期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
PML and CFS-PML boundary conditions for a mesh-free finite difference solution of the elastic wave equation 被引量:4
1
作者 Sun Cheng-Yu Li Shi-Zhong Xu Ning 《Applied Geophysics》 SCIE CSCD 2019年第4期438-454,560,共18页
Mesh-free finite difference(FD)methods can improve the geometric flexibility of modeling without the need for lattice mapping or complex meshing process.Radial-basisfunction-generated FD is among the most commonly use... Mesh-free finite difference(FD)methods can improve the geometric flexibility of modeling without the need for lattice mapping or complex meshing process.Radial-basisfunction-generated FD is among the most commonly used mesh-free FD methods and can accurately simulate seismic wave propagation in the non-rectangular computational domain.In this paper,we propose a perfectly matched layer(PML)boundary condition for a meshfree FD solution of the elastic wave equation,which can be applied to the boundaries of the non-rectangular velocity model.The performance of the PML is,however,severely reduced for near-grazing incident waves and low-frequency waves.We thus also propose the complexfrequency-shifted PML(CFS-PML)boundary condition for a mesh-free FD solution of the elastic wave equation.For two PML boundary conditions,we derive unsplit time-domain expressions by constructing auxiliary differential equations,both of which require less memory and are easy for programming.Numerical experiments demonstrate that these two PML boundary conditions effectively eliminate artificial boundary reflections in mesh-free FD simulations.When compared with the PML boundary condition,the CFS-PML boundary condition results in better absorption for near-grazing incident waves and evanescent waves. 展开更多
关键词 mesh-free finite difference elastic wave equation non-rectangular computational domain perfectly matched layer complex-frequency-shifted perfectly matched layer
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部