuiJiaoRen 201407)NATCM s Project of High-level Construction of Key TCM Disciplines/Medicine for Ethnic Minorities(Zhuang Medicine)(ZYYZDXK-2023164)Guangxi Higher Education Key Laboratory for the Research of Toxic Diseases in Zhuang Medicine(GuiJiaoKeYan 202210).
文摘[Objectives]To analyze the main chemical components in Cocculus laurifolius DC.by ultra-high performance liquid chromatography-quaternary rod/electrostatic field orbital hydrazine high resolution mass spectrometry.[Methods]Using Welch AQ-C 18 chromatographic column(150 mm×2.1 mm,1.8μm),gradient elution was performed with 0.1%formic acid aqueous solution(A)-methanol(B)as the mobile phase,and electrospray ESI ionization source and simultaneous mass spectrometry scanning mode of positive and negative ions were used.[Results]26 kinds of chemical component were identified or inferred,including 3 organic acids,5 flavonoids,4 alkaloids,1 coumarin and 13 others.[Conclusions]The UPLC-Q-Exactive HRMS technique is simple,which lays a foundation for the drug-efficacy material basis and medicinal quality evaluation of C.laurifolius DC.
基金supported by the National Natural Science Foundation of China(32172125 and U21A20218)。
文摘Diversifying crop rotation aims to balance production and ecological concerns.However,yield and water use efficiency(WUE)of crop in diversified rotation systems have not been well documented,especially under limited irrigation.Here,we conducted a 6-year experiment with five treatments:1)wheatmaize cropping system(WM),as control;2)WMME,spring maize→WM rotation;3)WMML,spring millet→WM rotation;4)WMMP,spring peanut→WM rotation;and 5)WMMS,spring soybean→WM rotation,to explore how diversified rotations affected yield and WUE of wheat.Results showed that approximately 60% higher precipitation during wheat growing season in Cycle 1(2015-2017)resulted in yield increases by 33.8%-55.7% compared to those in Cycle 2(2017-2019)and Cycle3(2019-2021).Grain yield and WUE of wheat were 16.7% and 9.6% higher in Cycle 1,81.5% and 86.8% higher in Cycle 2,and 56.1% and 78.7% higher in Cycle 3 on average in diversified rotations compared to those in WM,respectively.Further analysis revealed that spike number and aboveground biomass were the main contributors to the increments,which can be explained by the increased evapotranspiration during the middle-late wheat growth stages(e.g.,regreening,jointing,and anthesis)in diversified rotations.In general,diversified rotations enhanced synchronization of soil water supply with crop water demand by affecting the spatiotemporal dynamics of soil moisture under varied precipitation conditions,thereby increasing yield and WUE of wheat.Hence,diversified spring crops→WM rotations offer a sustainable and efficient strategy for enhancing wheat production and water conservation in dry areas.
基金supported by the Key R&D Program of Shandong province(2022LZGC001,2024CXPT072)the National Natural Science Foundation of China(32201863)the Tai’shan Scholars Program。
文摘Spike length(SL)is an important factor affecting yield in wheat(Triticum aestivum L.).Here,a recombinant inbred line(RIL)population derived from a cross between Shannong 4155(SN4155)and Shimai 12(SM12)was used to map quantitative trait loci(QTL)controlling SL.A QTL,q SL2B,on chromosome 2B was identified in all experiments and explained 9.92%–12.71%of the phenotypic variation.Through transcriptome and gene expression analysis,we identified a gene encoding Elongation Factor 1-alpha(Tae EF1A)as the candidate gene for q SL2B.Genome editing of Tae EF1A demonstrated that Tae EF1A positively regulates SL,spikelet number per spike(SNS),and grain number per spike(GN).Transcriptome analysis showed that Tae EF1A may affect the protein translation process and photosynthesis to regulate spike development.We used haplotype analysis of wheat germplasm to identify seven types of genetic variations in Tae EF1A,with TypeⅠ,TypeⅡ,and TypeⅢbeing the major haplotypes.Screening of 428 cultivars and breeding lines identified 225 and 203 accessions as TypeⅠand TypeⅡhaplotypes,respectively,with TypeⅢnot detected.Comparison of SL,SNS,and GN between the TypeⅠand TypeⅡhaplotypes revealed that the TypeⅠallele can increase SL,SNS,and GN simultaneously,and is thus preferred for use in wheat molecular breeding efforts to increase SL,SNS,and GN.
基金supported by the Natural Science Foundation of China(Grant Nos.42374032,42174103,42004073)Provincial Natural Science Foundation(2024JJ8348)the Key Laboratory of Natural Resources Monitoring and Supervision in Southern Hilly Region,Ministry of Natural Resources(NRMSSHR2023Y01)。
文摘The Global Navigation Satellite System(GNSS)is vital for monitoring terrestrial water storage(TWS).However,effectively extracting hydrological load deformation from GNSS observations poses a significant challenge.This study proposes a novel strategy;the seasonal hydrological load signals are removed from the raw data,and the remaining signals use principal component analysis(PCA).Simulation results from Yunnan Province demonstrate that the spatial distribution of the root mean square error(RMSE)is improved by approximately 15% compared with traditional PCA extraction from raw data.From January 2013 to December 2022,TWS was inverted from 24 GNSS stations in Yunnan Province.The spatial distribution and time series of TWS inverted from GNSS align well with those TWS inferred from the Gravity Recovery and Climate Experiment(GRACE),GRACE Follow-On(GFO),and the Global Land Data Assimilation System(GLDAS)land surface model.However,the amplitude of the GNSS-inverted TWS is slightly higher.Since GNSS ground stations are more sensitive to hydrological load signals,they show correlations with precipitation data that are 8.6%and 6.0%higher than those of GRACE and GLDAS,respectively.In the power spectral density analysis of GRACE/GFO,GLDAS,and GNSS,the signal strength of GNSS is much higher than that of GRACE/GFO and GLDAS in the June and February cycles.These findings suggest that the new data extraction strategy can capture higher frequency hydrological signals in TWS,and GNSS observations can help address limitations in GRACE/GFO observations.This study demonstrates the potential of GNSS TWS in capturing higher-frequency hydrological signals and climate extremes application.