To extend a new family of aminophosphine-coordinated[FeFe]-hydrogenase mimics for catalytic hydro-gen(H_(2))evolution,we carried out the ligand substitutions of diiron hexacarbonyl precursors[Fe_(2)(μ-X_(2)pdt)(CO)_(...To extend a new family of aminophosphine-coordinated[FeFe]-hydrogenase mimics for catalytic hydro-gen(H_(2))evolution,we carried out the ligand substitutions of diiron hexacarbonyl precursors[Fe_(2)(μ-X_(2)pdt)(CO)_(6)](X_(2)pdt=(SCH_(2))_(2)CX_(2),X=Me,H)with aminodiphosphines(Ph_(2)PCH_(2))_(2)NY(Y=(CH_(2))_(2)OH,(CH_(2))_(3)OH)to obtain two new diiron aminophosphine complexes[Fe_(2)(L1)(μ-Me_(2)pdt)(CO)_(5)](1)and[Fe_(2)(L2)(μ-H_(2)pdt)(CO)_(5)](2),where L1=3-[(diphe-nylphosphaneyl)methyl]oxazolidine,L2=3-[(diphenylphosphaneyl)methyl]-1,3-oxazinane.Moreover,the structures of 1 and 2 have been fully confirmed by elemental analysis,spectroscopic techniques,and single-crystal X-ray diffraction.Using cyclic voltammetry(CV),we investigated the electrochemical redox performance and proton reduc-tion activities of 1 and 2 in acetic acid(HOAc).The CV study indicates that diiron aminophosphine complexes 1 and 2 can be considered to be hydrogenase-inspired diiron molecular electrocatalysts for the reduction of protons into H 2 generation in the presence of HOAc.CCDC:2443967,1;2443969,2.展开更多
Two Gd_(2)complexes,namely[Gd_(2)(dbm)_(2)(HL_(1))_(2)(CH_(3)OH)_(2)]·4CH_(3)OH(1)and[Gd_(2)(dbm)_(2)(L_(2))_(2)(CH_(3)OH)_(2)]·2CH_(3)OH(2),where H_(3)L_(1)=(Z)-N'-[4-(diethylamino)-2-hydroxybenzylidene...Two Gd_(2)complexes,namely[Gd_(2)(dbm)_(2)(HL_(1))_(2)(CH_(3)OH)_(2)]·4CH_(3)OH(1)and[Gd_(2)(dbm)_(2)(L_(2))_(2)(CH_(3)OH)_(2)]·2CH_(3)OH(2),where H_(3)L_(1)=(Z)-N'-[4-(diethylamino)-2-hydroxybenzylidene]-2-hydroxyacetohydrazide,H_(2)L_(2)=(E)-N'-(5-bromo-2-hydroxy-3-methoxybenzylidene)nicotinohydrazide,Hdbm=dibenzoylmethane,have been constructed by adopting the solvothermal method.Structural characterization unveils that both complexes 1 and 2 are constituted by two Gd^(3+)ions,two dbm-ions,two CH_(3)OH molecules,and two polydentate Schiff-base ligands(HL_(1)^(2-)or L_(2)^(2-)).In addition,complex 1 contains four free methanol molecules,whereas complex 2 harbors two free methanol molecules.By investigating the interactions between complexes 1 and 2 and four types of bacteria(Bacillus subtilis,Escherichia coli,Staphylococcus aureus,Candida albicans),it was found that both complexes 1 and 2 exhibited potent antibacte-rial activities.The interaction mechanisms between the ligands H_(3)L_(1),H_(2)L_(2),complexes 1 and 2,and calf thymus DNA(CT-DNA)were studied using ultraviolet-visible spectroscopy,fluorescence titration,and cyclic voltammetry.The results demonstrated that both complexes 1 and 2 can intercalate into CT-DNA molecules,thereby inhibiting bacterial proliferation to achieve the antibacterial effects.CCDC:2401116,1;2401117,2.展开更多
New complexes of europium,gadolinium and terbium trinitrates with N,N,N’,N’-tetraalkyl substituted phenanthroline diamides were synthesized.The europium complexes were found to be highly efficient in terms of lumine...New complexes of europium,gadolinium and terbium trinitrates with N,N,N’,N’-tetraalkyl substituted phenanthroline diamides were synthesized.The europium complexes were found to be highly efficient in terms of luminescence properties(max quantum yield=67%).The significant influence of the structure of the ligands on the photophysical characteristics of their complexes was demonstrated.Thus,the incorporation of various substituents(Cl,F,O,OH)into the phenanthroline core causes significant changes in the luminescent behavior of the obtained coordination compounds.We observed significant differences in the energy gap between the excited states S_(1)and T_(1),especially in the L2H.Eu(NO_(3))_(3)and L2FOH.Eu(NO_(3))_(3)complexes,which both demonstrated high overall quantum yields(66%and 67%,respectively).Study of the diffuse reflection spectra of terbium complexes suggested the phenomenon of charge transfer,potentially ligand-to-ligand(LLCT)or intra-ligand(ILCT),rather than ligand-to-metal charge transfer(LMCT).These results highlight the complicated relationship between ligand structure,energy transfer mechanisms and quantum yield in rare earth element complexes,shedding light on ways to optimize their luminescent properties.展开更多
In this work,we synthesize two luminescent Pt(Ⅱ)complexes using differentπ-conjugated bidentate ligands.Both complexes are assembled into three-dimensional(3D)networks through non-classical intermolecular interactio...In this work,we synthesize two luminescent Pt(Ⅱ)complexes using differentπ-conjugated bidentate ligands.Both complexes are assembled into three-dimensional(3D)networks through non-classical intermolecular interactions in the crystal state.Unexpectedly,substituting pyridine with the more extensivelyπ-conjugated quinoline significantly increases the dihedral angles between the phenyl and quinolyl groups of the bidentate ligands.This alteration disrupts theπ-πinteractions between molecules,resulting in distinct optical properties upon exposure to external stimuli.By integrating these complexes into polymers,we fabricate electrospun films containing luminescent nanofibers that exhibit reversible optical changes.These findings have paved the way for the development of high-performance optical encryption and anti-counterfeiting materials,achieved through the employment of simple chromophores.展开更多
Microstructure topology evolution during severe plastic deformation(SPD)is crucial for understanding and optimising the mechanical properties of metallic materials,though its prediction remains challenging.Herein,we c...Microstructure topology evolution during severe plastic deformation(SPD)is crucial for understanding and optimising the mechanical properties of metallic materials,though its prediction remains challenging.Herein,we combine discrete cell complexes(DCC),a fully discrete algebraic topology model-with finite element analysis(FEA)to simulate and analyse the microstructure topology of pure copper under SPD.Using DCC,we model the evolution of microstructure topology characterised by Betti numbers(β_(0),β_(1),β_(2))and Euler characteristic(χ).This captures key changes in GBNs and topological features within representative volume elements(RVEs)containing several hundred grains during SPD-induced recrystallisation.As SPD cycles increase,high-angle grain boundaries(HAGBs)progressively form.Topological analysis reveals an overall decrease in β_(0)values,indicating fewer isolated HAGB substructures,while β_(2) values show a steady upward trend,highlighting new grain formation.Leveraging DCC-derived RVE topology and FEA-generated plastic strain data,we directly simulate the evolution and spatial distribution of microstructure topology and HAGB fraction in a copper tube undergoing cyclic parallel tube channel angular pressing(PTCAP),a representative SPD technique.Within the tube,the HAGB fraction continuously increases with PTCAP cycles,reflecting the microstructure’s gradual transition from subgrains to fully-formed grains.Analysis of Betti number distribution and evolution reveals the microstructural reconstruction mechanism underpinning this subgrain to grain transition during PTCAP.We further demonstrate the significant influence of spatially non-uniform plastic strain distribution on microstructure reconstruction kinetics.This study demonstrates a feasible approach for simulating microstructure topology evolution of metals processed by cyclic SPD via the integration of DCC and FEA.展开更多
Intracellular bacteria(ICB),cloaked by the protective barriers of host cells,pose a formidable challenge to selective and efficient eradication.The employment of activatable photosensitizers based antibacterial photod...Intracellular bacteria(ICB),cloaked by the protective barriers of host cells,pose a formidable challenge to selective and efficient eradication.The employment of activatable photosensitizers based antibacterial photodynamic therapy(a PDT)holds significant potential for selective imaging and photo-inactivation of ICB while minimizing side effects on normal cells.Drawing inspiration from the elevated hypochlorous acid(HClO)levels in ICB infected phagocytes,herein we firstly designed and synthesized a series of HCl Oresponsive dinuclear Ru(Ⅱ)complexes(Ru1-Ru3)to achieve such a goal.Initially,the luminescence,^(1)O_(2)generation and a PDT activity of these Ru(Ⅱ)complexes were suppressed due to the quenching effect of the azo group,but were recovered after reaction with HCl O in solutions or within ICB infected phagocytes.The detailed results revealed that Ru1 and Ru3 could not only selectively visualize ICB,but also demonstrated remarkable a PDT activity against ICB,surpassing vancomycin both in vitro and in vivo.展开更多
The reaction of 4-nitro-N'-(pyridin-2-ylmethylene)benzohydrazide(HL) with Ln(OAc)_(3)·4H_(2)O in MeOH makes it possible to synthesize mononuclear complexes [Ln(L)_(2)(OAc)(MeOH)]·2H_(2)O(Ln=Tb^(Ⅲ)(1),E...The reaction of 4-nitro-N'-(pyridin-2-ylmethylene)benzohydrazide(HL) with Ln(OAc)_(3)·4H_(2)O in MeOH makes it possible to synthesize mononuclear complexes [Ln(L)_(2)(OAc)(MeOH)]·2H_(2)O(Ln=Tb^(Ⅲ)(1),Eu^(Ⅲ)(2) and Gd^(Ⅲ)(3)) with chelate acetate and L^(-)anions.Compound 1 can be crystallized in reaction with molar ratio HL:Ln=1:1,2:1,3:1,and we successfully synthesized complex with three chelate L anions[Tb(L)_(3)]_(2)·2MeOH·H_(2)O(4) by interaction of TbCl_(3)·6H_(2)O with deprotonated HL(HL:Ln=3:1).Terbium(Ⅲ) compound 1 starts to decompose at~323 K and becomes stable up to 552 K according to the STA.Compound 1 shows slow magnetic relaxation with parameters Δ_(eff)/k_B=(6.75±0.02) K,τ_(0)=(1.71 × 10^(-6)±1 × 10^(-8)) s.Complexes 1 and 2 exhibit only fluorescence and phosphorescence of the L^(-).Ion-centered luminescence of the Tb^(3+)or Eu^(3+)ion is not observed.Using the tangent method at the high-energy edge of the phospho rescence spectrum of Gd^(3+),complex 3 T_(1) energy level of L^(-)is estimated to be 19700 cm^(-1).Reasons of luminescence quenching are discussed.Structures of 1 and 4 were determined by single crystal X-ray diffraction,and compounds 1-3 were characterized by powder X-ray diffraction(PXRD).展开更多
In this study, the first raw transition metals from V to Co complexes with benzene-1,2-dithiolate (L2-) ligand have been studied theoretically to elucidate the geometry, electronic structure and spectroscopic properti...In this study, the first raw transition metals from V to Co complexes with benzene-1,2-dithiolate (L2-) ligand have been studied theoretically to elucidate the geometry, electronic structure and spectroscopic properties of the complexes. Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT) methods have been used. The ground state geometries, binding energies, spectral properties (UV-vis), frontier molecular orbitals (FMOs) analysis, charge analysis and natural bond orbital (NBO) have been investigated. The geometrical parameters are in good agreement with the available experimental data. The metal-ligand binding energies are 1 order of magnitude larger than the physisorption energy of a benzene-1, 2-dthiolate molecule on a metallic surface. The electronic structures of the first raw transition metal series from V to Co have been elucidated by UV-vis spectroscopic using DFT calculations. In accordance with experiment the calculated electronic spectra of these tris complexes show bands at 522, 565, 559, 546 and 863 nm for V3+, Cr3+, Mn3+, Fe3+ and Co3+ respectively which are mainly attributed to ligand to metal charge transfer (LMCT) transitions. The electronic properties analysis shows that the highest occupied molecular orbital (HOMO) is mainly centered on metal coordinated sulfur atoms whereas the lowest unoccupied molecular orbital (LUMO) is mainly located on the metal surface. From calculation of intramolecular interactions and electron delocalization by natural bond orbital (NBO) analysis, the stability of the complexes was estimated. The NBO results showed significant charge transfer from sulfur to central metal ions in the complexes, as well as to the benzene. The calculated charges on metal ions are also reported at various charge schemes. The calculations show encouraging agreement with the available experimental data.展开更多
Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structu...Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structures.These explosives exhibit significant advantages over traditional compounds,including higher density,greater heats of detonation,improved mechanical hardness,and excellent thermal stability.To effectively evaluate their detonation performance,it is crucial to have a reliable method for predicting detonation heat,velocity,and pressure.This study leverages experimental data and outputs from the leading commercial computer code to identify suitable decomposition pathways for different metal oxides,facilitating straightforward calculations for the detonation performance of alkali metal salts,and metal coordination compounds,along with EMOFs.The new model enhances predictive reliability for detonation velocities,aligning more closely with experimental results,as evi-denced by a root mean square error(RMSE)of 0.68 km/s compared to 1.12 km/s for existing methods.Furthermore,it accommodates a broader range of compounds,including those containing Sr,Cd,and Ag,and provides predictions for EMOFs that are more consistent with computer code outputs than previous predictive models.展开更多
Photosynthesis is a fundamental process in biosciences and biotechnology that influences profoundly the research in other disciplines.In this paper,we focus on the characterization of fundamental components,present in...Photosynthesis is a fundamental process in biosciences and biotechnology that influences profoundly the research in other disciplines.In this paper,we focus on the characterization of fundamental components,present in pigment-protein complexes,in terms of their spectroscopic properties such as infrared spectra,nuclear magnetic resonance,as well as nuclear quadrupole resonance,which are of critical importance for many applications.Such components include chlorophylls and bacteriochlorophylls.Based on the density functional theory method,we calculate the main spectroscopic characteristics of these components for the Fenna-Matthews-Olson light-harvesting complex,analyze them and compare them with available experimental results.Future outlook is discussed in the context of current and potential applications of the presented results.展开更多
The complexes of bis[N-alkyl-2-hydroxonapthaldimine]nickel(II) (N-alkyl = methyl, ethyl, propyl, butyl or pentyl) were synthesized and their volatilization in N2 atmosphere was demonstrated by the TG-based transpirati...The complexes of bis[N-alkyl-2-hydroxonapthaldimine]nickel(II) (N-alkyl = methyl, ethyl, propyl, butyl or pentyl) were synthesized and their volatilization in N2 atmosphere was demonstrated by the TG-based transpiration technique. The equilibrium vapor pressure of the complexes over a temperature span of 470 - 590 K was determined by adapting a horizontal dual arm single furnace thermoanalyser as a transpiration apparatus. It yielded as 153.1 (±1.9), 122.9 (±0.3), 147.6 (±10.7), 151.8 (±10.9) and 114.7 (±5.3) k·Jmol–1 respectively. The entropies of vaporization for these complexes as calculated from the intercept of the linear fit expressions were found to be 319.7 (±3.9), 229.9 (±5.8), 317.8 (±17.2), 319.7 (±19.1) and 254.6 (±9.6) Jmo–1·K–1 respectively. The non-isothermal vaporization activation energy was determined from Arrhenius and Coats-Redfern methods.展开更多
To expand the study on the structures and biological activities of the anthracyclines anticancer drugs and reduce their toxic side effects,the new anthraquinone derivatives,9‑pyridylanthrahydrazone(9‑PAH)and 9,10‑bisp...To expand the study on the structures and biological activities of the anthracyclines anticancer drugs and reduce their toxic side effects,the new anthraquinone derivatives,9‑pyridylanthrahydrazone(9‑PAH)and 9,10‑bispyridylanthrahydrazone(9,10‑PAH)were designed and synthesized.Utilizing 9‑PAH and 9,10‑PAH as promising anticancer ligands,their respective copper complexes,namely[Cu(L1)Cl_(2)]Cl(1)and{[Cu_(4)(μ_(2)‑Cl)_(3)Cl_(4)(9,10‑PAH)_(2)(DMSO)_(2)]Cl_(2)}_(n)(2),were subsequently synthesized,where the new ligand L1 is formed by coupling two 9‑PAH ligands in the coordination reaction.The chemical and crystal structures of 1 and 2 were elucidated by IR,MS,elemental analysis,and single‑crystal X‑ray diffraction.Complex 1 forms a mononuclear structure.L1 coordinates with Cu through its three N atoms,together with two Cl atoms,to form a five‑coordinated square pyramidal geometry.Complex 2 constitutes a polymeric structure,wherein each structural unit centrosymmetrically encompasses two five‑coordinated binuclear copper complexes(Cu1,Cu2)of 9,10‑PAH,with similar square pyramidal geometry.A chlorine atom(Cl_(2)),located at the symmetry center,bridges Cu1 and Cu1A to connect the two binuclear copper structures.Meanwhile,the two five‑coordinated Cu2 atoms symmetrically bridge the adjacent structural units via one coordinated Cl atom,respectively,thus forming a 1D chain‑like polymeric structure.In vitro anticancer activity assessments revealed that 1 and 2 showed significant cytotoxicity even higher than cisplatin.Specifically,the IC_(50)values of 2 against HeLa‑229 and SK‑OV‑3 cancer cell lines were determined to be(5.92±0.32)μmol·L^(-1)and(6.48±0.39)μmol·L^(-1),respectively.2 could also block the proliferation of HeLa‑229 cells in S phase and significantly induce cell apoptosis.In addition,fluorescence quenching competition experiments suggested that 2 might interact with DNA by an intercalative binding mode,offering insights into its underlying anticancer mechanism.CCDC:2388918,1;2388919,2.展开更多
Metal complexes hold significant promise in tumor diagnosis and treatment.However,their potential applications in photodynamic therapy(PDT)are hindered by issues such as poor photostability,low yield of reactive oxyge...Metal complexes hold significant promise in tumor diagnosis and treatment.However,their potential applications in photodynamic therapy(PDT)are hindered by issues such as poor photostability,low yield of reactive oxygen species(ROS),and aggregation-induced ROS quenching.To address these challenges,we present a molecular self-assembly strategy utilizing aggregation-induced emission(AIE)conjugates for metal complexes.As a proof of concept,we synthesized a mitochondrial-targeting cyclometalated Ir(Ⅲ)photosensitizer Ir-TPE.This approach significantly enhances the photodynamic effect while mitigating the dark toxicity associated with AIE groups.Ir-TPE readily self-assembles into nanoaggregates in aqueous solution,leading to a significant production of ROS upon light irradiation.Photoirradiated Ir-TPE triggers multiple modes of death by excessively accumulating ROS in the mitochondria,resulting in mitochondrial DNA damage.This damage can lead to ferroptosis and autophagy,two forms of cell death that are highly cytotoxic to cancer cells.The aggregation-enhanced photodynamic effect of Ir-TPE significantly enhances the production of ROS,leading to a more pronounced cytotoxic effect.In vitro and in vivo experiments demonstrate this aggregation-enhanced PDT approach achieves effective in situ tumor eradication.This study not only addresses the limitations of metal complexes in terms of low ROS production due to aggregation but also highlights the potential of this strategy for enhancing ROS production in PDT.展开更多
Two novel lanthanide complexes,[Sm_(2)(BA)_(6)(4-OH-terpy)_(2)]·2H_(2)O·2EtOH(1)and[Pr_(2)(BA)_(6)(4-OH-terpy)_(2)(H_(2)O)_(2)]·HBA·H_(2)O(2),where HBA=benzoic acid,4-OH-terpy=4-hydroxy-2,2'∶6...Two novel lanthanide complexes,[Sm_(2)(BA)_(6)(4-OH-terpy)_(2)]·2H_(2)O·2EtOH(1)and[Pr_(2)(BA)_(6)(4-OH-terpy)_(2)(H_(2)O)_(2)]·HBA·H_(2)O(2),where HBA=benzoic acid,4-OH-terpy=4-hydroxy-2,2'∶6',2″-terpyridine,were successfully synthesized using ultrasonic dissolution and the conventional solution method with two mixed ligands HBA and 4-OH-terpy.During the synthesis,4-OH-terpy was involved in the reaction as a neutral ligand,while HBA,in its deprotonated form(BA-),coordinated with the lanthanide ions as an acidic ligand.The crystal structures of these two complexes were precisely determined by single-crystal X-ray diffraction.Elemental analysis,infrared and Raman spectroscopy,and powder X-ray diffraction techniques were also employed to further explore the physicochemical properties of the two complexes.The single-crystal X-ray diffraction data indicate that,despite their structural differences,both complexes belong to the triclinic crystal system P1 space group.The central lanthanide ions have the same coordination number but exhibit different coordination environments.To comprehensively evaluate the thermal stability of these two complexes,comprehensive tests including thermogravimetric analysis,differential thermogravimetric analysis,differential scanning calorimetry,Fourier transform infrared spectroscopy,and mass spectrometry were conducted.Meanwhile,an in-depth investigation was conducted into the 3D infrared stacked images and mass spectra of the gases emitted from the complexes.In addition,studies of the fluorescence properties of complex1 showed that it exhibited fluorescence emission matching the Sm^(3+)characteristic transition.展开更多
We have examined the theoretical implications of combining two main and three auxiliary ligands to form several Ir(Ⅲ)complexes featuring a transition metal as their core atom to identify some appropriate organic ligh...We have examined the theoretical implications of combining two main and three auxiliary ligands to form several Ir(Ⅲ)complexes featuring a transition metal as their core atom to identify some appropriate organic lightemitting diode(OLED)materials.By utilizing electronic structure,frontier molecular orbitals,minimum single-line absorption,triplet excited states,and emission spectral data derived from the density functional theory,the usefulness of these Ir(Ⅲ)complexes,including(piq)_(2)Ir(acac),(piq)_(2)Ir(tmd),(piq)_(2)Ir(tpip),(fpiq)_(2)Ir(acac),(fpiq)_(2)Ir(tmd),and(fpiq)_(2)Ir(tpip),in OLEDs was examined,where piq=1-phenylisoquinoline,fpiq=1-(4-fluorophenyl)isoquinoline,acac=(3Z)-4-hydroxypent-3-en-2-one,tmd=(4Z)-5-hydroxy-2,2,6,6-tetramethylhept-4-en-3-one,and tpip=tetraphenylimido-diphosphonate.These complexes all have low-efficiency roll-off properties,especially(fpiq)_(2)Ir(tpip).Some researchers have successfully synthesized complexes extremely similar to(piq)_(2)Ir(acac)through the Suzuki-Miyaura coupling reaction.展开更多
Three efficient methods for the synthesis of a series of Cu(Ⅱ) and Cu(Ⅰ) complexes based on imidazo[1,5-a]pyridine derivatives were developed.These methods include the following:(ⅰ)Cu(Ⅱ) salts were used as metal s...Three efficient methods for the synthesis of a series of Cu(Ⅱ) and Cu(Ⅰ) complexes based on imidazo[1,5-a]pyridine derivatives were developed.These methods include the following:(ⅰ)Cu(Ⅱ) salts were used as metal sources and N,N-dimethylformamide was employed as a solvent as well as a reductant to produce Cu(Ⅰ) complexes.(ⅱ) An iodide-containing compound was utilized as a ligand and iodide source to prepare complexes.An in situ metalligand reaction occurred and an iodide-bridged copper complex was generated.(ⅲ) A series of aldehydes were added to the reaction systems to induce in situ metal-ligand reactions between the aldehydes and the imidazo[1,5-a]pyridine derivatives,producing polydentate ligand scaffolds.Eight complexes were prepared and characterized.The catalytic activities of these complexes toward the ketalization of ketones by ethylene glycol were investigated.With the exception of complex4,the remaining seven complexes all showed high catalytic activity.The lower activity of 4 may be due to the larger radius of bridging iodide ions and the shorter Cu(Ⅰ)…Cu(Ⅰ) distance.CCDC:2357696,1·2CH_(2)Cl_(2);2357697,2;2018292,3;2092192,4;2092190,5;2155557,6;2406155,7;2406156,8·EtOH.展开更多
Ludong orogenic belt in China is an importantal continent collision orogenic belt in eastern Asia, between Sino Korean landmass and Yangtze landmass. The host rock of the orogenic belt is metamorphosed medium acidic i...Ludong orogenic belt in China is an importantal continent collision orogenic belt in eastern Asia, between Sino Korean landmass and Yangtze landmass. The host rock of the orogenic belt is metamorphosed medium acidic intrusive complexes, which can be divided into four types, that’s, quartz dioritz, granite dioritz, monzonitic granite and undertint monzonitic granite, principal minerals are plagioclases, potassium feldspars and quartzs, minor minerals are hornblendes, biotites, clinopyxenes and garnets, accessory mineral types and assemblages are very similar, specially, various rocks are mainly fine grained textures. They have the history of regional amphibolite facies metamorphism and deep middle shallow structural layer deformation, and are changed into various gneiss and tectonic system. There are many xenolithes of middle Proterozoic eclogite host rock extrahigh high pressure metamorphic complexes, a small xenolithes of early Proterozoic layered metamorphite system and granulites, and ultrabasic basic rocks of various epoches in the metamorphosed medium acidic intrusive complexes.展开更多
Organoboron compounds have become important intermediates for the construction of new compounds in synthetic chemistry and pharmaceutical chemistry,and it has been found that pinacol biborate(B_(2)pin_(2))as the boron...Organoboron compounds have become important intermediates for the construction of new compounds in synthetic chemistry and pharmaceutical chemistry,and it has been found that pinacol biborate(B_(2)pin_(2))as the boron source and Cu^(Ⅱ) organophosphorus complex(L)as the catalyst can effectively realize the hydrogen-reduced borylation products and dehydrohydrated borylation products of aryl olefins.The reaction regioselectivity involvingβ-C positions of aryl olefins can be controlled by regulating the ligand and additive types.The formation mechanism of the product is conducted at LCu^(Ⅰ)Bpin formed from Cu^(Ⅱ),L and B_(2)pin_(2).Subsequently the substrate aryl olefins undergo addition reaction to form the active intermediate PhCH(LCu^(Ⅰ))CH_(2)Bpin.Followed by the metathesis of the active intermediate with water to form hydrogen reduction products,the same active intermediate can be oxidized with 2,2,6,6-tetramethylpiperidoxyl(TEMPO)to form trans dehydrogenation products.展开更多
Sensitization of metal-centered forbidden transitions is of great significance.Solid MnII-based phosphors with d-d forbidden transition sensitized by CeIIIwith d-f allowed transition are promising light conversion mat...Sensitization of metal-centered forbidden transitions is of great significance.Solid MnII-based phosphors with d-d forbidden transition sensitized by CeIIIwith d-f allowed transition are promising light conversion materials,but the energy transfer mechanism in CeIII-MnIIis still in dispute for the uncertainty of distances between metal centers.Herein,for the first time,we explored the energy transfer mechanism in two well-designed luminescent heteronuclear complexes with clear crystal structures,i.e.,Ce-N8-Mn and Ce-N2O6-Mn(N8=1,4,7,10,13,16,21,24-octaazabicyclo[8.8.8]hexacosane;N2O6=4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane).Short distances between metal centers facilitate efficient energy transfer from CeIIIto MnIIin both complexes,resulting in high photoluminescence quantum yield up to unity.After systematic study of the two heteronuclear complexes as well as two reference complexes Ce(N8)Br3and Ce(N2O6)Br3,we concluded that dipole-quadrupole interaction is the dominant energy transfer mechanism in the heteronuclear complexes.展开更多
Pure near-infrared(NIR)phosphorescent materials with emission peak larger than 700 nm are of great significance for the development of optoelectronics and biomedicine.We have designed and synthesized two new B-embedde...Pure near-infrared(NIR)phosphorescent materials with emission peak larger than 700 nm are of great significance for the development of optoelectronics and biomedicine.We have designed and synthesized two new B-embedded pure near-infrared(NIR)-emitting iridium complexes(Ir(Bpiq)2acac and Ir(Bpiq)2dpm)with peaks greater than 720 nm.More importantly,they exhibit very narrow phosphorescent emission with full width at half maximum(FWHM)of only about 50 nm(0.12 e V),resulting in a high NIR content(>90%)in their spectrum.In view of better optical property and solubility,the complex Ir(Bpiq)_(2)dpm was used as the emitting layer of a solution-processed OLED device,and achieved good maximum external quantum efficiency(EQE)(2.8%)peaking at 728 nm.This research provides an important strategy for the design of narrowband NIR-emitting phosphorescent iridium complexes and their optoelectronic applications.展开更多
文摘To extend a new family of aminophosphine-coordinated[FeFe]-hydrogenase mimics for catalytic hydro-gen(H_(2))evolution,we carried out the ligand substitutions of diiron hexacarbonyl precursors[Fe_(2)(μ-X_(2)pdt)(CO)_(6)](X_(2)pdt=(SCH_(2))_(2)CX_(2),X=Me,H)with aminodiphosphines(Ph_(2)PCH_(2))_(2)NY(Y=(CH_(2))_(2)OH,(CH_(2))_(3)OH)to obtain two new diiron aminophosphine complexes[Fe_(2)(L1)(μ-Me_(2)pdt)(CO)_(5)](1)and[Fe_(2)(L2)(μ-H_(2)pdt)(CO)_(5)](2),where L1=3-[(diphe-nylphosphaneyl)methyl]oxazolidine,L2=3-[(diphenylphosphaneyl)methyl]-1,3-oxazinane.Moreover,the structures of 1 and 2 have been fully confirmed by elemental analysis,spectroscopic techniques,and single-crystal X-ray diffraction.Using cyclic voltammetry(CV),we investigated the electrochemical redox performance and proton reduc-tion activities of 1 and 2 in acetic acid(HOAc).The CV study indicates that diiron aminophosphine complexes 1 and 2 can be considered to be hydrogenase-inspired diiron molecular electrocatalysts for the reduction of protons into H 2 generation in the presence of HOAc.CCDC:2443967,1;2443969,2.
文摘Two Gd_(2)complexes,namely[Gd_(2)(dbm)_(2)(HL_(1))_(2)(CH_(3)OH)_(2)]·4CH_(3)OH(1)and[Gd_(2)(dbm)_(2)(L_(2))_(2)(CH_(3)OH)_(2)]·2CH_(3)OH(2),where H_(3)L_(1)=(Z)-N'-[4-(diethylamino)-2-hydroxybenzylidene]-2-hydroxyacetohydrazide,H_(2)L_(2)=(E)-N'-(5-bromo-2-hydroxy-3-methoxybenzylidene)nicotinohydrazide,Hdbm=dibenzoylmethane,have been constructed by adopting the solvothermal method.Structural characterization unveils that both complexes 1 and 2 are constituted by two Gd^(3+)ions,two dbm-ions,two CH_(3)OH molecules,and two polydentate Schiff-base ligands(HL_(1)^(2-)or L_(2)^(2-)).In addition,complex 1 contains four free methanol molecules,whereas complex 2 harbors two free methanol molecules.By investigating the interactions between complexes 1 and 2 and four types of bacteria(Bacillus subtilis,Escherichia coli,Staphylococcus aureus,Candida albicans),it was found that both complexes 1 and 2 exhibited potent antibacte-rial activities.The interaction mechanisms between the ligands H_(3)L_(1),H_(2)L_(2),complexes 1 and 2,and calf thymus DNA(CT-DNA)were studied using ultraviolet-visible spectroscopy,fluorescence titration,and cyclic voltammetry.The results demonstrated that both complexes 1 and 2 can intercalate into CT-DNA molecules,thereby inhibiting bacterial proliferation to achieve the antibacterial effects.CCDC:2401116,1;2401117,2.
基金support from M.V.Lomonosov Moscow State University Program of Development。
文摘New complexes of europium,gadolinium and terbium trinitrates with N,N,N’,N’-tetraalkyl substituted phenanthroline diamides were synthesized.The europium complexes were found to be highly efficient in terms of luminescence properties(max quantum yield=67%).The significant influence of the structure of the ligands on the photophysical characteristics of their complexes was demonstrated.Thus,the incorporation of various substituents(Cl,F,O,OH)into the phenanthroline core causes significant changes in the luminescent behavior of the obtained coordination compounds.We observed significant differences in the energy gap between the excited states S_(1)and T_(1),especially in the L2H.Eu(NO_(3))_(3)and L2FOH.Eu(NO_(3))_(3)complexes,which both demonstrated high overall quantum yields(66%and 67%,respectively).Study of the diffuse reflection spectra of terbium complexes suggested the phenomenon of charge transfer,potentially ligand-to-ligand(LLCT)or intra-ligand(ILCT),rather than ligand-to-metal charge transfer(LMCT).These results highlight the complicated relationship between ligand structure,energy transfer mechanisms and quantum yield in rare earth element complexes,shedding light on ways to optimize their luminescent properties.
基金supported by the National Natural Science Foundation of China(Nos.22201057 and 22472044)Zhejiang Provincial Natural Science Foundation of China(Nos.LR22B010001 and LQ23B010001)。
文摘In this work,we synthesize two luminescent Pt(Ⅱ)complexes using differentπ-conjugated bidentate ligands.Both complexes are assembled into three-dimensional(3D)networks through non-classical intermolecular interactions in the crystal state.Unexpectedly,substituting pyridine with the more extensivelyπ-conjugated quinoline significantly increases the dihedral angles between the phenyl and quinolyl groups of the bidentate ligands.This alteration disrupts theπ-πinteractions between molecules,resulting in distinct optical properties upon exposure to external stimuli.By integrating these complexes into polymers,we fabricate electrospun films containing luminescent nanofibers that exhibit reversible optical changes.These findings have paved the way for the development of high-performance optical encryption and anti-counterfeiting materials,achieved through the employment of simple chromophores.
基金support from Outstanding Youth Fund of Jiangsu Province(BK20240077)Key Project(Provincial-Municipal Joint)of Jiangsu Province(BK20243044)+2 种基金Fundamental Research Funds for the Central Universities(NE2024001)National Youth Talents Programof Chinaa project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Microstructure topology evolution during severe plastic deformation(SPD)is crucial for understanding and optimising the mechanical properties of metallic materials,though its prediction remains challenging.Herein,we combine discrete cell complexes(DCC),a fully discrete algebraic topology model-with finite element analysis(FEA)to simulate and analyse the microstructure topology of pure copper under SPD.Using DCC,we model the evolution of microstructure topology characterised by Betti numbers(β_(0),β_(1),β_(2))and Euler characteristic(χ).This captures key changes in GBNs and topological features within representative volume elements(RVEs)containing several hundred grains during SPD-induced recrystallisation.As SPD cycles increase,high-angle grain boundaries(HAGBs)progressively form.Topological analysis reveals an overall decrease in β_(0)values,indicating fewer isolated HAGB substructures,while β_(2) values show a steady upward trend,highlighting new grain formation.Leveraging DCC-derived RVE topology and FEA-generated plastic strain data,we directly simulate the evolution and spatial distribution of microstructure topology and HAGB fraction in a copper tube undergoing cyclic parallel tube channel angular pressing(PTCAP),a representative SPD technique.Within the tube,the HAGB fraction continuously increases with PTCAP cycles,reflecting the microstructure’s gradual transition from subgrains to fully-formed grains.Analysis of Betti number distribution and evolution reveals the microstructural reconstruction mechanism underpinning this subgrain to grain transition during PTCAP.We further demonstrate the significant influence of spatially non-uniform plastic strain distribution on microstructure reconstruction kinetics.This study demonstrates a feasible approach for simulating microstructure topology evolution of metals processed by cyclic SPD via the integration of DCC and FEA.
基金supported by National Natural Science Foundation of China(No.22371289)。
文摘Intracellular bacteria(ICB),cloaked by the protective barriers of host cells,pose a formidable challenge to selective and efficient eradication.The employment of activatable photosensitizers based antibacterial photodynamic therapy(a PDT)holds significant potential for selective imaging and photo-inactivation of ICB while minimizing side effects on normal cells.Drawing inspiration from the elevated hypochlorous acid(HClO)levels in ICB infected phagocytes,herein we firstly designed and synthesized a series of HCl Oresponsive dinuclear Ru(Ⅱ)complexes(Ru1-Ru3)to achieve such a goal.Initially,the luminescence,^(1)O_(2)generation and a PDT activity of these Ru(Ⅱ)complexes were suppressed due to the quenching effect of the azo group,but were recovered after reaction with HCl O in solutions or within ICB infected phagocytes.The detailed results revealed that Ru1 and Ru3 could not only selectively visualize ICB,but also demonstrated remarkable a PDT activity against ICB,surpassing vancomycin both in vitro and in vivo.
基金supported by the Russian Science Foundation (2273-10199)。
文摘The reaction of 4-nitro-N'-(pyridin-2-ylmethylene)benzohydrazide(HL) with Ln(OAc)_(3)·4H_(2)O in MeOH makes it possible to synthesize mononuclear complexes [Ln(L)_(2)(OAc)(MeOH)]·2H_(2)O(Ln=Tb^(Ⅲ)(1),Eu^(Ⅲ)(2) and Gd^(Ⅲ)(3)) with chelate acetate and L^(-)anions.Compound 1 can be crystallized in reaction with molar ratio HL:Ln=1:1,2:1,3:1,and we successfully synthesized complex with three chelate L anions[Tb(L)_(3)]_(2)·2MeOH·H_(2)O(4) by interaction of TbCl_(3)·6H_(2)O with deprotonated HL(HL:Ln=3:1).Terbium(Ⅲ) compound 1 starts to decompose at~323 K and becomes stable up to 552 K according to the STA.Compound 1 shows slow magnetic relaxation with parameters Δ_(eff)/k_B=(6.75±0.02) K,τ_(0)=(1.71 × 10^(-6)±1 × 10^(-8)) s.Complexes 1 and 2 exhibit only fluorescence and phosphorescence of the L^(-).Ion-centered luminescence of the Tb^(3+)or Eu^(3+)ion is not observed.Using the tangent method at the high-energy edge of the phospho rescence spectrum of Gd^(3+),complex 3 T_(1) energy level of L^(-)is estimated to be 19700 cm^(-1).Reasons of luminescence quenching are discussed.Structures of 1 and 4 were determined by single crystal X-ray diffraction,and compounds 1-3 were characterized by powder X-ray diffraction(PXRD).
文摘In this study, the first raw transition metals from V to Co complexes with benzene-1,2-dithiolate (L2-) ligand have been studied theoretically to elucidate the geometry, electronic structure and spectroscopic properties of the complexes. Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT) methods have been used. The ground state geometries, binding energies, spectral properties (UV-vis), frontier molecular orbitals (FMOs) analysis, charge analysis and natural bond orbital (NBO) have been investigated. The geometrical parameters are in good agreement with the available experimental data. The metal-ligand binding energies are 1 order of magnitude larger than the physisorption energy of a benzene-1, 2-dthiolate molecule on a metallic surface. The electronic structures of the first raw transition metal series from V to Co have been elucidated by UV-vis spectroscopic using DFT calculations. In accordance with experiment the calculated electronic spectra of these tris complexes show bands at 522, 565, 559, 546 and 863 nm for V3+, Cr3+, Mn3+, Fe3+ and Co3+ respectively which are mainly attributed to ligand to metal charge transfer (LMCT) transitions. The electronic properties analysis shows that the highest occupied molecular orbital (HOMO) is mainly centered on metal coordinated sulfur atoms whereas the lowest unoccupied molecular orbital (LUMO) is mainly located on the metal surface. From calculation of intramolecular interactions and electron delocalization by natural bond orbital (NBO) analysis, the stability of the complexes was estimated. The NBO results showed significant charge transfer from sulfur to central metal ions in the complexes, as well as to the benzene. The calculated charges on metal ions are also reported at various charge schemes. The calculations show encouraging agreement with the available experimental data.
基金the research committee at Malek Ashtar University of Technology (MUT) for their invaluable support of this project
文摘Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structures.These explosives exhibit significant advantages over traditional compounds,including higher density,greater heats of detonation,improved mechanical hardness,and excellent thermal stability.To effectively evaluate their detonation performance,it is crucial to have a reliable method for predicting detonation heat,velocity,and pressure.This study leverages experimental data and outputs from the leading commercial computer code to identify suitable decomposition pathways for different metal oxides,facilitating straightforward calculations for the detonation performance of alkali metal salts,and metal coordination compounds,along with EMOFs.The new model enhances predictive reliability for detonation velocities,aligning more closely with experimental results,as evi-denced by a root mean square error(RMSE)of 0.68 km/s compared to 1.12 km/s for existing methods.Furthermore,it accommodates a broader range of compounds,including those containing Sr,Cd,and Ag,and provides predictions for EMOFs that are more consistent with computer code outputs than previous predictive models.
基金the BERC 2018-2021 program and Spanish Ministry of Science,Innovation,and Universities through the Agencia Estatal de Investigacion(AEI)BCAM Severo Ochoa excellence accreditation SEV-2017-0718,and the Basque Government fund“AI in BCAM EXP.2019/00432”.
文摘Photosynthesis is a fundamental process in biosciences and biotechnology that influences profoundly the research in other disciplines.In this paper,we focus on the characterization of fundamental components,present in pigment-protein complexes,in terms of their spectroscopic properties such as infrared spectra,nuclear magnetic resonance,as well as nuclear quadrupole resonance,which are of critical importance for many applications.Such components include chlorophylls and bacteriochlorophylls.Based on the density functional theory method,we calculate the main spectroscopic characteristics of these components for the Fenna-Matthews-Olson light-harvesting complex,analyze them and compare them with available experimental results.Future outlook is discussed in the context of current and potential applications of the presented results.
文摘The complexes of bis[N-alkyl-2-hydroxonapthaldimine]nickel(II) (N-alkyl = methyl, ethyl, propyl, butyl or pentyl) were synthesized and their volatilization in N2 atmosphere was demonstrated by the TG-based transpiration technique. The equilibrium vapor pressure of the complexes over a temperature span of 470 - 590 K was determined by adapting a horizontal dual arm single furnace thermoanalyser as a transpiration apparatus. It yielded as 153.1 (±1.9), 122.9 (±0.3), 147.6 (±10.7), 151.8 (±10.9) and 114.7 (±5.3) k·Jmol–1 respectively. The entropies of vaporization for these complexes as calculated from the intercept of the linear fit expressions were found to be 319.7 (±3.9), 229.9 (±5.8), 317.8 (±17.2), 319.7 (±19.1) and 254.6 (±9.6) Jmo–1·K–1 respectively. The non-isothermal vaporization activation energy was determined from Arrhenius and Coats-Redfern methods.
文摘To expand the study on the structures and biological activities of the anthracyclines anticancer drugs and reduce their toxic side effects,the new anthraquinone derivatives,9‑pyridylanthrahydrazone(9‑PAH)and 9,10‑bispyridylanthrahydrazone(9,10‑PAH)were designed and synthesized.Utilizing 9‑PAH and 9,10‑PAH as promising anticancer ligands,their respective copper complexes,namely[Cu(L1)Cl_(2)]Cl(1)and{[Cu_(4)(μ_(2)‑Cl)_(3)Cl_(4)(9,10‑PAH)_(2)(DMSO)_(2)]Cl_(2)}_(n)(2),were subsequently synthesized,where the new ligand L1 is formed by coupling two 9‑PAH ligands in the coordination reaction.The chemical and crystal structures of 1 and 2 were elucidated by IR,MS,elemental analysis,and single‑crystal X‑ray diffraction.Complex 1 forms a mononuclear structure.L1 coordinates with Cu through its three N atoms,together with two Cl atoms,to form a five‑coordinated square pyramidal geometry.Complex 2 constitutes a polymeric structure,wherein each structural unit centrosymmetrically encompasses two five‑coordinated binuclear copper complexes(Cu1,Cu2)of 9,10‑PAH,with similar square pyramidal geometry.A chlorine atom(Cl_(2)),located at the symmetry center,bridges Cu1 and Cu1A to connect the two binuclear copper structures.Meanwhile,the two five‑coordinated Cu2 atoms symmetrically bridge the adjacent structural units via one coordinated Cl atom,respectively,thus forming a 1D chain‑like polymeric structure.In vitro anticancer activity assessments revealed that 1 and 2 showed significant cytotoxicity even higher than cisplatin.Specifically,the IC_(50)values of 2 against HeLa‑229 and SK‑OV‑3 cancer cell lines were determined to be(5.92±0.32)μmol·L^(-1)and(6.48±0.39)μmol·L^(-1),respectively.2 could also block the proliferation of HeLa‑229 cells in S phase and significantly induce cell apoptosis.In addition,fluorescence quenching competition experiments suggested that 2 might interact with DNA by an intercalative binding mode,offering insights into its underlying anticancer mechanism.CCDC:2388918,1;2388919,2.
基金support from the National Natural Science Foundation of China(Nos.22277056,21977052)the Distinguished Young Scholars of Jiangsu Province(No.BK20230006)+2 种基金the Natural Science Foundation of Jiangsu Province(Nos.BK20230977,BK20231090)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(No.23KJB150020)the Jiangsu Excellent Postdoctoral Program(No.2022ZB758)。
文摘Metal complexes hold significant promise in tumor diagnosis and treatment.However,their potential applications in photodynamic therapy(PDT)are hindered by issues such as poor photostability,low yield of reactive oxygen species(ROS),and aggregation-induced ROS quenching.To address these challenges,we present a molecular self-assembly strategy utilizing aggregation-induced emission(AIE)conjugates for metal complexes.As a proof of concept,we synthesized a mitochondrial-targeting cyclometalated Ir(Ⅲ)photosensitizer Ir-TPE.This approach significantly enhances the photodynamic effect while mitigating the dark toxicity associated with AIE groups.Ir-TPE readily self-assembles into nanoaggregates in aqueous solution,leading to a significant production of ROS upon light irradiation.Photoirradiated Ir-TPE triggers multiple modes of death by excessively accumulating ROS in the mitochondria,resulting in mitochondrial DNA damage.This damage can lead to ferroptosis and autophagy,two forms of cell death that are highly cytotoxic to cancer cells.The aggregation-enhanced photodynamic effect of Ir-TPE significantly enhances the production of ROS,leading to a more pronounced cytotoxic effect.In vitro and in vivo experiments demonstrate this aggregation-enhanced PDT approach achieves effective in situ tumor eradication.This study not only addresses the limitations of metal complexes in terms of low ROS production due to aggregation but also highlights the potential of this strategy for enhancing ROS production in PDT.
文摘Two novel lanthanide complexes,[Sm_(2)(BA)_(6)(4-OH-terpy)_(2)]·2H_(2)O·2EtOH(1)and[Pr_(2)(BA)_(6)(4-OH-terpy)_(2)(H_(2)O)_(2)]·HBA·H_(2)O(2),where HBA=benzoic acid,4-OH-terpy=4-hydroxy-2,2'∶6',2″-terpyridine,were successfully synthesized using ultrasonic dissolution and the conventional solution method with two mixed ligands HBA and 4-OH-terpy.During the synthesis,4-OH-terpy was involved in the reaction as a neutral ligand,while HBA,in its deprotonated form(BA-),coordinated with the lanthanide ions as an acidic ligand.The crystal structures of these two complexes were precisely determined by single-crystal X-ray diffraction.Elemental analysis,infrared and Raman spectroscopy,and powder X-ray diffraction techniques were also employed to further explore the physicochemical properties of the two complexes.The single-crystal X-ray diffraction data indicate that,despite their structural differences,both complexes belong to the triclinic crystal system P1 space group.The central lanthanide ions have the same coordination number but exhibit different coordination environments.To comprehensively evaluate the thermal stability of these two complexes,comprehensive tests including thermogravimetric analysis,differential thermogravimetric analysis,differential scanning calorimetry,Fourier transform infrared spectroscopy,and mass spectrometry were conducted.Meanwhile,an in-depth investigation was conducted into the 3D infrared stacked images and mass spectra of the gases emitted from the complexes.In addition,studies of the fluorescence properties of complex1 showed that it exhibited fluorescence emission matching the Sm^(3+)characteristic transition.
文摘We have examined the theoretical implications of combining two main and three auxiliary ligands to form several Ir(Ⅲ)complexes featuring a transition metal as their core atom to identify some appropriate organic lightemitting diode(OLED)materials.By utilizing electronic structure,frontier molecular orbitals,minimum single-line absorption,triplet excited states,and emission spectral data derived from the density functional theory,the usefulness of these Ir(Ⅲ)complexes,including(piq)_(2)Ir(acac),(piq)_(2)Ir(tmd),(piq)_(2)Ir(tpip),(fpiq)_(2)Ir(acac),(fpiq)_(2)Ir(tmd),and(fpiq)_(2)Ir(tpip),in OLEDs was examined,where piq=1-phenylisoquinoline,fpiq=1-(4-fluorophenyl)isoquinoline,acac=(3Z)-4-hydroxypent-3-en-2-one,tmd=(4Z)-5-hydroxy-2,2,6,6-tetramethylhept-4-en-3-one,and tpip=tetraphenylimido-diphosphonate.These complexes all have low-efficiency roll-off properties,especially(fpiq)_(2)Ir(tpip).Some researchers have successfully synthesized complexes extremely similar to(piq)_(2)Ir(acac)through the Suzuki-Miyaura coupling reaction.
文摘Three efficient methods for the synthesis of a series of Cu(Ⅱ) and Cu(Ⅰ) complexes based on imidazo[1,5-a]pyridine derivatives were developed.These methods include the following:(ⅰ)Cu(Ⅱ) salts were used as metal sources and N,N-dimethylformamide was employed as a solvent as well as a reductant to produce Cu(Ⅰ) complexes.(ⅱ) An iodide-containing compound was utilized as a ligand and iodide source to prepare complexes.An in situ metalligand reaction occurred and an iodide-bridged copper complex was generated.(ⅲ) A series of aldehydes were added to the reaction systems to induce in situ metal-ligand reactions between the aldehydes and the imidazo[1,5-a]pyridine derivatives,producing polydentate ligand scaffolds.Eight complexes were prepared and characterized.The catalytic activities of these complexes toward the ketalization of ketones by ethylene glycol were investigated.With the exception of complex4,the remaining seven complexes all showed high catalytic activity.The lower activity of 4 may be due to the larger radius of bridging iodide ions and the shorter Cu(Ⅰ)…Cu(Ⅰ) distance.CCDC:2357696,1·2CH_(2)Cl_(2);2357697,2;2018292,3;2092192,4;2092190,5;2155557,6;2406155,7;2406156,8·EtOH.
文摘Ludong orogenic belt in China is an importantal continent collision orogenic belt in eastern Asia, between Sino Korean landmass and Yangtze landmass. The host rock of the orogenic belt is metamorphosed medium acidic intrusive complexes, which can be divided into four types, that’s, quartz dioritz, granite dioritz, monzonitic granite and undertint monzonitic granite, principal minerals are plagioclases, potassium feldspars and quartzs, minor minerals are hornblendes, biotites, clinopyxenes and garnets, accessory mineral types and assemblages are very similar, specially, various rocks are mainly fine grained textures. They have the history of regional amphibolite facies metamorphism and deep middle shallow structural layer deformation, and are changed into various gneiss and tectonic system. There are many xenolithes of middle Proterozoic eclogite host rock extrahigh high pressure metamorphic complexes, a small xenolithes of early Proterozoic layered metamorphite system and granulites, and ultrabasic basic rocks of various epoches in the metamorphosed medium acidic intrusive complexes.
文摘Organoboron compounds have become important intermediates for the construction of new compounds in synthetic chemistry and pharmaceutical chemistry,and it has been found that pinacol biborate(B_(2)pin_(2))as the boron source and Cu^(Ⅱ) organophosphorus complex(L)as the catalyst can effectively realize the hydrogen-reduced borylation products and dehydrohydrated borylation products of aryl olefins.The reaction regioselectivity involvingβ-C positions of aryl olefins can be controlled by regulating the ligand and additive types.The formation mechanism of the product is conducted at LCu^(Ⅰ)Bpin formed from Cu^(Ⅱ),L and B_(2)pin_(2).Subsequently the substrate aryl olefins undergo addition reaction to form the active intermediate PhCH(LCu^(Ⅰ))CH_(2)Bpin.Followed by the metathesis of the active intermediate with water to form hydrogen reduction products,the same active intermediate can be oxidized with 2,2,6,6-tetramethylpiperidoxyl(TEMPO)to form trans dehydrogenation products.
基金financial support from the National Key R&D Program of China(Nos.2022YFB3503702,2023YFB3506901,2021YFB3501800)the National Natural Science Foundation of China(Nos.92156016,62104013,22071003)。
文摘Sensitization of metal-centered forbidden transitions is of great significance.Solid MnII-based phosphors with d-d forbidden transition sensitized by CeIIIwith d-f allowed transition are promising light conversion materials,but the energy transfer mechanism in CeIII-MnIIis still in dispute for the uncertainty of distances between metal centers.Herein,for the first time,we explored the energy transfer mechanism in two well-designed luminescent heteronuclear complexes with clear crystal structures,i.e.,Ce-N8-Mn and Ce-N2O6-Mn(N8=1,4,7,10,13,16,21,24-octaazabicyclo[8.8.8]hexacosane;N2O6=4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane).Short distances between metal centers facilitate efficient energy transfer from CeIIIto MnIIin both complexes,resulting in high photoluminescence quantum yield up to unity.After systematic study of the two heteronuclear complexes as well as two reference complexes Ce(N8)Br3and Ce(N2O6)Br3,we concluded that dipole-quadrupole interaction is the dominant energy transfer mechanism in the heteronuclear complexes.
基金support from the National Natural Science Foundation of China(Nos.22171109,52373195 and 22001097)Natural Science Foundation of Jiangsu Province of China(No.BK20201003)+1 种基金the Postdoctoral Research Foundation of China(No.2021M701657)the Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices,Ministry of Education,Jianghan University(No.JDGD-202301)。
文摘Pure near-infrared(NIR)phosphorescent materials with emission peak larger than 700 nm are of great significance for the development of optoelectronics and biomedicine.We have designed and synthesized two new B-embedded pure near-infrared(NIR)-emitting iridium complexes(Ir(Bpiq)2acac and Ir(Bpiq)2dpm)with peaks greater than 720 nm.More importantly,they exhibit very narrow phosphorescent emission with full width at half maximum(FWHM)of only about 50 nm(0.12 e V),resulting in a high NIR content(>90%)in their spectrum.In view of better optical property and solubility,the complex Ir(Bpiq)_(2)dpm was used as the emitting layer of a solution-processed OLED device,and achieved good maximum external quantum efficiency(EQE)(2.8%)peaking at 728 nm.This research provides an important strategy for the design of narrowband NIR-emitting phosphorescent iridium complexes and their optoelectronic applications.