It is an important standard to judge the flood disaster in the basin whether the rainfall at the flood-inducing interface is reached.In this paper,the Xin'anjiang model,Topmodel model and SCS model were selected t...It is an important standard to judge the flood disaster in the basin whether the rainfall at the flood-inducing interface is reached.In this paper,the Xin'anjiang model,Topmodel model and SCS model were selected to calculate and compare the rainfall at the flood-inducing interface in the Zhanghe Reservoir basin in Hubei Province.The results showed that average relative error and average absolute error of Xin'anjiang model were-3.36%and-21.46×10^(5)m^(3),which were the minimum,followed by Topmodel model with 5.72%and 26.22×10^(5)m^(3),SCS model with 11.33%and 58.13×10^(5)m^(3).The minimum absolute error of the three hydrological models in calculating the rainfall at the critical interface was 3.26 mm,while the maximum was 49.24 mm.When the initial water level exceeded 120 m,the difference among the three models in calculating the rainfall at the critical interface became more and more obvious.When the reservoir water level was lower than 120 m,it mainly referred to the calculation results of Xin'anjiang model.When the reservoir water level was higher than 120 m,it mainly referred to the calculation results of Topmodel model.The research conclusion can provide reference for small and medium-sized basins selecting hydrological model to calculate the rainfall at the flood-inducing interface.展开更多
Anthropogenically induced land use/land cover(LULC)transformations and accelerating climatic variabilities have emerged as pivotal forces reshaping the hydrological equilibrium of fluvial systems,particularly in ecolo...Anthropogenically induced land use/land cover(LULC)transformations and accelerating climatic variabilities have emerged as pivotal forces reshaping the hydrological equilibrium of fluvial systems,particularly in ecologically sensitive basins.This study systematically interrogates the compounded ramifications of LULC dynamics and projected climate change on the hydrological response of the Upper Jemma Watershed an integral sub-catchment of the Upper Blue Nile River system.Employing the advanced QSWAT+hydrological modeling framework within a GIS interface,the analysis integrates bias‐corrected climatic projections under RCP 4.5 and RCP 8.5 scenarios alongside multi-temporal remote sensing‐derived land cover datasets.The findings unveil an unequivocal intensification of surface runoff and streamflow due to expansive agricultural encroachment,juxtaposed with a discernible decline in evapotranspiration and soil water retention.Climatic perturbations,notably temperature elevation and precipitation attenuation,further exacerbate these trends,with pronounced seasonality in hydrological fluxes.Importantly,synergistic interactions between land cover transformation and climatic anomalies manifest in nonlinear hydrological alterations,amplifying peak flows and diminishing baseflows.This underscores the riverine system's heightened vulnerability and the necessity for integrated watershed management strategies that account for multifactorial hydrological stressors.The study provides a robust empirical and modeling basis to inform adaptive water governance within transboundary river basins susceptible to environmental transitions.展开更多
Forest hydrology,the study of water dynamics within forested catchments,is crucial for understanding the intricate relationship between forest cover and water balances across different scales,from ecosystems to landsc...Forest hydrology,the study of water dynamics within forested catchments,is crucial for understanding the intricate relationship between forest cover and water balances across different scales,from ecosystems to landscapes,or from catchment watersheds.The intensified global changes in climate,land use and cover,and pollution that occurred over the past century have brought about adverse impacts on forests and their services in water regulation,signifying the importance of forest hydrological research as a re-emerging topic of scientific interest.This article reviews the literature on recent advances in forest hydrological research,intending to identify leading countries,institutions,and researchers actively engaged in this field,as well as highlighting research hotspots for future exploration.Through a systematic analysis using VOSviewer,drawing from 17,006 articles retrieved from the Web of Science Core Collection spanning 2000–2022,we employed scientometric methods to assess research productivity,identify emerging topics,and analyze academic development.The findings reveal a consistent growth in forest hydrological research over the past two decades,with the United States,Charles T.Driscoll,and the Chinese Academy of Sciences emerging as the most productive country,author,and institution,respectively.The Journal of Hydrology emerges as the most co-cited journal.Analysis of keyword co-occurrence and co-cited references highlights key research areas,including climate change,management strategies,runoff-erosion dynamics,vegetation cover changes,paired catchment experiments,water quality,aquatic biodiversity,forest fire dynamics and hydrological modeling.Based on these findings,our study advocates for an integrated approach to future research,emphasizing the collection of data from diverse sources,utilization of varied methodologies,and collaboration across disciplines and institutions.This holistic strategy is essential for developing sustainable approaches to forested watershed planning and management.Ultimately,our study provides valuable insights for researchers,practitioners,and policymakers,guiding future research directions towards forest hydrological research and applications.展开更多
Characterization of vegetation effect on soil response is essential for comprehending site-specific hydrological processes.Traditional research often relies on sensors or remote sensing data to examine the hydrologica...Characterization of vegetation effect on soil response is essential for comprehending site-specific hydrological processes.Traditional research often relies on sensors or remote sensing data to examine the hydrological properties of vegetation zones,yet these methods are limited by either measurement sparsity or spatial inaccuracy.Therefore,this paper is the first to propose a data-driven approach that incorporates high-temporal-resolution electrical resistivity tomography(ERT)to quantify soil hydrological response.Time-lapse ERT is deployed on a vegetated slope site in Foshan,China,during a discontinuous rainfall induced by Typhoon Haikui.A total of 97 ERT measurements were collected with an average time interval of 2.7 hours.The Gaussian Mixture Model(GMM)is applied to quantify the level of response and objectively classify impact zones based on features extracted directly from the ERT data.The resistivity-moisture content correlation is established based on on-site sensor data to characterize infiltration and evapotranspiration across wet-dry conditions.The findings are compared with the Normalized Difference Vegetation Index(NDVI),a common indicator for vegetation quantification,to reveal potential spatial errors in remote sensing data.In addition,this study provides discussions on the potential applications and future directions.This paper showcases significant spatio-temporal advantages over existing studies,providing a more detailed and accurate characterization of superficial soil hydrological response.展开更多
Hydrological modeling plays a crucial role in efficiently managing water resources and understanding the hydrologic behavior of watersheds. This study aims to simulate daily streamflow in the Godavari River Basin in M...Hydrological modeling plays a crucial role in efficiently managing water resources and understanding the hydrologic behavior of watersheds. This study aims to simulate daily streamflow in the Godavari River Basin in Maharashtra using the Soil and Water Assessment Tool (SWAT). SWAT is a process-based hydrological model used to predict water balance components, sediment levels, and nutrient contamination. In this research, we used integrated remote sensing and GIS data, including Digital Elevation Models (DEM), land use and land cover (LULC) maps, soil maps, and observed precipitation and temperature data, as input for developing the SWAT model to assess surface runoff in this large river basin. The Godavari River Basin under study was divided into 25 sub-basins, comprising 151 hydrological response units categorized by unique land cover, soil, and slope characteristics using the SWAT model. The model was calibrated and validated against observed runoff data for two time periods: 2003-2006 and 2007-2010 respectively. Model performance was assessed using the Nash-Sutcliffe efficiency (NSE) and the coefficient of determination (R2). The results show the effectiveness of the SWAT2012 model, with R2 value of 0.84 during calibration and 0.86 during validation. NSE values also ranged from 0.84 during calibration to 0.85 during validation. These findings enhance our understanding of surface runoff dynamics in the Godavari River Basin under study and highlight the suit-ability of the SWAT model for this region.展开更多
Hydrological models are crucial for characterizing large-scale water quantity variations and correcting GNSS reference station vertical displacements.We evaluated the robustness of multiple models,such as the Global L...Hydrological models are crucial for characterizing large-scale water quantity variations and correcting GNSS reference station vertical displacements.We evaluated the robustness of multiple models,such as the Global Land Data Assimilation System (GLDAS),the Famine Early Warning System Network Land Data Assimilation System (FLDAS),the National Centers for Environmental Prediction (NCEP),and the WaterGAP Global Hydrology Model (WGHM).Inter-model and outer comparisons with Global Positioning System (GPS) coordinate time series,satellite gravity field Mascon solutions,and Global Precipitation Climatology Centre (GPCC) guide our assessment.Results confirm WGHM's 26% greater effectiveness in correcting nonlinear variations in GPS height time series compared to NCEP.In the Amazon River Basin,a 5-month lag between FLDAS,GLDAS,and satellite gravity results is observed.In eastern Asia and Australia,NCEP's Terrestrial Water Storage Changes (TWSC)-derived surface displacements correlate differently with precipitation compared to other models.Three combined hydrological models (H-VCE,H-EWM,and H-CVM) utilizing Variance Component Estimation (VCE),Entropy Weight Method (EWM),and Coefficient of Variation Method (CVM) are formulated.Correcting nonlinear variations with combined models enhances global GPS height scatter by 15%-17%.Correlation with precipitation increases by 25%-30%,and with satellite gravity,rises from 0.2 to 0.8 at maximum.The combined model eliminates time lag in the Amazon Basin TWSC analysis,exhibiting a four times higher signal-to-noise ratio than single models.H-VCE demonstrates the highest accuracy.In summary,the combined hydrological model minimizes discrepancies among individual models,significantly improving accuracy for monitoring large-scale TWSC.展开更多
Flood forecasting is critical for mitigating flood damage and ensuring a safe operation of hydroelectric power plants and reservoirs.This paper presents a new hybrid hydrological model based on the combination of the ...Flood forecasting is critical for mitigating flood damage and ensuring a safe operation of hydroelectric power plants and reservoirs.This paper presents a new hybrid hydrological model based on the combination of the Hydrologic Engineering Center-Hydrologic Modeling System(HEC-HMS)hydrological model and an Encoder-Decoder-Long Short-Term Memory network to enhance the accuracy of real-time flood forecasting.The proposed hybrid model has been applied to the Krong H'nang hydropower reservoir.The observed data from 33 floods monitored between 2016 and 2021 are used to calibrate,validate,and test the hybrid model.Results show that the HEC-HMS-artificial neural network hybrid model significantly improves the forecast quality,especially for results at a longer forecasting time.In detail,the Kling-Gupta efficiency(KGE)index,for example,increased from ΔKGE=16%at time t+1h to ΔKGE=69%at time t+6 h.Similar results were obtained for other indicators including peak error and volume error.The computer program developed for this study is being used in practice at the Krong H'nang hydropower to aid in reservoir planning,flood control,and water resource efficiency.展开更多
为了寻求合理简化的流域地形指数水文模型TOPMODEL(Topographic Index model)用于大尺度的陆面模式,推导了土壤表层饱和导水率k0、衰减因子f和地下水补给速率R空间都可变的扩展的TOPMODEL,并将f空间非均匀分布的TOPMODEL与陆面模式SSiB...为了寻求合理简化的流域地形指数水文模型TOPMODEL(Topographic Index model)用于大尺度的陆面模式,推导了土壤表层饱和导水率k0、衰减因子f和地下水补给速率R空间都可变的扩展的TOPMODEL,并将f空间非均匀分布的TOPMODEL与陆面模式SSiB4耦合(SSiB4/GTOP)。通过耦合模型在f空间非均匀条件下进行实际流域的水文模拟,分析f空间非均匀对流域土壤湿度、蒸散发、地表径流、基流和总径流的影响。主要结论有:(1)k0和R的空间变化并不改变经典TOPMODEL原有关系式,只要定义新的地形指数,k0和R空间非均匀TOPMODEL与空间均匀的TOPMODEL并无区别;(2) f空间变化条件下由于局地的地下水埋深还与局地的f值有关,地形指数相同的区域具有水文相似性这一结论不再成立;(3)与f空间均匀的模拟结果相比较,f随海拔高度h i增加而线性减小使模拟的流域土壤湿度、地表径流和流域蒸散减小但使基流和总径流增加;(4) f空间非均匀对流域水文模拟结果有影响,但其影响明显小于流域地形因子的影响。展开更多
In this study, we analyse the climate variability in the Upper Benue basin and assess its potential impact on the hydrology regime under two different greenhouse gas emission scenarios. The hydrological regime of the ...In this study, we analyse the climate variability in the Upper Benue basin and assess its potential impact on the hydrology regime under two different greenhouse gas emission scenarios. The hydrological regime of the basin is more vulnerable to climate variability, especially precipitation and temperature. Observed hydroclimatic data (1950-2015) was analysed using a statistical approach. The potential impact of future climate change on the hydrological regime is quantified using the GR2M model and two climate models: HadGEM2-ES and MIROC5 from CMIP5 under RCP 4.5 and RCP 8.5 greenhouse gas emission scenarios. The main result shows that precipitation varies significantly according to the geographical location and time in the Upper Benue basin. The trend analysis of climatic parameters shows a decrease in annual average precipitation across the study area at a rate of -0.568 mm/year which represents about 37 mm/year over the time 1950-2015 compared to the 1961-1990 reference period. An increase of 0.7°C in mean temperature and 14% of PET are also observed according to the same reference period. The two climate models predict a warming of the basin of about 2°C for both RCP 4.5 and 8.5 scenarios and an increase in precipitation between 1% and 10% between 2015 and 2100. Similarly, the average annual flow is projected to increase by about +2% to +10% in the future for both RCP 4.5 and 8.5 scenarios between 2015 and 2100. Therefore, it is primordial to develop adaptation and mitigation measures to manage efficiently the availability of water resources.展开更多
Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This stud...Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This study focused on quantifying subsurface hydrological partitioning,specifically in an alpine mountainous area,and highlighted the important role of lateral flow during this process.Precipitation was usually classified as two parts into the soil:increased soil water content(SWC)and lateral flow out of the soil pit.It was found that 65%–88%precipitation contributed to lateral flow.The second common partitioning class showed an increase in SWC caused by both precipitation and lateral flow into the soil pit.In this case,lateral flow contributed to the SWC increase ranging from 43%to 74%,which was notably larger than the SWC increase caused by precipitation.On alpine meadows,lateral flow from the soil pit occurred when the shallow soil was wetter than the field capacity.This result highlighted the need for three-dimensional simulation between soil layers in Earth system models(ESMs).During evapotranspiration process,significant differences were observed in the classification of subsurface hydrological partitioning among different vegetation types.Due to tangled and aggregated fine roots in the surface soil on alpine meadows,the majority of subsurface responses involved lateral flow,which provided 98%–100%of evapotranspiration(ET).On grassland,there was a high probability(0.87),which ET was entirely provided by lateral flow.The main reason for underestimating transpiration through soil water dynamics in previous research was the neglect of lateral root water uptake.Furthermore,there was a probability of 0.12,which ET was entirely provided by SWC decrease on grassland.In this case,there was a high probability(0.98)that soil water responses only occurred at layer 2(10–20 cm),because grass roots mainly distributed in this soil layer,and grasses often used their deep roots for water uptake during ET.To improve the estimation of soil water dynamics and ET,we established a random forest(RF)model to simulate lateral flow and then corrected the community land model(CLM).RF model demonstrated good performance and led to significant improvements in CLM simulation.These findings enhance our understanding of subsurface hydrological partitioning and emphasize the importance of considering lateral flow in ESMs and hydrological research.展开更多
Light absorbing particles(LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric...Light absorbing particles(LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric heating by absorption of solar radiation and interactions with clouds, LAP in snow on land and ice can reduce the surface reflectance(a.k.a., surface darkening), which is likely to accelerate the snow aging process and further reduces snow albedo and increases the speed of snowpack melt. LAP in snow and ice(LAPSI) has been identified as one of major forcings affecting climate change, e.g.in the fourth and fifth assessment reports of IPCC. However, the uncertainty level in quantifying this effect remains very high. In this review paper, we document various technical methods of measuring LAPSI and review the progress made in measuring the LAPSI in Arctic, Tibetan Plateau and other mid-latitude regions. We also report the progress in modeling the mass concentrations, albedo reduction, radiative forcing, and climatic and hydrological impact of LAPSI at global and regional scales. Finally we identify some research needs for reducing the uncertainties in the impact of LAPSI on global and regional climate and the hydrological cycle.展开更多
The regional hydrological system is extremely complex because it is affected not only by physical factors but also by human dimensions.And the hydrological models play a very important role in simulating the complex s...The regional hydrological system is extremely complex because it is affected not only by physical factors but also by human dimensions.And the hydrological models play a very important role in simulating the complex system.However,there have not been effective methods for the model reliability and uncertainty analysis due to its complexity and difficulty.The uncertainties in hydrological modeling come from four important aspects:uncertainties in input data and parameters,uncertainties in model structure,uncertainties in analysis method and the initial and boundary conditions.This paper systematically reviewed the recent advances in the study of the uncertainty analysis approaches in the large-scale complex hydrological model on the basis of uncertainty sources.Also,the shortcomings and insufficiencies in the uncertainty analysis for complex hydrological models are pointed out.And then a new uncertainty quantification platform PSUADE and its uncertainty quantification methods were introduced,which will be a powerful tool and platform for uncertainty analysis of large-scale complex hydrological models.Finally,some future perspectives on uncertainty quantification are put forward.展开更多
The objective of this study is to quantitatively evaluate Tropical Rainfall Measuring Mission (TRMM) data with rain gauge data and further to use this TRMM data to drive a Dis- tributed Time-Variant Gain Model (DT...The objective of this study is to quantitatively evaluate Tropical Rainfall Measuring Mission (TRMM) data with rain gauge data and further to use this TRMM data to drive a Dis- tributed Time-Variant Gain Model (DTVGM) to perform hydrological simulations in the semi-humid Weihe River catchment in China. Before the simulations, a comparison with a 10-year (2001-2010) daily rain gauge data set reveals that, at daily time step, TRMM rainfall data are better at capturing rain occurrence and mean values than rainfall extremes. On a monthly time scale, good linear relationships between TRMM and rain gauge rainfall data are found, with determination coefficients R2 varying between 0.78 and 0.89 for the individual stations. Subsequent simulation results of seven years (2001-2007) of data on daily hydro- logical processes confirm that the DTVGM when calibrated by rain gauge data performs better than when calibrated by TRMM data, but the performance of the simulation driven by TRMM data is better than that driven by gauge data on a monthly time scale. The results thus suggest that TRMM rainfall data are more suitable for monthly streamfiow simulation in the study area, and that, when the effects of recalibration and the results for water balance components are also taken into account, the TRMM 3B42-V7 product has the potential to perform well in similar basins.展开更多
The simulation of hydrological consequences of climate change has received increasing attention from the hydrology and land-surface modelling communities. There have been many studies of climate-change effects on hydr...The simulation of hydrological consequences of climate change has received increasing attention from the hydrology and land-surface modelling communities. There have been many studies of climate-change effects on hydrology and water resources which usually consist of three steps: (1) use of general circulation models (GCMs) to provide future global climate scenarios under the effect of increasing greenhouse gases, (2) use of downscaling techniques (both nested regional climate models, RCMs, and statistical methods) for "downscaling" the GCM output to the scales compatible with hydrological models, and (3) use of hydrologic models to simulate the effects of climate change on hydrological regimes at various scales. Great progress has been achieved in all three steps during the past few years, however, large uncertainties still exist in every stage of such study. This paper first reviews the present achievements in this field and then discusses the challenges for future studies of the hydrological impacts of climate change.展开更多
Considering a detailed hydrologic model in the land surface scheme helps to improve the simulation of regional hydro-climatology. A hydrologic model, which includes spatial heterogeneities in precipitation and infiltr...Considering a detailed hydrologic model in the land surface scheme helps to improve the simulation of regional hydro-climatology. A hydrologic model, which includes spatial heterogeneities in precipitation and infiltration, is constructed and incorporated into the land surface scheme BATS. Via the coupled-model (i.e., a regional climate model) simulations, the following major conclusions are obtained: the simulation of surface hydrology is sensitive to the inclusion of heterogeneities in precipitation and infiltration; the runoff ratio is increased after considering the infiltration heterogeneity, a result which is more consistent with the observations of surface moisture balance over humid areas; the introduction of the parameterization of infiltration heterogeneity can have a greater influence on the regional hydro-climatology than the precipitation heterogeneity; and the consideration of the impermeable fraction for the region reveals some features that are closer to the trend of aridification over northern China.展开更多
On the basis of Digital Elevation Model data, the raster flow vectors, watershed delineation, and spatial topological relationship are generated by the Martz and Garbrecht method for the upper area of Huangnizhuang st...On the basis of Digital Elevation Model data, the raster flow vectors, watershed delineation, and spatial topological relationship are generated by the Martz and Garbrecht method for the upper area of Huangnizhuang station in the Shihe Catchment with 805 km<SUP>2</SUP> of area, an intensified observation field for the HUBEX/GAME Project. Then, the Xin’anjiang Model is applied for runoff production in each grid element where rain data measured by radar at Fuyang station is utilized as the input of the hydrological model. The elements are connected by flow vectors to the outlet of the drainage catchment where runoff is routed by the Muskingum method from each grid element to the outlet according to the length between each grid and the outlet. The Nash-Sutcliffe model efficiency coefficient is 92.41% from 31 May to 3 August 1998, and 85.64%, 86.62%, 92.57%, and 83.91%, respectively for the 1st, 2nd, 3rd, and 4th flood events during the whole computational period. As compared with the case where rain-gauge data are used in simulating the hourly hydrograph at Huangnizhuang station in the Shihe Catchment, the index of model efficiency improvement is positive, ranging from 27.56% to 69.39%. This justifies the claim that radar-measured data are superior to rain-gauge data as inputs to hydrological modeling. As a result, the grid-based hydrological model provides a good platform for runoff computation when radar-measured rain data with highly spatiotemporal resolution are taken as the input of the hydrological model.展开更多
Actual evapotranspiration is a key process of hydrological cycle and a sole term that links land surface water balance and land surface energy balance.Evapotranspiration plays a key role in simulating hydrological eff...Actual evapotranspiration is a key process of hydrological cycle and a sole term that links land surface water balance and land surface energy balance.Evapotranspiration plays a key role in simulating hydrological effect of climate change,and a review of evapotranspiration estimation methods in hydrological models is of vital importance.This paper firstly summarizes the evapotranspiration estimation methods applied in hydrological models and then classifies them into the integrated converting methods and the classification gathering methods by their mechanism.Integrated converting methods are usually used in hydrological models and two differences exist among them:one is in the potential evaporation estimation methods,while the other in the function for defining relationship between potential evapora tion and actual evapotranspiration.Due to the higher information requirements of the Pen-man-Monteith method and the existing data uncertainty,simplified empirical methods for calculating potential and actual evapotranspiration are widely used in hydrological models.Different evapotranspiration calculation methods are used depending on the complexity of the hydrological model,and importance and difficulty in the selection of the most suitable evapotranspiration methods is discussed.Finally,this paper points out the prospective de velopment trends of the evapotranspiration estimating methods in hydrological modeling.展开更多
Accurate estimation of evapotranspiration(ET),especially at the regional scale,is an extensively investigated topic in the field of water science. The ability to obtain a continuous time series of highly precise ET va...Accurate estimation of evapotranspiration(ET),especially at the regional scale,is an extensively investigated topic in the field of water science. The ability to obtain a continuous time series of highly precise ET values is necessary for improving our knowledge of fundamental hydrological processes and for addressing various problems regarding the use of water. This objective can be achieved by means of ET data assimilation based on hydrological modeling. In this paper,a comprehensive review of ET data assimilation based on hydrological modeling is provided. The difficulties and bottlenecks of using ET,being a non-state variable,to construct data assimilation relationships are elaborated upon,with a discussion and analysis of the feasibility of assimilating ET into various hydrological models. Based on this,a new easy-to-operate ET assimilation scheme that includes a water circulation physical mechanism is proposed. The scheme was developed with an improved data assimilation system that uses a distributed time-variant gain model(DTVGM),and the ET-soil humidity nonlinear time response relationship of this model. Moreover,the ET mechanism in the DTVGM was improved to perfect the ET data assimilation system. The new scheme may provide the best spatial and temporal characteristics for hydrological states,and may be referenced for accurate estimation of regional evapotranspiration.展开更多
In order to assess the effects of calibration data series length on the performance and optimal parameter values of a hydrological model in ungauged or data-limited catchments (data are non-continuous and fragmental ...In order to assess the effects of calibration data series length on the performance and optimal parameter values of a hydrological model in ungauged or data-limited catchments (data are non-continuous and fragmental in some catchments), we used non-continuous calibration periods for more independent streamflow data for SIMHYD (simple hydrology) model calibration. Nash-Sutcliffe efficiency and percentage water balance error were used as performance measures. The particle swarm optimization (PSO) method was used to calibrate the rainfall-runoff models. Different lengths of data series ranging from one year to ten years, randomly sampled, were used to study the impact of calibration data series length. Fifty-five relatively unimpaired catchments located all over Australia with daily precipitation, potential evapotranspiration, and streamflow data were tested to obtain more general conclusions. The results show that longer calibration data series do not necessarily result in better model performance. In general, eight years of data are sufficient to obtain steady estimates of model performance and parameters for the SIMHYD model. It is also shown that most humid catchments require fewer calibration data to obtain a good performance and stable parameter values. The model performs better in humid and semi-humid catchments than in arid catchments. Our results may have useful and interesting implications for the efficiency of using limited observation data for hydrological model calibration in different climates.展开更多
In this study, we investigated the origin of the overland flow roughness problem and divided the current overland flow roughness research into three types, as follows: the first type of research takes into account the...In this study, we investigated the origin of the overland flow roughness problem and divided the current overland flow roughness research into three types, as follows: the first type of research takes into account the effects of roughness on the volume and velocity of surface runoff, flood peaks, and the scouring capability of flows, but has not addressed the spatial variability of roughness in detail; the second type of research considers that surface roughness varies spatially with different land usage types, land-cover conditions, and different tillage forms, but lacks a quantitative study of the spatial variability; and the third type of research simply deals with the spatial variability of roughness in each grid cell or land type. We present three shortcomings of the current overland flow roughness research, including(1) the neglect of roughness in distributed hydrological models when simulating the overland flow direction and distribution,(2) the lack of consideration of spatial variability of roughness in hydrological models, and(3) the failure to distinguish the roughness formulas in different overland flow regimes. To solve these problems,distributed hydrological model research should focus on four aspects in regard to overland flow: velocity field observations, flow regime mechanisms, a basic roughness theory, and scale problems.展开更多
基金Supported by Open Project Fund of China Meteorological Administration Basin Heavy Rainfall Key Laboratory(2023BHR-Y26)Innovation Project Fund of Wuhan Metropolitan Area Meteorological Joint Science and Technology(WHCSQY202305)+1 种基金Innovation and Development Special Project of China Meteorological Administration(CXFZ2022J019)Project of Huanggang Meteorological Bureau's Scientific Research(2022Y02).
文摘It is an important standard to judge the flood disaster in the basin whether the rainfall at the flood-inducing interface is reached.In this paper,the Xin'anjiang model,Topmodel model and SCS model were selected to calculate and compare the rainfall at the flood-inducing interface in the Zhanghe Reservoir basin in Hubei Province.The results showed that average relative error and average absolute error of Xin'anjiang model were-3.36%and-21.46×10^(5)m^(3),which were the minimum,followed by Topmodel model with 5.72%and 26.22×10^(5)m^(3),SCS model with 11.33%and 58.13×10^(5)m^(3).The minimum absolute error of the three hydrological models in calculating the rainfall at the critical interface was 3.26 mm,while the maximum was 49.24 mm.When the initial water level exceeded 120 m,the difference among the three models in calculating the rainfall at the critical interface became more and more obvious.When the reservoir water level was lower than 120 m,it mainly referred to the calculation results of Xin'anjiang model.When the reservoir water level was higher than 120 m,it mainly referred to the calculation results of Topmodel model.The research conclusion can provide reference for small and medium-sized basins selecting hydrological model to calculate the rainfall at the flood-inducing interface.
文摘Anthropogenically induced land use/land cover(LULC)transformations and accelerating climatic variabilities have emerged as pivotal forces reshaping the hydrological equilibrium of fluvial systems,particularly in ecologically sensitive basins.This study systematically interrogates the compounded ramifications of LULC dynamics and projected climate change on the hydrological response of the Upper Jemma Watershed an integral sub-catchment of the Upper Blue Nile River system.Employing the advanced QSWAT+hydrological modeling framework within a GIS interface,the analysis integrates bias‐corrected climatic projections under RCP 4.5 and RCP 8.5 scenarios alongside multi-temporal remote sensing‐derived land cover datasets.The findings unveil an unequivocal intensification of surface runoff and streamflow due to expansive agricultural encroachment,juxtaposed with a discernible decline in evapotranspiration and soil water retention.Climatic perturbations,notably temperature elevation and precipitation attenuation,further exacerbate these trends,with pronounced seasonality in hydrological fluxes.Importantly,synergistic interactions between land cover transformation and climatic anomalies manifest in nonlinear hydrological alterations,amplifying peak flows and diminishing baseflows.This underscores the riverine system's heightened vulnerability and the necessity for integrated watershed management strategies that account for multifactorial hydrological stressors.The study provides a robust empirical and modeling basis to inform adaptive water governance within transboundary river basins susceptible to environmental transitions.
基金supported by Yibin University,Sichuan,China and Hebei University,Baoding,China(Grant No.521100221033).
文摘Forest hydrology,the study of water dynamics within forested catchments,is crucial for understanding the intricate relationship between forest cover and water balances across different scales,from ecosystems to landscapes,or from catchment watersheds.The intensified global changes in climate,land use and cover,and pollution that occurred over the past century have brought about adverse impacts on forests and their services in water regulation,signifying the importance of forest hydrological research as a re-emerging topic of scientific interest.This article reviews the literature on recent advances in forest hydrological research,intending to identify leading countries,institutions,and researchers actively engaged in this field,as well as highlighting research hotspots for future exploration.Through a systematic analysis using VOSviewer,drawing from 17,006 articles retrieved from the Web of Science Core Collection spanning 2000–2022,we employed scientometric methods to assess research productivity,identify emerging topics,and analyze academic development.The findings reveal a consistent growth in forest hydrological research over the past two decades,with the United States,Charles T.Driscoll,and the Chinese Academy of Sciences emerging as the most productive country,author,and institution,respectively.The Journal of Hydrology emerges as the most co-cited journal.Analysis of keyword co-occurrence and co-cited references highlights key research areas,including climate change,management strategies,runoff-erosion dynamics,vegetation cover changes,paired catchment experiments,water quality,aquatic biodiversity,forest fire dynamics and hydrological modeling.Based on these findings,our study advocates for an integrated approach to future research,emphasizing the collection of data from diverse sources,utilization of varied methodologies,and collaboration across disciplines and institutions.This holistic strategy is essential for developing sustainable approaches to forested watershed planning and management.Ultimately,our study provides valuable insights for researchers,practitioners,and policymakers,guiding future research directions towards forest hydrological research and applications.
基金support from the National Key R&D Program of China(2021YFC3001003)Guangdong Provincial Department of Science and Technology(2022A0505030019)Science and Technology Development Fund,Macao SAR(File nos.0056/2023/RIB2,001/2024/SKL).
文摘Characterization of vegetation effect on soil response is essential for comprehending site-specific hydrological processes.Traditional research often relies on sensors or remote sensing data to examine the hydrological properties of vegetation zones,yet these methods are limited by either measurement sparsity or spatial inaccuracy.Therefore,this paper is the first to propose a data-driven approach that incorporates high-temporal-resolution electrical resistivity tomography(ERT)to quantify soil hydrological response.Time-lapse ERT is deployed on a vegetated slope site in Foshan,China,during a discontinuous rainfall induced by Typhoon Haikui.A total of 97 ERT measurements were collected with an average time interval of 2.7 hours.The Gaussian Mixture Model(GMM)is applied to quantify the level of response and objectively classify impact zones based on features extracted directly from the ERT data.The resistivity-moisture content correlation is established based on on-site sensor data to characterize infiltration and evapotranspiration across wet-dry conditions.The findings are compared with the Normalized Difference Vegetation Index(NDVI),a common indicator for vegetation quantification,to reveal potential spatial errors in remote sensing data.In addition,this study provides discussions on the potential applications and future directions.This paper showcases significant spatio-temporal advantages over existing studies,providing a more detailed and accurate characterization of superficial soil hydrological response.
文摘Hydrological modeling plays a crucial role in efficiently managing water resources and understanding the hydrologic behavior of watersheds. This study aims to simulate daily streamflow in the Godavari River Basin in Maharashtra using the Soil and Water Assessment Tool (SWAT). SWAT is a process-based hydrological model used to predict water balance components, sediment levels, and nutrient contamination. In this research, we used integrated remote sensing and GIS data, including Digital Elevation Models (DEM), land use and land cover (LULC) maps, soil maps, and observed precipitation and temperature data, as input for developing the SWAT model to assess surface runoff in this large river basin. The Godavari River Basin under study was divided into 25 sub-basins, comprising 151 hydrological response units categorized by unique land cover, soil, and slope characteristics using the SWAT model. The model was calibrated and validated against observed runoff data for two time periods: 2003-2006 and 2007-2010 respectively. Model performance was assessed using the Nash-Sutcliffe efficiency (NSE) and the coefficient of determination (R2). The results show the effectiveness of the SWAT2012 model, with R2 value of 0.84 during calibration and 0.86 during validation. NSE values also ranged from 0.84 during calibration to 0.85 during validation. These findings enhance our understanding of surface runoff dynamics in the Godavari River Basin under study and highlight the suit-ability of the SWAT model for this region.
基金funded by the National Natural Science Foundation of China (42174030)Major Science and Technology Program for Hubei Province (Grant No.2022AAA002)+2 种基金Special fund of Hubei Luojia Loboratory (220100020)the National Natural Science Foundation of China under Grant 42304031the China Postdoctoral Science Foundation 2022M722441。
文摘Hydrological models are crucial for characterizing large-scale water quantity variations and correcting GNSS reference station vertical displacements.We evaluated the robustness of multiple models,such as the Global Land Data Assimilation System (GLDAS),the Famine Early Warning System Network Land Data Assimilation System (FLDAS),the National Centers for Environmental Prediction (NCEP),and the WaterGAP Global Hydrology Model (WGHM).Inter-model and outer comparisons with Global Positioning System (GPS) coordinate time series,satellite gravity field Mascon solutions,and Global Precipitation Climatology Centre (GPCC) guide our assessment.Results confirm WGHM's 26% greater effectiveness in correcting nonlinear variations in GPS height time series compared to NCEP.In the Amazon River Basin,a 5-month lag between FLDAS,GLDAS,and satellite gravity results is observed.In eastern Asia and Australia,NCEP's Terrestrial Water Storage Changes (TWSC)-derived surface displacements correlate differently with precipitation compared to other models.Three combined hydrological models (H-VCE,H-EWM,and H-CVM) utilizing Variance Component Estimation (VCE),Entropy Weight Method (EWM),and Coefficient of Variation Method (CVM) are formulated.Correcting nonlinear variations with combined models enhances global GPS height scatter by 15%-17%.Correlation with precipitation increases by 25%-30%,and with satellite gravity,rises from 0.2 to 0.8 at maximum.The combined model eliminates time lag in the Amazon Basin TWSC analysis,exhibiting a four times higher signal-to-noise ratio than single models.H-VCE demonstrates the highest accuracy.In summary,the combined hydrological model minimizes discrepancies among individual models,significantly improving accuracy for monitoring large-scale TWSC.
基金Vingroup JSCMaster,PhD Scholarship Program of Vingroup Innovation Foundation,Grant/Award Number:VINIF.2021.ThS.97。
文摘Flood forecasting is critical for mitigating flood damage and ensuring a safe operation of hydroelectric power plants and reservoirs.This paper presents a new hybrid hydrological model based on the combination of the Hydrologic Engineering Center-Hydrologic Modeling System(HEC-HMS)hydrological model and an Encoder-Decoder-Long Short-Term Memory network to enhance the accuracy of real-time flood forecasting.The proposed hybrid model has been applied to the Krong H'nang hydropower reservoir.The observed data from 33 floods monitored between 2016 and 2021 are used to calibrate,validate,and test the hybrid model.Results show that the HEC-HMS-artificial neural network hybrid model significantly improves the forecast quality,especially for results at a longer forecasting time.In detail,the Kling-Gupta efficiency(KGE)index,for example,increased from ΔKGE=16%at time t+1h to ΔKGE=69%at time t+6 h.Similar results were obtained for other indicators including peak error and volume error.The computer program developed for this study is being used in practice at the Krong H'nang hydropower to aid in reservoir planning,flood control,and water resource efficiency.
文摘In this study, we analyse the climate variability in the Upper Benue basin and assess its potential impact on the hydrology regime under two different greenhouse gas emission scenarios. The hydrological regime of the basin is more vulnerable to climate variability, especially precipitation and temperature. Observed hydroclimatic data (1950-2015) was analysed using a statistical approach. The potential impact of future climate change on the hydrological regime is quantified using the GR2M model and two climate models: HadGEM2-ES and MIROC5 from CMIP5 under RCP 4.5 and RCP 8.5 greenhouse gas emission scenarios. The main result shows that precipitation varies significantly according to the geographical location and time in the Upper Benue basin. The trend analysis of climatic parameters shows a decrease in annual average precipitation across the study area at a rate of -0.568 mm/year which represents about 37 mm/year over the time 1950-2015 compared to the 1961-1990 reference period. An increase of 0.7°C in mean temperature and 14% of PET are also observed according to the same reference period. The two climate models predict a warming of the basin of about 2°C for both RCP 4.5 and 8.5 scenarios and an increase in precipitation between 1% and 10% between 2015 and 2100. Similarly, the average annual flow is projected to increase by about +2% to +10% in the future for both RCP 4.5 and 8.5 scenarios between 2015 and 2100. Therefore, it is primordial to develop adaptation and mitigation measures to manage efficiently the availability of water resources.
基金funded by the National Natural Science Foundation of China(42371022,42030501,41877148).
文摘Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This study focused on quantifying subsurface hydrological partitioning,specifically in an alpine mountainous area,and highlighted the important role of lateral flow during this process.Precipitation was usually classified as two parts into the soil:increased soil water content(SWC)and lateral flow out of the soil pit.It was found that 65%–88%precipitation contributed to lateral flow.The second common partitioning class showed an increase in SWC caused by both precipitation and lateral flow into the soil pit.In this case,lateral flow contributed to the SWC increase ranging from 43%to 74%,which was notably larger than the SWC increase caused by precipitation.On alpine meadows,lateral flow from the soil pit occurred when the shallow soil was wetter than the field capacity.This result highlighted the need for three-dimensional simulation between soil layers in Earth system models(ESMs).During evapotranspiration process,significant differences were observed in the classification of subsurface hydrological partitioning among different vegetation types.Due to tangled and aggregated fine roots in the surface soil on alpine meadows,the majority of subsurface responses involved lateral flow,which provided 98%–100%of evapotranspiration(ET).On grassland,there was a high probability(0.87),which ET was entirely provided by lateral flow.The main reason for underestimating transpiration through soil water dynamics in previous research was the neglect of lateral root water uptake.Furthermore,there was a probability of 0.12,which ET was entirely provided by SWC decrease on grassland.In this case,there was a high probability(0.98)that soil water responses only occurred at layer 2(10–20 cm),because grass roots mainly distributed in this soil layer,and grasses often used their deep roots for water uptake during ET.To improve the estimation of soil water dynamics and ET,we established a random forest(RF)model to simulate lateral flow and then corrected the community land model(CLM).RF model demonstrated good performance and led to significant improvements in CLM simulation.These findings enhance our understanding of subsurface hydrological partitioning and emphasize the importance of considering lateral flow in ESMs and hydrological research.
基金supported by the U.S.Department of Energy, Office of Science, Biological and Environmental Research, as part of the Earth System Modeling ProgramThe NASA Modeling, Analysis, and Prediction (MAP) Program by the Science Mission Directorate at NASA Headquarters supported the work contributed by Teppei J.YASUNARI and William K.M.LAU+2 种基金The NASA GEOS-5 simulation was implemented in the system for NASA Center for Climate Simulation (NCCS).M.G.Flanner was partially supported by NSF 1253154support from the China Scholarship FundThe Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC06-76RLO1830
文摘Light absorbing particles(LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric heating by absorption of solar radiation and interactions with clouds, LAP in snow on land and ice can reduce the surface reflectance(a.k.a., surface darkening), which is likely to accelerate the snow aging process and further reduces snow albedo and increases the speed of snowpack melt. LAP in snow and ice(LAPSI) has been identified as one of major forcings affecting climate change, e.g.in the fourth and fifth assessment reports of IPCC. However, the uncertainty level in quantifying this effect remains very high. In this review paper, we document various technical methods of measuring LAPSI and review the progress made in measuring the LAPSI in Arctic, Tibetan Plateau and other mid-latitude regions. We also report the progress in modeling the mass concentrations, albedo reduction, radiative forcing, and climatic and hydrological impact of LAPSI at global and regional scales. Finally we identify some research needs for reducing the uncertainties in the impact of LAPSI on global and regional climate and the hydrological cycle.
基金National Key Basic Research Program of China,No.2010CB428403National Grand Science and Technology Special Project of Water Pollution Control and Improvement,No.2009ZX07210-006
文摘The regional hydrological system is extremely complex because it is affected not only by physical factors but also by human dimensions.And the hydrological models play a very important role in simulating the complex system.However,there have not been effective methods for the model reliability and uncertainty analysis due to its complexity and difficulty.The uncertainties in hydrological modeling come from four important aspects:uncertainties in input data and parameters,uncertainties in model structure,uncertainties in analysis method and the initial and boundary conditions.This paper systematically reviewed the recent advances in the study of the uncertainty analysis approaches in the large-scale complex hydrological model on the basis of uncertainty sources.Also,the shortcomings and insufficiencies in the uncertainty analysis for complex hydrological models are pointed out.And then a new uncertainty quantification platform PSUADE and its uncertainty quantification methods were introduced,which will be a powerful tool and platform for uncertainty analysis of large-scale complex hydrological models.Finally,some future perspectives on uncertainty quantification are put forward.
基金National Key Technology P&D Program,No.2012BAB02B00The Fundamental Research Funds for the Central Universities
文摘The objective of this study is to quantitatively evaluate Tropical Rainfall Measuring Mission (TRMM) data with rain gauge data and further to use this TRMM data to drive a Dis- tributed Time-Variant Gain Model (DTVGM) to perform hydrological simulations in the semi-humid Weihe River catchment in China. Before the simulations, a comparison with a 10-year (2001-2010) daily rain gauge data set reveals that, at daily time step, TRMM rainfall data are better at capturing rain occurrence and mean values than rainfall extremes. On a monthly time scale, good linear relationships between TRMM and rain gauge rainfall data are found, with determination coefficients R2 varying between 0.78 and 0.89 for the individual stations. Subsequent simulation results of seven years (2001-2007) of data on daily hydro- logical processes confirm that the DTVGM when calibrated by rain gauge data performs better than when calibrated by TRMM data, but the performance of the simulation driven by TRMM data is better than that driven by gauge data on a monthly time scale. The results thus suggest that TRMM rainfall data are more suitable for monthly streamfiow simulation in the study area, and that, when the effects of recalibration and the results for water balance components are also taken into account, the TRMM 3B42-V7 product has the potential to perform well in similar basins.
文摘The simulation of hydrological consequences of climate change has received increasing attention from the hydrology and land-surface modelling communities. There have been many studies of climate-change effects on hydrology and water resources which usually consist of three steps: (1) use of general circulation models (GCMs) to provide future global climate scenarios under the effect of increasing greenhouse gases, (2) use of downscaling techniques (both nested regional climate models, RCMs, and statistical methods) for "downscaling" the GCM output to the scales compatible with hydrological models, and (3) use of hydrologic models to simulate the effects of climate change on hydrological regimes at various scales. Great progress has been achieved in all three steps during the past few years, however, large uncertainties still exist in every stage of such study. This paper first reviews the present achievements in this field and then discusses the challenges for future studies of the hydrological impacts of climate change.
基金This work was jointly supported by the National Natural Science Foundation of China under Grant No. 40205012, and 40201048, the Chinese NKBRSF Project G1999043400 and the Foundation of the China Ministry of Education (Grant No. 20010284027). The computat
文摘Considering a detailed hydrologic model in the land surface scheme helps to improve the simulation of regional hydro-climatology. A hydrologic model, which includes spatial heterogeneities in precipitation and infiltration, is constructed and incorporated into the land surface scheme BATS. Via the coupled-model (i.e., a regional climate model) simulations, the following major conclusions are obtained: the simulation of surface hydrology is sensitive to the inclusion of heterogeneities in precipitation and infiltration; the runoff ratio is increased after considering the infiltration heterogeneity, a result which is more consistent with the observations of surface moisture balance over humid areas; the introduction of the parameterization of infiltration heterogeneity can have a greater influence on the regional hydro-climatology than the precipitation heterogeneity; and the consideration of the impermeable fraction for the region reveals some features that are closer to the trend of aridification over northern China.
基金The research is jointly supported financially by the National Natural Science Foundation of China under Grant No. 40171016 and 49794030.
文摘On the basis of Digital Elevation Model data, the raster flow vectors, watershed delineation, and spatial topological relationship are generated by the Martz and Garbrecht method for the upper area of Huangnizhuang station in the Shihe Catchment with 805 km<SUP>2</SUP> of area, an intensified observation field for the HUBEX/GAME Project. Then, the Xin’anjiang Model is applied for runoff production in each grid element where rain data measured by radar at Fuyang station is utilized as the input of the hydrological model. The elements are connected by flow vectors to the outlet of the drainage catchment where runoff is routed by the Muskingum method from each grid element to the outlet according to the length between each grid and the outlet. The Nash-Sutcliffe model efficiency coefficient is 92.41% from 31 May to 3 August 1998, and 85.64%, 86.62%, 92.57%, and 83.91%, respectively for the 1st, 2nd, 3rd, and 4th flood events during the whole computational period. As compared with the case where rain-gauge data are used in simulating the hourly hydrograph at Huangnizhuang station in the Shihe Catchment, the index of model efficiency improvement is positive, ranging from 27.56% to 69.39%. This justifies the claim that radar-measured data are superior to rain-gauge data as inputs to hydrological modeling. As a result, the grid-based hydrological model provides a good platform for runoff computation when radar-measured rain data with highly spatiotemporal resolution are taken as the input of the hydrological model.
基金CAS-CSIRO Cooperative Research Program,No.CJHZ1223National Basic Research Program of China,No.2010CB428406
文摘Actual evapotranspiration is a key process of hydrological cycle and a sole term that links land surface water balance and land surface energy balance.Evapotranspiration plays a key role in simulating hydrological effect of climate change,and a review of evapotranspiration estimation methods in hydrological models is of vital importance.This paper firstly summarizes the evapotranspiration estimation methods applied in hydrological models and then classifies them into the integrated converting methods and the classification gathering methods by their mechanism.Integrated converting methods are usually used in hydrological models and two differences exist among them:one is in the potential evaporation estimation methods,while the other in the function for defining relationship between potential evapora tion and actual evapotranspiration.Due to the higher information requirements of the Pen-man-Monteith method and the existing data uncertainty,simplified empirical methods for calculating potential and actual evapotranspiration are widely used in hydrological models.Different evapotranspiration calculation methods are used depending on the complexity of the hydrological model,and importance and difficulty in the selection of the most suitable evapotranspiration methods is discussed.Finally,this paper points out the prospective de velopment trends of the evapotranspiration estimating methods in hydrological modeling.
基金National Key Basic Research Program of China(973 Program),No.2015CB452701National Natural Science Foundation of China,No.41271003+1 种基金No.41371043No.41401042
文摘Accurate estimation of evapotranspiration(ET),especially at the regional scale,is an extensively investigated topic in the field of water science. The ability to obtain a continuous time series of highly precise ET values is necessary for improving our knowledge of fundamental hydrological processes and for addressing various problems regarding the use of water. This objective can be achieved by means of ET data assimilation based on hydrological modeling. In this paper,a comprehensive review of ET data assimilation based on hydrological modeling is provided. The difficulties and bottlenecks of using ET,being a non-state variable,to construct data assimilation relationships are elaborated upon,with a discussion and analysis of the feasibility of assimilating ET into various hydrological models. Based on this,a new easy-to-operate ET assimilation scheme that includes a water circulation physical mechanism is proposed. The scheme was developed with an improved data assimilation system that uses a distributed time-variant gain model(DTVGM),and the ET-soil humidity nonlinear time response relationship of this model. Moreover,the ET mechanism in the DTVGM was improved to perfect the ET data assimilation system. The new scheme may provide the best spatial and temporal characteristics for hydrological states,and may be referenced for accurate estimation of regional evapotranspiration.
基金supported by the National Basic Research Program of China (the 973 Program,Grant No.2010CB951102)the National Supporting Plan Program of China (Grants No.2007BAB28B01 and 2008BAB42B03)the National Natural Science Foundation of China (Grant No. 50709042),and the Regional Water Theme in the Water for a Healthy Country Flagship
文摘In order to assess the effects of calibration data series length on the performance and optimal parameter values of a hydrological model in ungauged or data-limited catchments (data are non-continuous and fragmental in some catchments), we used non-continuous calibration periods for more independent streamflow data for SIMHYD (simple hydrology) model calibration. Nash-Sutcliffe efficiency and percentage water balance error were used as performance measures. The particle swarm optimization (PSO) method was used to calibrate the rainfall-runoff models. Different lengths of data series ranging from one year to ten years, randomly sampled, were used to study the impact of calibration data series length. Fifty-five relatively unimpaired catchments located all over Australia with daily precipitation, potential evapotranspiration, and streamflow data were tested to obtain more general conclusions. The results show that longer calibration data series do not necessarily result in better model performance. In general, eight years of data are sufficient to obtain steady estimates of model performance and parameters for the SIMHYD model. It is also shown that most humid catchments require fewer calibration data to obtain a good performance and stable parameter values. The model performs better in humid and semi-humid catchments than in arid catchments. Our results may have useful and interesting implications for the efficiency of using limited observation data for hydrological model calibration in different climates.
基金supported by the National Natural Science Foundation of China(Grants No.41471025 and 40971021)the Natural Science Foundation of Shandong Province(Grant No.ZR2014DM004)
文摘In this study, we investigated the origin of the overland flow roughness problem and divided the current overland flow roughness research into three types, as follows: the first type of research takes into account the effects of roughness on the volume and velocity of surface runoff, flood peaks, and the scouring capability of flows, but has not addressed the spatial variability of roughness in detail; the second type of research considers that surface roughness varies spatially with different land usage types, land-cover conditions, and different tillage forms, but lacks a quantitative study of the spatial variability; and the third type of research simply deals with the spatial variability of roughness in each grid cell or land type. We present three shortcomings of the current overland flow roughness research, including(1) the neglect of roughness in distributed hydrological models when simulating the overland flow direction and distribution,(2) the lack of consideration of spatial variability of roughness in hydrological models, and(3) the failure to distinguish the roughness formulas in different overland flow regimes. To solve these problems,distributed hydrological model research should focus on four aspects in regard to overland flow: velocity field observations, flow regime mechanisms, a basic roughness theory, and scale problems.