For a tridiagonal two-layer real six-neuron model,the Hopf bifurcation was investigated by studying the eigenvalue equations of the related linear system in the literature.In the present paper,we extend this two-layer...For a tridiagonal two-layer real six-neuron model,the Hopf bifurcation was investigated by studying the eigenvalue equations of the related linear system in the literature.In the present paper,we extend this two-layer real six-neuron network model into a complex-valued delayed network model.Based on the mathematical analysis method,some sufficient conditions to guarantee the existence of periodic oscillatory solutions are established under the assumption that the activation function can be separated into its real and imaginary parts.Our sufficient conditions obtained by the mathematical analysis method in this paper are simpler than those obtained by the Hopf bifurcation method.Computer simulation is provided to illustrate the correctness of the theoretical results.展开更多
Solutions of inverse problems are required in various fields of science and engineering. The concept of network inversion has been studied as a neural-network-based solution to inverse problems. In general, inverse pr...Solutions of inverse problems are required in various fields of science and engineering. The concept of network inversion has been studied as a neural-network-based solution to inverse problems. In general, inverse problems are not limited to a real-valued area. Recently, complex-valued neural networks have been actively studied in the field of neural networks. As an extension of network inversion to complex numbers, a complex-valued network inversion has been proposed. Moreover, inverse problems for estimating the parameters of distributed generation systems such as distributed energy plants or smart grids from observed electric circuit data have been studied in the field of natural energy. These emphasize the need to handle complex numbers in an alternating current (AC) circuit. In this paper, the authors propose an application of the complex-valued network inversion to the inverse estimation of a distributed generation. Further, the authors confirm the effectiveness of the complex-valued network inversion on the basis of simulation results.展开更多
Recently,deep learning has been used to establish the nonlinear and nonintuitive mapping between physical structures and electromagnetic responses of meta-atoms for higher computational efficiency.However,to obtain su...Recently,deep learning has been used to establish the nonlinear and nonintuitive mapping between physical structures and electromagnetic responses of meta-atoms for higher computational efficiency.However,to obtain sufficiently accurate predictions,the conventional deep-learning-based method consumes excessive time to collect the data set,thus hindering its wide application in this interdisciplinary field.We introduce a spectral transfer-learning-based metasurface design method to achieve excellent performance on a small data set with only 1000 samples in the target waveband by utilizing open-source data from another spectral range.We demonstrate three transfer strategies and experimentally quantify their performance,among which the“frozen-none”robustly improves the prediction accuracy by∼26%compared to direct learning.We propose to use a complex-valued deep neural network during the training process to further improve the spectral predicting precision by∼30%compared to its real-valued counterparts.We design several typical teraherz metadevices by employing a hybrid inverse model consolidating this trained target network and a global optimization algorithm.The simulated results successfully validate the capability of our approach.Our work provides a universal methodology for efficient and accurate metasurface design in arbitrary wavebands,which will pave the way toward the automated and mass production of metasurfaces.展开更多
As an optical processor,a diffractive deep neural network(D2NN)utilizes engineered diffractive surfaces designed through machine learning to perform all-optical information processing,completing its tasks at the speed...As an optical processor,a diffractive deep neural network(D2NN)utilizes engineered diffractive surfaces designed through machine learning to perform all-optical information processing,completing its tasks at the speed of light propagation through thin optical layers.With sufficient degrees of freedom,D2NNs can perform arbitrary complex-valued linear transformations using spatially coherent light.Similarly,D2NNs can also perform arbitrary linear intensity transformations with spatially incoherent illumination;however,under spatially incoherent light,these transformations are nonnegative,acting on diffraction-limited optical intensity patterns at the input field of view.Here,we expand the use of spatially incoherent D2NNs to complex-valued information processing for executing arbitrary complex-valued linear transformations using spatially incoherent light.Through simulations,we show that as the number of optimized diffractive features increases beyond a threshold dictated by the multiplication of the input and output space-bandwidth products,a spatially incoherent diffractive visual processor can approximate any complex-valued linear transformation and be used for all-optical image encryption using incoherent illumination.The findings are important for the all-optical processing of information under natural light using various forms of diffractive surface-based optical processors.展开更多
As the demand for high-quality services proliferates,an innovative network architecture,the fully-decoupled RAN(FD-RAN),has emerged for more flexible spectrum resource utilization and lower network costs.However,with ...As the demand for high-quality services proliferates,an innovative network architecture,the fully-decoupled RAN(FD-RAN),has emerged for more flexible spectrum resource utilization and lower network costs.However,with the decoupling of uplink base stations and downlink base stations in FDRAN,the traditional transmission mechanism,which relies on real-time channel feedback,is not suitable as the receiver is not able to feedback accurate and timely channel state information to the transmitter.This paper proposes a novel transmission scheme without relying on physical layer channel feedback.Specifically,we design a radio map based complex-valued precoding network(RMCPNet)model,which outputs the base station precoding based on user location.RMCPNet comprises multiple subnets,with each subnet responsible for extracting unique modal features from diverse input modalities.Furthermore,the multimodal embeddings derived from these distinct subnets are integrated within the information fusion layer,culminating in a unified representation.We also develop a specific RMCPNet training algorithm that employs the negative spectral efficiency as the loss function.We evaluate the performance of the proposed scheme on the public DeepMIMO dataset and show that RMCPNet can achieve 16%and 76%performance improvements over the conventional real-valued neural network and statistical codebook approach,respectively.展开更多
Multi-link networks are universal in the real world such as relationship networks,transportation networks,and communication networks.It is significant to investigate the synchronization of the network with multi-link....Multi-link networks are universal in the real world such as relationship networks,transportation networks,and communication networks.It is significant to investigate the synchronization of the network with multi-link.In this paper,considering the complex network with uncertain parameters,new adaptive controller and update laws are proposed to ensure that complex-valued multilink network realizes finite-time complex projective synchronization(FTCPS).In addition,based on fractional-order Lyapunov functional method and finite-time stability theory,the criteria of FTCPS are derived and synchronization time is given which is associated with fractional order and control parameters.Meanwhile,numerical example is given to verify the validity of proposed finite-time complex projection strategy and analyze the relationship between synchronization time and fractional order and control parameters.Finally,the network is applied to image encryption,and the security analysis is carried out to verify the correctness of this method.展开更多
Complex-valued neural networks(CVNNs)have shown their excellent efficiency compared to their real counterparts in speech enhancement,image and signal processing.Researchers throughout the years have made many efforts ...Complex-valued neural networks(CVNNs)have shown their excellent efficiency compared to their real counterparts in speech enhancement,image and signal processing.Researchers throughout the years have made many efforts to improve the learning algorithms and activation functions of CVNNs.Since CVNNs have proven to have better performance in handling the naturally complex-valued data and signals,this area of study will grow and expect the arrival of some effective improvements in the future.Therefore,there exists an obvious reason to provide a comprehensive survey paper that systematically collects and categorizes the advancement of CVNNs.In this paper,we discuss and summarize the recent advances based on their learning algorithms,activation functions,which is the most challenging part of building a CVNN,and applications.Besides,we outline the structure and applications of complex-valued convolutional,residual and recurrent neural networks.Finally,we also present some challenges and future research directions to facilitate the exploration of the ability of CVNNs.展开更多
In this paper, a novel design procedure is proposed for synthesizing high-capacity auto-associative memories based on complex-valued neural networks with real-imaginary-type activation functions and constant delays. S...In this paper, a novel design procedure is proposed for synthesizing high-capacity auto-associative memories based on complex-valued neural networks with real-imaginary-type activation functions and constant delays. Stability criteria dependent on external inputs of neural networks are derived. The designed networks can retrieve the stored patterns by external inputs rather than initial conditions. The derivation can memorize the desired patterns with lower-dimensional neural networks than real-valued neural networks, and eliminate spurious equilibria of complex-valued neural networks. One numerical example is provided to show the effectiveness and superiority of the presented results.展开更多
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u...Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.展开更多
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently...Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.展开更多
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us...Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.展开更多
This paper is concerned with the adaptive synchronization of fractional-order complex-valued chaotic neural networks(FOCVCNNs)with time-delay.The chaotic behaviors of a class of fractional-order complex-valued neural ...This paper is concerned with the adaptive synchronization of fractional-order complex-valued chaotic neural networks(FOCVCNNs)with time-delay.The chaotic behaviors of a class of fractional-order complex-valued neural network are investigated.Meanwhile,based on the complex-valued inequalities of fractional-order derivatives and the stability theory of fractional-order complex-valued systems,a new adaptive controller and new complex-valued update laws are proposed to construct a synchronization control model for fractional-order complex-valued chaotic neural networks.Finally,the numerical simulation results are presented to illustrate the effectiveness of the developed synchronization scheme.展开更多
In this paper, the multistability issue is discussed for delayed complex-valued recurrent neural networks with discontinuous real-imaginary-type activation functions. Based on a fixed theorem and stability definition,...In this paper, the multistability issue is discussed for delayed complex-valued recurrent neural networks with discontinuous real-imaginary-type activation functions. Based on a fixed theorem and stability definition, sufficient criteria are established for the existence and stability of multiple equilibria of complex-valued recurrent neural networks. The number of stable equilibria is larger than that of real-valued recurrent neural networks, which can be used to achieve high-capacity associative memories. One numerical example is provided to show the effectiveness and superiority of the presented results.展开更多
Without dividing the complex-valued systems into two real-valued ones, a class of fractional-order complex-valued memristive neural networks(FCVMNNs) with time delay is investigated. Firstly, based on the complex-valu...Without dividing the complex-valued systems into two real-valued ones, a class of fractional-order complex-valued memristive neural networks(FCVMNNs) with time delay is investigated. Firstly, based on the complex-valued sign function, a novel complex-valued feedback controller is devised to research such systems. Under the framework of Filippov solution, differential inclusion theory and Lyapunov stability theorem, the finite-time Mittag-Leffler synchronization(FTMLS) of FCVMNNs with time delay can be realized. Meanwhile, the upper bound of the synchronization settling time(SST) is less conservative than previous results. In addition, by adjusting controller parameters, the global asymptotic synchronization of FCVMNNs with time delay can also be realized, which improves and enrich some existing results. Lastly,some simulation examples are designed to verify the validity of conclusions.展开更多
In this paper, we investigate one kind of complex-valued systems with an impulsive control field, where the complex-valued system is governed by the Schrödinger equation, which is used for quantum systems, etc. W...In this paper, we investigate one kind of complex-valued systems with an impulsive control field, where the complex-valued system is governed by the Schrödinger equation, which is used for quantum systems, etc. We study the convergence of the complex-valued system with impulsive control fields by one Lyapunov function based on the state distance and the invariant principle of impulsive systems. We propose new results for the mentioned complex-valued systems in the form of sufficient conditions and also present one numerical simulation to illustrate the effectiveness of the proposed control method.展开更多
A new real and complex-valued hybrid time-delay neural network(TDNN)is proposed for modeling and linearizing the broad-band power amplifier(BPA).The neural network includes the generalized memory effect of input signa...A new real and complex-valued hybrid time-delay neural network(TDNN)is proposed for modeling and linearizing the broad-band power amplifier(BPA).The neural network includes the generalized memory effect of input signals,complex-valued input signals and the fractional order of a complex-valued input signal module,and,thus,the modeling accuracy is improved significantly.A comparative study of the normalized mean square error(NMSE)of the real and complex-valued hybrid TDNN for different spread constants,memory depths,node numbers,and order numbers is studied so as to establish an optimal TDNN as an effective baseband model,suitable for modeling strong nonlinearity of the BPA.A 51-dBm BPA with a 25-MHz bandwidth mixed test signal is used to verify the effectiveness of the proposed model.Compared with the memory polynomial(MP)model and the real-valued TDNN,the real and complex-valued hybrid TDNN is highly effective,leading to an improvement of 5 dB in the NMSE.In addition,the real and complex-valued hybrid TDNN has an improvement of 0.6 dB over the generalized MP model in the NMSE.Also,it has better numerical stability.Moreover,the proposed TDNN presents a significant improvement over the real-valued TDNN and the MP models in suppressing out-of-band spectral regrowth.展开更多
Stability criteria for the complex-valued impulsive system are applied widely in many fields, such as quantum systems, which have been studied in recent decades. In this paper, I investigate the Lyapunov control of fi...Stability criteria for the complex-valued impulsive system are applied widely in many fields, such as quantum systems, which have been studied in recent decades. In this paper, I investigate the Lyapunov control of finite dimensional complex-valued systems with impulsive control fields, where the studied complex-valued systems are governed by the Schrödinger equation and can be used in quantum systems. By one Lyapunov function based on state error and the invariant principle of impulsive systems, I study the convergence of complex-valued systems with impulsive control fields and propose new results for the mentioned complex-valued systems in the form of sufficient conditions. A numerical simulation to validate the proposed control method is provided.展开更多
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st...Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.展开更多
文摘For a tridiagonal two-layer real six-neuron model,the Hopf bifurcation was investigated by studying the eigenvalue equations of the related linear system in the literature.In the present paper,we extend this two-layer real six-neuron network model into a complex-valued delayed network model.Based on the mathematical analysis method,some sufficient conditions to guarantee the existence of periodic oscillatory solutions are established under the assumption that the activation function can be separated into its real and imaginary parts.Our sufficient conditions obtained by the mathematical analysis method in this paper are simpler than those obtained by the Hopf bifurcation method.Computer simulation is provided to illustrate the correctness of the theoretical results.
文摘Solutions of inverse problems are required in various fields of science and engineering. The concept of network inversion has been studied as a neural-network-based solution to inverse problems. In general, inverse problems are not limited to a real-valued area. Recently, complex-valued neural networks have been actively studied in the field of neural networks. As an extension of network inversion to complex numbers, a complex-valued network inversion has been proposed. Moreover, inverse problems for estimating the parameters of distributed generation systems such as distributed energy plants or smart grids from observed electric circuit data have been studied in the field of natural energy. These emphasize the need to handle complex numbers in an alternating current (AC) circuit. In this paper, the authors propose an application of the complex-valued network inversion to the inverse estimation of a distributed generation. Further, the authors confirm the effectiveness of the complex-valued network inversion on the basis of simulation results.
基金support from the National Natural Science Foundation of China (Grant Nos.62027820,61975143,61735012,and 62205380).
文摘Recently,deep learning has been used to establish the nonlinear and nonintuitive mapping between physical structures and electromagnetic responses of meta-atoms for higher computational efficiency.However,to obtain sufficiently accurate predictions,the conventional deep-learning-based method consumes excessive time to collect the data set,thus hindering its wide application in this interdisciplinary field.We introduce a spectral transfer-learning-based metasurface design method to achieve excellent performance on a small data set with only 1000 samples in the target waveband by utilizing open-source data from another spectral range.We demonstrate three transfer strategies and experimentally quantify their performance,among which the“frozen-none”robustly improves the prediction accuracy by∼26%compared to direct learning.We propose to use a complex-valued deep neural network during the training process to further improve the spectral predicting precision by∼30%compared to its real-valued counterparts.We design several typical teraherz metadevices by employing a hybrid inverse model consolidating this trained target network and a global optimization algorithm.The simulated results successfully validate the capability of our approach.Our work provides a universal methodology for efficient and accurate metasurface design in arbitrary wavebands,which will pave the way toward the automated and mass production of metasurfaces.
基金support of the U.S.Department of Energy (DOE),Office of Basic Energy Sciences,Division of Materials Sciences and Engineering under Award#DE-SC0023088.
文摘As an optical processor,a diffractive deep neural network(D2NN)utilizes engineered diffractive surfaces designed through machine learning to perform all-optical information processing,completing its tasks at the speed of light propagation through thin optical layers.With sufficient degrees of freedom,D2NNs can perform arbitrary complex-valued linear transformations using spatially coherent light.Similarly,D2NNs can also perform arbitrary linear intensity transformations with spatially incoherent illumination;however,under spatially incoherent light,these transformations are nonnegative,acting on diffraction-limited optical intensity patterns at the input field of view.Here,we expand the use of spatially incoherent D2NNs to complex-valued information processing for executing arbitrary complex-valued linear transformations using spatially incoherent light.Through simulations,we show that as the number of optimized diffractive features increases beyond a threshold dictated by the multiplication of the input and output space-bandwidth products,a spatially incoherent diffractive visual processor can approximate any complex-valued linear transformation and be used for all-optical image encryption using incoherent illumination.The findings are important for the all-optical processing of information under natural light using various forms of diffractive surface-based optical processors.
基金supported in part by the National Natural Science Foundation Original Exploration Project of China under Grant 62250004the National Natural Science Foundation of China under Grant 62271244+1 种基金the Natural Science Fund for Distinguished Young Scholars of Jiangsu Province under Grant BK20220067the Natural Sciences and Engineering Research Council of Canada (NSERC)
文摘As the demand for high-quality services proliferates,an innovative network architecture,the fully-decoupled RAN(FD-RAN),has emerged for more flexible spectrum resource utilization and lower network costs.However,with the decoupling of uplink base stations and downlink base stations in FDRAN,the traditional transmission mechanism,which relies on real-time channel feedback,is not suitable as the receiver is not able to feedback accurate and timely channel state information to the transmitter.This paper proposes a novel transmission scheme without relying on physical layer channel feedback.Specifically,we design a radio map based complex-valued precoding network(RMCPNet)model,which outputs the base station precoding based on user location.RMCPNet comprises multiple subnets,with each subnet responsible for extracting unique modal features from diverse input modalities.Furthermore,the multimodal embeddings derived from these distinct subnets are integrated within the information fusion layer,culminating in a unified representation.We also develop a specific RMCPNet training algorithm that employs the negative spectral efficiency as the loss function.We evaluate the performance of the proposed scheme on the public DeepMIMO dataset and show that RMCPNet can achieve 16%and 76%performance improvements over the conventional real-valued neural network and statistical codebook approach,respectively.
文摘Multi-link networks are universal in the real world such as relationship networks,transportation networks,and communication networks.It is significant to investigate the synchronization of the network with multi-link.In this paper,considering the complex network with uncertain parameters,new adaptive controller and update laws are proposed to ensure that complex-valued multilink network realizes finite-time complex projective synchronization(FTCPS).In addition,based on fractional-order Lyapunov functional method and finite-time stability theory,the criteria of FTCPS are derived and synchronization time is given which is associated with fractional order and control parameters.Meanwhile,numerical example is given to verify the validity of proposed finite-time complex projection strategy and analyze the relationship between synchronization time and fractional order and control parameters.Finally,the network is applied to image encryption,and the security analysis is carried out to verify the correctness of this method.
基金partially supported by the JSPS KAKENHI(JP22H03643,JP19K22891)。
文摘Complex-valued neural networks(CVNNs)have shown their excellent efficiency compared to their real counterparts in speech enhancement,image and signal processing.Researchers throughout the years have made many efforts to improve the learning algorithms and activation functions of CVNNs.Since CVNNs have proven to have better performance in handling the naturally complex-valued data and signals,this area of study will grow and expect the arrival of some effective improvements in the future.Therefore,there exists an obvious reason to provide a comprehensive survey paper that systematically collects and categorizes the advancement of CVNNs.In this paper,we discuss and summarize the recent advances based on their learning algorithms,activation functions,which is the most challenging part of building a CVNN,and applications.Besides,we outline the structure and applications of complex-valued convolutional,residual and recurrent neural networks.Finally,we also present some challenges and future research directions to facilitate the exploration of the ability of CVNNs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61503338,61573316,61374152,and 11302195)the Natural Science Foundation of Zhejiang Province,China(Grant No.LQ15F030005)
文摘In this paper, a novel design procedure is proposed for synthesizing high-capacity auto-associative memories based on complex-valued neural networks with real-imaginary-type activation functions and constant delays. Stability criteria dependent on external inputs of neural networks are derived. The designed networks can retrieve the stored patterns by external inputs rather than initial conditions. The derivation can memorize the desired patterns with lower-dimensional neural networks than real-valued neural networks, and eliminate spurious equilibria of complex-valued neural networks. One numerical example is provided to show the effectiveness and superiority of the presented results.
文摘Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.
基金National Natural Science Foundation of China(11971211,12171388).
文摘Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.
文摘Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.
基金Project supported by the Science and Technology Support Program of Xingtai,China(Grant No.2019ZC054)。
文摘This paper is concerned with the adaptive synchronization of fractional-order complex-valued chaotic neural networks(FOCVCNNs)with time-delay.The chaotic behaviors of a class of fractional-order complex-valued neural network are investigated.Meanwhile,based on the complex-valued inequalities of fractional-order derivatives and the stability theory of fractional-order complex-valued systems,a new adaptive controller and new complex-valued update laws are proposed to construct a synchronization control model for fractional-order complex-valued chaotic neural networks.Finally,the numerical simulation results are presented to illustrate the effectiveness of the developed synchronization scheme.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61374094 and 61503338)the Natural Science Foundation of Zhejiang Province,China(Grant No.LQ15F030005)
文摘In this paper, the multistability issue is discussed for delayed complex-valued recurrent neural networks with discontinuous real-imaginary-type activation functions. Based on a fixed theorem and stability definition, sufficient criteria are established for the existence and stability of multiple equilibria of complex-valued recurrent neural networks. The number of stable equilibria is larger than that of real-valued recurrent neural networks, which can be used to achieve high-capacity associative memories. One numerical example is provided to show the effectiveness and superiority of the presented results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62176189 and 62106181)the Hubei Province Key Laboratory of Systems Science in Metallurgical Process (Wuhan University of Science and Technology) (Grant No. Y202002)。
文摘Without dividing the complex-valued systems into two real-valued ones, a class of fractional-order complex-valued memristive neural networks(FCVMNNs) with time delay is investigated. Firstly, based on the complex-valued sign function, a novel complex-valued feedback controller is devised to research such systems. Under the framework of Filippov solution, differential inclusion theory and Lyapunov stability theorem, the finite-time Mittag-Leffler synchronization(FTMLS) of FCVMNNs with time delay can be realized. Meanwhile, the upper bound of the synchronization settling time(SST) is less conservative than previous results. In addition, by adjusting controller parameters, the global asymptotic synchronization of FCVMNNs with time delay can also be realized, which improves and enrich some existing results. Lastly,some simulation examples are designed to verify the validity of conclusions.
文摘In this paper, we investigate one kind of complex-valued systems with an impulsive control field, where the complex-valued system is governed by the Schrödinger equation, which is used for quantum systems, etc. We study the convergence of the complex-valued system with impulsive control fields by one Lyapunov function based on the state distance and the invariant principle of impulsive systems. We propose new results for the mentioned complex-valued systems in the form of sufficient conditions and also present one numerical simulation to illustrate the effectiveness of the proposed control method.
基金The National Natural Science Foundation of China(No.61561052,61701262)the Science and Technology Foundation of Henan Province(No.182102410062,182102210114)the Science and Technology Foundation of Henan Educational Committee(No.17A510018)
文摘A new real and complex-valued hybrid time-delay neural network(TDNN)is proposed for modeling and linearizing the broad-band power amplifier(BPA).The neural network includes the generalized memory effect of input signals,complex-valued input signals and the fractional order of a complex-valued input signal module,and,thus,the modeling accuracy is improved significantly.A comparative study of the normalized mean square error(NMSE)of the real and complex-valued hybrid TDNN for different spread constants,memory depths,node numbers,and order numbers is studied so as to establish an optimal TDNN as an effective baseband model,suitable for modeling strong nonlinearity of the BPA.A 51-dBm BPA with a 25-MHz bandwidth mixed test signal is used to verify the effectiveness of the proposed model.Compared with the memory polynomial(MP)model and the real-valued TDNN,the real and complex-valued hybrid TDNN is highly effective,leading to an improvement of 5 dB in the NMSE.In addition,the real and complex-valued hybrid TDNN has an improvement of 0.6 dB over the generalized MP model in the NMSE.Also,it has better numerical stability.Moreover,the proposed TDNN presents a significant improvement over the real-valued TDNN and the MP models in suppressing out-of-band spectral regrowth.
文摘Stability criteria for the complex-valued impulsive system are applied widely in many fields, such as quantum systems, which have been studied in recent decades. In this paper, I investigate the Lyapunov control of finite dimensional complex-valued systems with impulsive control fields, where the studied complex-valued systems are governed by the Schrödinger equation and can be used in quantum systems. By one Lyapunov function based on state error and the invariant principle of impulsive systems, I study the convergence of complex-valued systems with impulsive control fields and propose new results for the mentioned complex-valued systems in the form of sufficient conditions. A numerical simulation to validate the proposed control method is provided.
基金Supported by Sichuan Science and Technology Program(2023YFSY0026,2023YFH0004)Supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korean government(MSIT)(No.RS-2022-00155885,Artificial Intelligence Convergence Innovation Human Resources Development(Hanyang University ERICA)).
文摘Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.