Pt(Ⅱ)-salophen complexes(S-1~S-4) and 9,10-diphenylanthracene(DPA) tethering pillar[5]arene derivatives(A-1 and A-2) were synthesized to act as sensitizers and annihilators for triplet-triplet annihilation upconversi...Pt(Ⅱ)-salophen complexes(S-1~S-4) and 9,10-diphenylanthracene(DPA) tethering pillar[5]arene derivatives(A-1 and A-2) were synthesized to act as sensitizers and annihilators for triplet-triplet annihilation upconversion(TTA-UC), respectively. It turned out that the pyridine cation served as a mask for the excited state of the sensitizer, the triplet states of S-2 and S-3 were significantly quenched by photo-induced electron transfer(PET) with phosphorescence quantum yield quenched from 24.4% for S-4 to 9.3% for S-3,and therefore, both S-2 and S-3 led to negligible UC emissions when traditional annihilator DPA was used as the annihilator. Delightfully, when supramolecular annihilator A-1 and A-2 were employed to include the pyridine cation, PET was significantly inhibited and the triplet states of the sensitizers were activated,TTA-UC emission was therefore boosted. The UC quantum yield of A-2/S-3 system was up to 130 times higher than that of DPA/S-3 system, and the UC emission was switchable by the addition of competitive vips.展开更多
The authors regret that an error in Fig.3E in this article was found while we reviewing the published data.An inadvertent mistake occurred in the process of assembling images.The picture of the Ms215μg/mL group was w...The authors regret that an error in Fig.3E in this article was found while we reviewing the published data.An inadvertent mistake occurred in the process of assembling images.The picture of the Ms215μg/mL group was wrongly placed.展开更多
Based on a non-equilibrium kinetic extraction technique,the complexation kinetics of diethylenetriamine-pentaacetic acid(DTPA)with rare earth(RE)ions was investigated with different adding sequences of DTPA.The result...Based on a non-equilibrium kinetic extraction technique,the complexation kinetics of diethylenetriamine-pentaacetic acid(DTPA)with rare earth(RE)ions was investigated with different adding sequences of DTPA.The results indicated that the separation factors ofβTm/Er andβY/Er were higher when adding DTPA at the start of extraction than those before extraction.The extraction order for Y,Er and Tm was Tm>Y>Er.The root of discrepancy in complexation kinetics of Y,Er and Tm ions with DTPA and the enhanced kinetic separation mechanism were elucidated from the forward complex formation and reverse dissociation rates by the stopped-flow spectrophotometric technique.The apparent complexation rate constants began to decrease gradually with the increase of aqueous pH,while increased with increasing DTPA concentration.The emergence of extraction priority order as Tm>Y>Er was verified according to the calculated reaction kinetic constants of Y,Er and Tm at different pH values.展开更多
Humic acid(HA) as a natural reducing ligand was employed to accelerate the Fenton and Fenton-like processes, however, the potential role of photosensitivity was overlooked. This research showed that HA exhibits more s...Humic acid(HA) as a natural reducing ligand was employed to accelerate the Fenton and Fenton-like processes, however, the potential role of photosensitivity was overlooked. This research showed that HA exhibits more significant promotion for levofloxacin(LVF) degradation under light conditions compared to darkness. The study also proposed a mechanism involving complexation and photosensitization interactions. A strong inhibitor of ethylenediaminetetraacetic acid confirmed that the formation of organic-iron complexes was crucial. Firstly, it was proposed that complexed iron has a lower redox potential than free iron, which may be responsible for accelerating electron transfer from iron to peroxydisulfate(PDS). The density functional theory(DFT) calculations confirmed that complexed iron has a lower reaction energy barrier for PDS activation. Additionally, the excited state substances(^(*)HA and ^(*)LVF) can transfer electrons to Fe(Ⅲ) and PDS, and the generation of HA/LVF-Fe(Ⅲ)-PDS can accelerate this process. These findings could offer fresh perspectives on the combined elimination of contaminants through natural organic compounds and light exposure.展开更多
In some industrial wastewater,heavy metals combine with organic complexing agents to form heavy metal complexes(HMCs).These HMCs can be difficult to decompose and remove through conventional techniques due to their hi...In some industrial wastewater,heavy metals combine with organic complexing agents to form heavy metal complexes(HMCs).These HMCs can be difficult to decompose and remove through conventional techniques due to their higher stability than free heavy metal ions.In recent years,persulfate based advanced oxidation processes(PS-based AOPs)have been recognized as a viable technique for HMCs degradation.Nevertheless,a comprehensive and in-depth understanding of the relevant HMCs decomplexation mechanisms in PS-based AOPs is still lacking.This review delineates the current progress of HMCs decomplexation in PS-based AOPs.We discuss the distinctions between the two widely used oxidant types in PS-based AOPs techniques.Moreover,we summarize and highlight the decomplexation mechanisms based on electron and energy transfer,and degradation pathways of HMCs.We also emphasize the effects of environmental water constituents,namely p H,inorganic ions,and natural organic matter(NOM),on HMCs decomplexation.Ultimately,we identify the existing challenges and perspectives that will steer the direction of advancing PS-based AOPs to remove HMCs.展开更多
An array of pyridine-ester enolate based organoboron complexes has been designed and synthesized via a one-pot cascade of Pd-catalyzedα-arylation and BF2complexation.The rapid structure-activity relationship(SAR)stud...An array of pyridine-ester enolate based organoboron complexes has been designed and synthesized via a one-pot cascade of Pd-catalyzedα-arylation and BF2complexation.The rapid structure-activity relationship(SAR)studies indicated that unsymmetrical N,O-chelated BF2complexes were highly fluorescent in solid state,and exhibited large Stokes shifts,excellent photostability,along with insensitivity to p H.Theα-aryl group could not only modulate the electronic effect but also inhibit the intermolecularπ-πstacking to promote the aggregation-induced emission(AIE)effect.DFT calculations and experiments identified that the intramolecular charge transfer properties of these N,O-chelates could be switched by the modification of substituents,resulting tunable fluorescence wavelengths.Furthermore,post-complexation modification was accomplished,including Suzuki-Miyaura cross-coupling,Buchwald-Hartwig amination,oxidative cleavage,along with a unique triple substitution reaction involving propargyl Grignard reagents.The exemplificative application of dimethylamine substituted boron complex as a reversible acidic vapor sensor was also demonstrated.展开更多
We investigate the solution self-assembly of a mixture of positively charged homopolymers and AB diblock copolymers,in which the A blocks are negatively charged,and the B blocks are neutral.The electrostatic complexat...We investigate the solution self-assembly of a mixture of positively charged homopolymers and AB diblock copolymers,in which the A blocks are negatively charged,and the B blocks are neutral.The electrostatic complexation between oppositely charged polymers drives the formation of many ordered phases.The microstructures and phase diagrams are calculated using self-consistent field theory(SCFT)based on an ion-pair model with an equilibrium constant K to characterize the strength of binding between positively and negatively charged monomers.The effects of the charge ratio,representing the ratio of charges from the homopolymer over all charges from polymers in the system,on the ordered structure are systematically studied,both for hydrophobic and hydrophilic A blocks.The charge ratio plays an important role in determining the phase boundaries in the phase diagram of salt concentration versus polymer concentration.We also provide information about the varying tendency of the domain spacing and core size of the spherical phase when the charge ratio is changed,and the results are in good agreement with experiments.These studies provide a deep understanding of the self-assembled microstructures of oppositely charged diblock copolymer-homopolymer systems.展开更多
Trivalent chromium(Cr(Ⅲ))can form stable soluble complexes with organic components,altering its adsorption properties in the water-soil environment.This increases the risk of Cr(Ⅲ)migrating to deeper soils and trans...Trivalent chromium(Cr(Ⅲ))can form stable soluble complexes with organic components,altering its adsorption properties in the water-soil environment.This increases the risk of Cr(Ⅲ)migrating to deeper soils and transforming into toxic Cr(VI)due to the presence of manganese oxides in sediments.In this study,Citric Acid(CA)was selected as a representative organic ligand to prepare and characterize Cr(III)-CA complexes.The characteristics,mechanisms and environmental factors influencing the adsorption of Cr(Ⅲ)-CA on porous media(silts and fine sands)were investigated in the study.The results show that Cr(Ⅲ)coordinates with CA at a 1:1 molar ratio,forming stable and soluble Cr(Ⅲ)-CA complexes.Compared to Cr(III)ions,the equilibrium adsorption capacity of Cr(Ⅲ)-CA is an order of magnitude lower in silts and fine sands.The adsorption of Cr(Ⅲ)-CA in silts and fine sands is dominated by chemical adsorption of monolayers,following the pseudo-second-order kinetic equation and the Langmuir isotherm adsorption model.Varying contents of clay minerals and iron-aluminum oxides prove to be the main causes of differences in adsorption capacity of Cr(Ⅲ)-CA in silts and fine sands.Changes in solution pH affect the adsorption rate and capacity of Cr(Ⅲ)-CA by altering its ionic form.The adsorption process is irreversible and only minimally influenced by ionic strength,suggesting that inner-sphere complexation serves as the dominant Cr(Ⅲ)-CA adsorption mechanism.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 22171194, 21971169, 92056116 and 21871194)the Fundamental Research Funds for the Central Universities (No. 20826041D4117)the Science & Technology Department of Sichuan Province (Nos. 2022YFH0095 and 2021ZYD0052)。
文摘Pt(Ⅱ)-salophen complexes(S-1~S-4) and 9,10-diphenylanthracene(DPA) tethering pillar[5]arene derivatives(A-1 and A-2) were synthesized to act as sensitizers and annihilators for triplet-triplet annihilation upconversion(TTA-UC), respectively. It turned out that the pyridine cation served as a mask for the excited state of the sensitizer, the triplet states of S-2 and S-3 were significantly quenched by photo-induced electron transfer(PET) with phosphorescence quantum yield quenched from 24.4% for S-4 to 9.3% for S-3,and therefore, both S-2 and S-3 led to negligible UC emissions when traditional annihilator DPA was used as the annihilator. Delightfully, when supramolecular annihilator A-1 and A-2 were employed to include the pyridine cation, PET was significantly inhibited and the triplet states of the sensitizers were activated,TTA-UC emission was therefore boosted. The UC quantum yield of A-2/S-3 system was up to 130 times higher than that of DPA/S-3 system, and the UC emission was switchable by the addition of competitive vips.
文摘The authors regret that an error in Fig.3E in this article was found while we reviewing the published data.An inadvertent mistake occurred in the process of assembling images.The picture of the Ms215μg/mL group was wrongly placed.
基金funded by Key Laboratory of Ionic Rare Earth Resources and Environment,Ministry of Natural Resources,China(No.2022IRERE206)financially supported by the National Natural Science Foundation of China(Nos.51904027,52074031)。
文摘Based on a non-equilibrium kinetic extraction technique,the complexation kinetics of diethylenetriamine-pentaacetic acid(DTPA)with rare earth(RE)ions was investigated with different adding sequences of DTPA.The results indicated that the separation factors ofβTm/Er andβY/Er were higher when adding DTPA at the start of extraction than those before extraction.The extraction order for Y,Er and Tm was Tm>Y>Er.The root of discrepancy in complexation kinetics of Y,Er and Tm ions with DTPA and the enhanced kinetic separation mechanism were elucidated from the forward complex formation and reverse dissociation rates by the stopped-flow spectrophotometric technique.The apparent complexation rate constants began to decrease gradually with the increase of aqueous pH,while increased with increasing DTPA concentration.The emergence of extraction priority order as Tm>Y>Er was verified according to the calculated reaction kinetic constants of Y,Er and Tm at different pH values.
基金supported by the Natural Science Foundation of China (No. 42107073)Central Guidance for Local Science and Technology Development Fund Projects (No. 2024ZYD0030)+1 种基金Natural Science Foundation of Sichuan Province (No. 2024NSFSC0130)the Sichuan Science and Technology Program (No. 2024NSFTD0014)。
文摘Humic acid(HA) as a natural reducing ligand was employed to accelerate the Fenton and Fenton-like processes, however, the potential role of photosensitivity was overlooked. This research showed that HA exhibits more significant promotion for levofloxacin(LVF) degradation under light conditions compared to darkness. The study also proposed a mechanism involving complexation and photosensitization interactions. A strong inhibitor of ethylenediaminetetraacetic acid confirmed that the formation of organic-iron complexes was crucial. Firstly, it was proposed that complexed iron has a lower redox potential than free iron, which may be responsible for accelerating electron transfer from iron to peroxydisulfate(PDS). The density functional theory(DFT) calculations confirmed that complexed iron has a lower reaction energy barrier for PDS activation. Additionally, the excited state substances(^(*)HA and ^(*)LVF) can transfer electrons to Fe(Ⅲ) and PDS, and the generation of HA/LVF-Fe(Ⅲ)-PDS can accelerate this process. These findings could offer fresh perspectives on the combined elimination of contaminants through natural organic compounds and light exposure.
基金financially supported by National Natural Science Foundation of China(Nos.U22A20403,22006047)Natural Science Foundation of Hebei Province(Nos.E2021203140,B2021203016)Hebei Industrial Innovation and Entrepreneurship team(No.215A7608D)。
文摘In some industrial wastewater,heavy metals combine with organic complexing agents to form heavy metal complexes(HMCs).These HMCs can be difficult to decompose and remove through conventional techniques due to their higher stability than free heavy metal ions.In recent years,persulfate based advanced oxidation processes(PS-based AOPs)have been recognized as a viable technique for HMCs degradation.Nevertheless,a comprehensive and in-depth understanding of the relevant HMCs decomplexation mechanisms in PS-based AOPs is still lacking.This review delineates the current progress of HMCs decomplexation in PS-based AOPs.We discuss the distinctions between the two widely used oxidant types in PS-based AOPs techniques.Moreover,we summarize and highlight the decomplexation mechanisms based on electron and energy transfer,and degradation pathways of HMCs.We also emphasize the effects of environmental water constituents,namely p H,inorganic ions,and natural organic matter(NOM),on HMCs decomplexation.Ultimately,we identify the existing challenges and perspectives that will steer the direction of advancing PS-based AOPs to remove HMCs.
基金grateful for the support by the National Natural Science Foundation of China(Nos.21702013,22271010)。
文摘An array of pyridine-ester enolate based organoboron complexes has been designed and synthesized via a one-pot cascade of Pd-catalyzedα-arylation and BF2complexation.The rapid structure-activity relationship(SAR)studies indicated that unsymmetrical N,O-chelated BF2complexes were highly fluorescent in solid state,and exhibited large Stokes shifts,excellent photostability,along with insensitivity to p H.Theα-aryl group could not only modulate the electronic effect but also inhibit the intermolecularπ-πstacking to promote the aggregation-induced emission(AIE)effect.DFT calculations and experiments identified that the intramolecular charge transfer properties of these N,O-chelates could be switched by the modification of substituents,resulting tunable fluorescence wavelengths.Furthermore,post-complexation modification was accomplished,including Suzuki-Miyaura cross-coupling,Buchwald-Hartwig amination,oxidative cleavage,along with a unique triple substitution reaction involving propargyl Grignard reagents.The exemplificative application of dimethylamine substituted boron complex as a reversible acidic vapor sensor was also demonstrated.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.22073002,51921002 and 22373008).
文摘We investigate the solution self-assembly of a mixture of positively charged homopolymers and AB diblock copolymers,in which the A blocks are negatively charged,and the B blocks are neutral.The electrostatic complexation between oppositely charged polymers drives the formation of many ordered phases.The microstructures and phase diagrams are calculated using self-consistent field theory(SCFT)based on an ion-pair model with an equilibrium constant K to characterize the strength of binding between positively and negatively charged monomers.The effects of the charge ratio,representing the ratio of charges from the homopolymer over all charges from polymers in the system,on the ordered structure are systematically studied,both for hydrophobic and hydrophilic A blocks.The charge ratio plays an important role in determining the phase boundaries in the phase diagram of salt concentration versus polymer concentration.We also provide information about the varying tendency of the domain spacing and core size of the spherical phase when the charge ratio is changed,and the results are in good agreement with experiments.These studies provide a deep understanding of the self-assembled microstructures of oppositely charged diblock copolymer-homopolymer systems.
基金financially supported jointly by Natural Science Foundation of Fujian Province of China(NO.2023J01227)Natural Science Foundation of Hebei Province(NO.D2020504003)Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey(NO.SK202303).
文摘Trivalent chromium(Cr(Ⅲ))can form stable soluble complexes with organic components,altering its adsorption properties in the water-soil environment.This increases the risk of Cr(Ⅲ)migrating to deeper soils and transforming into toxic Cr(VI)due to the presence of manganese oxides in sediments.In this study,Citric Acid(CA)was selected as a representative organic ligand to prepare and characterize Cr(III)-CA complexes.The characteristics,mechanisms and environmental factors influencing the adsorption of Cr(Ⅲ)-CA on porous media(silts and fine sands)were investigated in the study.The results show that Cr(Ⅲ)coordinates with CA at a 1:1 molar ratio,forming stable and soluble Cr(Ⅲ)-CA complexes.Compared to Cr(III)ions,the equilibrium adsorption capacity of Cr(Ⅲ)-CA is an order of magnitude lower in silts and fine sands.The adsorption of Cr(Ⅲ)-CA in silts and fine sands is dominated by chemical adsorption of monolayers,following the pseudo-second-order kinetic equation and the Langmuir isotherm adsorption model.Varying contents of clay minerals and iron-aluminum oxides prove to be the main causes of differences in adsorption capacity of Cr(Ⅲ)-CA in silts and fine sands.Changes in solution pH affect the adsorption rate and capacity of Cr(Ⅲ)-CA by altering its ionic form.The adsorption process is irreversible and only minimally influenced by ionic strength,suggesting that inner-sphere complexation serves as the dominant Cr(Ⅲ)-CA adsorption mechanism.