The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cereb...The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cerebral organoids have emerged as valuable tools offering a more complex,versatile,and human-relevant system than traditional animal models,which are often unable to replicate the intricate architecture and functionality of the human brain.Since human cerebral organoids are a state-of-the-art model for the study of neurodevelopment and different pathologies affecting the brain,this field is currently under constant development,and work in this area is abundant.In this review,we give a complete overview of human cerebral organoids technology,starting from the different types of protocols that exist to generate different human cerebral organoids.We continue with the use of brain organoids for the study of brain pathologies,highlighting neurodevelopmental,psychiatric,neurodegenerative,brain tumor,and infectious diseases.Because of the potential value of human cerebral organoids,we describe their use in transplantation,drug screening,and toxicology assays.We also discuss the technologies available to study cell diversity and physiological characteristics of organoids.Finally,we summarize the limitations that currently exist in the field,such as the development of vasculature and microglia,and highlight some of the novel approaches being pursued through bioengineering.展开更多
Objective Our previous studies established that microRNA(miR)-451 from human umbilical cord mesenchymal stem cell-derived exosomes(hUC-MSC-Exos)alleviates acute lung injury(ALI).This study aims to elucidate the mechan...Objective Our previous studies established that microRNA(miR)-451 from human umbilical cord mesenchymal stem cell-derived exosomes(hUC-MSC-Exos)alleviates acute lung injury(ALI).This study aims to elucidate the mechanisms by which miR-451 in hUC-MSC-Exos reduces ALI by modulating macrophage autophagy.Methods Exosomes were isolated from hUC-MSCs.Severe burn-induced ALI rat models were treated with hUC-MSC-Exos carrying the miR-451 inhibitor.Hematoxylin-eosin staining evaluated inflammatory injury.Enzyme-linked immunosorbnent assay measured lipopolysaccharide(LPS),tumor necrosis factor-α,and interleukin-1βlevels.qRT-PCR detected miR-451 and tuberous sclerosis complex 1(TSC1)expressions.The regulatory role of miR-451 on TSC1 was determined using a dual-luciferase reporter system.Western blotting determined TSC1 and proteins related to the mammalian target of rapamycin(mTOR)pathway and autophagy.Immunofluorescence analysis was conducted to examine exosomes phagocytosis in alveolar macrophages and autophagy level.Results hUC-MSC-Exos with miR-451 inhibitor reduced burn-induced ALI and promoted macrophage autophagy.MiR-451 could be transferred from hUC-MSCs to alveolar macrophages via exosomes and directly targeted TSC1.Inhibiting miR-451 in hUC-MSC-Exos elevated TSC1 expression and inactivated the mTOR pathway in alveolar macrophages.Silencing TSC1 activated mTOR signaling and inhibited autophagy,while TSC1 knockdown reversed the autophagy from the miR-451 inhibitor-induced.Conclusion miR-451 from hUC-MSC exosomes improves ALI by suppressing alveolar macrophage autophagy through modulation of the TSC1/mTOR pathway,providing a potential therapeutic strategy for ALI.展开更多
BACKGROUND The high prevalence of human papillomavirus(HPV)infection in oropharyngeal squamous cell carcinoma(SCC)is well established,and p16 expression is a strong predictor.HPV-related tumors exhibit unique mechanis...BACKGROUND The high prevalence of human papillomavirus(HPV)infection in oropharyngeal squamous cell carcinoma(SCC)is well established,and p16 expression is a strong predictor.HPV-related tumors exhibit unique mechanisms that target p16 and p53 proteins.However,research on HPV prevalence and the combined predictive value of p16 and p53 expression in head and neck cutaneous SCC(HNCSCC),particularly in Asian populations,remains limited.This retrospective study surveyed 62 patients with HNSCC(2011-2020),excluding those with facial warts or other skin cancer.AIM To explore the prevalence of HPV and the predictive value of p16 and p53 expression in HNCSCC in Asian populations.METHODS All patients underwent wide excision and biopsy.Immunohistochemical staining for HPV,p16,and p53 yielded positive and negative results.The relevance of each marker was investigated by categorizing the tumor locations into high-risk and middle-risk zones based on recurrence frequency.RESULTS Of the 62 patients,20(32.26%)were male,with an average age of 82.27 years(range 26-103 years).High-risk included 19 cases(30.65%),with the eyelid and lip being the most common sites(five cases,8.06%).Middle-risk included 43 cases(69.35%),with the cheek being the most common(29 cases,46.77%).The p16 expression was detected in 24 patients(38.71%),p53 expression in 42 patients(72.58%),and HPV in five patients(8.06%).No significant association was found between p16 expression and the presence of HPV(P>0.99),with a positive predictive value of 8.33%.CONCLUSION This study revealed that p16,a surrogate HPV marker in oropharyngeal SCC,is not reliable in HNCSCC,providing valuable insights for further research in Asian populations.展开更多
To expand the study on the structures and biological activities of the anthracyclines anticancer drugs and reduce their toxic side effects,the new anthraquinone derivatives,9‑pyridylanthrahydrazone(9‑PAH)and 9,10‑bisp...To expand the study on the structures and biological activities of the anthracyclines anticancer drugs and reduce their toxic side effects,the new anthraquinone derivatives,9‑pyridylanthrahydrazone(9‑PAH)and 9,10‑bispyridylanthrahydrazone(9,10‑PAH)were designed and synthesized.Utilizing 9‑PAH and 9,10‑PAH as promising anticancer ligands,their respective copper complexes,namely[Cu(L1)Cl_(2)]Cl(1)and{[Cu_(4)(μ_(2)‑Cl)_(3)Cl_(4)(9,10‑PAH)_(2)(DMSO)_(2)]Cl_(2)}_(n)(2),were subsequently synthesized,where the new ligand L1 is formed by coupling two 9‑PAH ligands in the coordination reaction.The chemical and crystal structures of 1 and 2 were elucidated by IR,MS,elemental analysis,and single‑crystal X‑ray diffraction.Complex 1 forms a mononuclear structure.L1 coordinates with Cu through its three N atoms,together with two Cl atoms,to form a five‑coordinated square pyramidal geometry.Complex 2 constitutes a polymeric structure,wherein each structural unit centrosymmetrically encompasses two five‑coordinated binuclear copper complexes(Cu1,Cu2)of 9,10‑PAH,with similar square pyramidal geometry.A chlorine atom(Cl_(2)),located at the symmetry center,bridges Cu1 and Cu1A to connect the two binuclear copper structures.Meanwhile,the two five‑coordinated Cu2 atoms symmetrically bridge the adjacent structural units via one coordinated Cl atom,respectively,thus forming a 1D chain‑like polymeric structure.In vitro anticancer activity assessments revealed that 1 and 2 showed significant cytotoxicity even higher than cisplatin.Specifically,the IC_(50)values of 2 against HeLa‑229 and SK‑OV‑3 cancer cell lines were determined to be(5.92±0.32)μmol·L^(-1)and(6.48±0.39)μmol·L^(-1),respectively.2 could also block the proliferation of HeLa‑229 cells in S phase and significantly induce cell apoptosis.In addition,fluorescence quenching competition experiments suggested that 2 might interact with DNA by an intercalative binding mode,offering insights into its underlying anticancer mechanism.CCDC:2388918,1;2388919,2.展开更多
BACKGROUND The gold standard of care for patients with severe peripheral nerve injury is autologous nerve grafting;however,autologous nerve grafts are usually limited for patients because of the limited number of auto...BACKGROUND The gold standard of care for patients with severe peripheral nerve injury is autologous nerve grafting;however,autologous nerve grafts are usually limited for patients because of the limited number of autologous nerve sources and the loss of neurosensory sensation in the donor area,whereas allogeneic or xenografts are even more limited by immune rejection.Tissue-engineered peripheral nerve scaffolds,with the morphology and structure of natural nerves and complex biological signals,hold the most promise as ideal peripheral nerve“replacements”.AIM To prepare allogenic peripheral nerve scaffolds using a low-toxicity decellularization method,and use human umbilical cord mesenchymal stem cells(hUCMSCs)as seed cells to cultivate scaffold-cell complexes for the repair of injured peripheral nerves.METHODS After obtaining sciatic nerves from New Zealand rabbits,an optimal acellular scaffold preparation scheme was established by mechanical separation,varying lyophilization cycles,and trypsin and DNase digestion at different times.The scaffolds were evaluated by hematoxylin and eosin(HE)and luxol fast blue(LFB)staining.The maximum load,durability,and elastic modulus of the acellular scaffolds were assessed using a universal material testing machine.The acellular scaffolds were implanted into the dorsal erector spinae muscle of SD rats and the scaffold degradation and systemic inflammatory reactions were observed at 3 days,1 week,3 weeks,and 6 weeks following surgery to determine the histocompatibility between xenografts.The effect of acellular scaffold extracts on fibroblast proliferation was assessed using an MTT assay to measure the cytotoxicity of the scaffold residual reagents.In addition,the umbilical cord from cesarean section fetuses was collected,and the Wharton’s jelly(WJ)was separated into culture cells and confirm the osteogenic and adipogenic differentiation of mesenchymal stem cells(MSCs)and hUC-MSCs.The cultured cells were induced to differentiate into Schwann cells by the antioxidant-growth factor induction method,and the differentiated cells and the myelinogenic properties were identified.RESULTS The experiments effectively decellularized the sciatic nerve of the New Zealand rabbits.After comparing the completed acellular scaffolds among the groups,the optimal decellularization preparation steps were established as follows:Mechanical separation of the epineurium,two cycles of lyophilization-rewarming,trypsin digestion for 5 hours,and DNase digestion for 10 hours.After HE staining,no residual nuclear components were evident on the scaffold,whereas the extracellular matrix remained intact.LFB staining showed a significant decrease in myelin sheath composition of the scaffold compared with that before preparation.Biomechanical testing revealed that the maximum tensile strength,elastic modulus,and durability of the acellular scaffold were reduced compared with normal peripheral nerves.Based on the histocompatibility test,the immune response of the recipient SD rats to the scaffold New Zealand rabbits began to decline3 weeks following surgery,and there was no significant rejection after 6 weeks.The MTT assay revealed that the acellular reagent extract had no obvious effects on cell proliferation.The cells were successfully isolated,cultured,and passaged from human umbilical cord WJ by MSC medium,and their ability to differentiate into Schwann-like cells was demonstrated by morphological and immunohistochemical identification.The differentiated cells could also myelinate in vitro.CONCLUSION The acellular peripheral nerve scaffold with complete cell removal and intact matrix may be prepared by combining lyophilization and enzyme digestion.The resulting scaffold exhibited good histocompatibility and low cytotoxicity.In addition,hUC-MSCs have the potential to differentiate into Schwann-like cells with myelinogenic ability following in vitro induction.展开更多
The skin’s primary function is to protect the body against a spectrum of environmental stressors, including mechanical insults, microorganisms, chemicals, and allergens. Located in the outermost layers, the primary s...The skin’s primary function is to protect the body against a spectrum of environmental stressors, including mechanical insults, microorganisms, chemicals, and allergens. Located in the outermost layers, the primary structures and components responsible for the skin’s barrier function are susceptible to environmental variables, dermatological conditions, and the aging process. The ensuing alterations to structure, composition, and organizational attributes of the epidermal barrier can impact its integrity and functionality. The aim of this study was to assess the effect of a novel complex composed of a ceramide, energizing peptide, and Camu Camu extract (SUPCERAT<sup>TM</sup> complex) on specific markers of epidermal barrier integrity, as well as epidermal and dermal function. All the experiments were conducted on fresh human abdominal skin explants. Intradermal production of hyaluronic acid, epidermal claudin-1, and ceramide synthase 3 expressions, as well as epidermal lipids content were assessed using specific fluorescent stainings on ex vivo skin after the application of the complex or placebo. Additionally, dermal elastase and collagenase activities were assessed using in tubo enzymatic assays. Lastly, the effect of a cosmetic cream containing SUPCERAT<sup>TM</sup> complex was assessed using subjective Global Aesthetic Improvement Scale (GAIS) in a small cohort of patients after 60 days of use. The application of the SUPCERAT<sup>TM</sup> complex on ex vivo skin led to significant increase in dermal hyaluronic acid content and epidermal activity of claudin-1, ceramide synthase 3 and epidermal ceramide content. Furthermore, in tubo enzymatic assays demonstrated inhibition of both dermal elastase and collagenase activities. In addition, the patient-reported results indicated significant improvements in skin quality and appearance. .展开更多
Food Science and Human Wellness(FSHW ISSN:2213-4530,CN 10-1750/TS)publishes original research papers demonstrating the latest advancement of multidisci-plinary subjects related to food science and human health.Topics ...Food Science and Human Wellness(FSHW ISSN:2213-4530,CN 10-1750/TS)publishes original research papers demonstrating the latest advancement of multidisci-plinary subjects related to food science and human health.Topics may include but not limited to:nutriology,biochemistry,microbiology,immunology and toxicology.展开更多
Food Science and Human Wellness(FSHW ISSN:2213-4530,CN 10-1750/TS)publishes original research papers demonstrating the latest advancement of multidisci-plinary subjects related to food science and human health.Topics ...Food Science and Human Wellness(FSHW ISSN:2213-4530,CN 10-1750/TS)publishes original research papers demonstrating the latest advancement of multidisci-plinary subjects related to food science and human health.Topics may include but not limited to:nutriology,bio-chemistry,microbiology,immunology and toxicology.展开更多
Mitochondrial function is fundamental to neuroregeneration,particularly in neurons,where high energy demands are essential for repair and recovery(Patrón and Zinsmaier,2016;Beckervordersandforth et al.,2017;Iwata...Mitochondrial function is fundamental to neuroregeneration,particularly in neurons,where high energy demands are essential for repair and recovery(Patrón and Zinsmaier,2016;Beckervordersandforth et al.,2017;Iwata et al.,2023).Mitochondrial dysfunction,characterized by an imbalance in ATP levels and excessive production of mitochondrial reactive oxygen species,is a key factor that impedes neural regeneration in neurodegenerative diseases and after neuronal injury(Han et al.,2016,2020;Zheng et al.,2016;Zong et al.,2024).展开更多
Stem cells play a crucial role in maintaining tissue regenerative capacity and homeostasis.However,mechanisms associated with stem cell senescence require further investigation.In this study,we conducted a proteomic a...Stem cells play a crucial role in maintaining tissue regenerative capacity and homeostasis.However,mechanisms associated with stem cell senescence require further investigation.In this study,we conducted a proteomic analysis of human dental pulp stem cells(HDPSCs)obtained from individuals of various ages.Our findings showed that the expression of NUP62 was decreased in aged HDPSCs.We discovered that NUP62 alleviated senescence-associated phenotypes and enhanced differentiation potential both in vitro and in vivo.Conversely,the knocking down of NUP62 expression aggravated the senescence-associated phenotypes and impaired the proliferation and migration capacity of HDPSCs.Through RNA-sequence and decoding the epigenomic landscapes remodeled induced by NUP62 overexpression,we found that NUP62 helps alleviate senescence in HDPSCs by enhancing the nuclear transport of the transcription factor E2F1.This,in turn,stimulates the transcription of the epigenetic enzyme NSD2.Finally,the overexpression of NUP62 influences the H3K36me2 and H3K36me3 modifications of anti-aging genes(HMGA1,HMGA2,and SIRT6).Our results demonstrated that NUP62 regulates the fate of HDPSCs via NSD2-dependent epigenetic reprogramming.展开更多
A complex system is inherently high-dimensional.Recent studies indicate that,even without complete knowledge of its evolutionary dynamics,the future behavior of such a system can be predicted using time-series data(da...A complex system is inherently high-dimensional.Recent studies indicate that,even without complete knowledge of its evolutionary dynamics,the future behavior of such a system can be predicted using time-series data(data-driven prediction).This suggests that the essential dynamics of a complex system can be captured through a low-dimensional representation.Virus evolution and climate change are two examples of complex,time-varying systems.In this article,we show that mutations in the spike protein provide valuable data for predicting SARS-CoV-2 variants,forecasting the possible emergence of the new macro-lineage Q in the near future.Our analysis also demonstrates that carbon dioxide concentration is a reliable indicator for predicting the evolution of the climate system,extending global surface air temperature(GSAT)forecasts through 2500.展开更多
Introduction to human endogenous retrovirus type-W(HERV-W): Genomic inheritance from the past includes retroviral sequences that have been stably incorporated into our genomes and account for up to 8% of human DNA.
Image-maps,a hybrid design with satellite images as background and map symbols uploaded,aim to combine the advantages of maps’high interpretation efficiency and satellite images’realism.The usability of image-maps i...Image-maps,a hybrid design with satellite images as background and map symbols uploaded,aim to combine the advantages of maps’high interpretation efficiency and satellite images’realism.The usability of image-maps is influenced by the representations of background images and map symbols.Many researchers explored the optimizations for background images and symbolization techniques for symbols to reduce the complexity of image-maps and improve the usability.However,little literature was found for the optimum amount of symbol loading.This study focuses on the effects of background image complexity and map symbol load on the usability(i.e.,effectiveness and efficiency)of image-maps.Experiments were conducted by user studies via eye-tracking equipment and an online questionnaire survey.Experimental data sets included image-maps with ten levels of map symbol load in ten areas.Forty volunteers took part in the target searching experiments.It has been found that the usability,i.e.,average time viewed(efficiency)and average revisits(effectiveness)of targets recorded,is influenced by the complexity of background images,a peak exists for optimum symbol load for an image-map.The optimum levels for symbol load for different image-maps also have a peak when the complexity of the background image/image map increases.The complexity of background images serves as a guideline for optimum map symbol load in image-map design.This study enhanced user experience by optimizing visual clarity and managing cognitive load.Understanding how these factors interact can help create adaptive maps that maintain clarity and usability,guiding AI algorithms to adjust symbol density based on user context.This research establishes the practices for map design,making cartographic tools more innovative and more user-centric.展开更多
Mammalian SWI/SNF complexes are ATP-dependent chromatin remodeling complexes that regulate genomic architecture.Here,we present a structural model of the endogenously purified human canonical BAF complex bound to the ...Mammalian SWI/SNF complexes are ATP-dependent chromatin remodeling complexes that regulate genomic architecture.Here,we present a structural model of the endogenously purified human canonical BAF complex bound to the nucleosome,generated using cryoelectron microscopy(cryo-EM),cross-linking mass spectrometry,and homology modeling.展开更多
Mammalian SWI/SNF complexes are ATP-dependent chromatin remodeling complexes that regulate genomic architecture.Here,we present a structural model of the endogenously purified human canonical BAF complex bound to the ...Mammalian SWI/SNF complexes are ATP-dependent chromatin remodeling complexes that regulate genomic architecture.Here,we present a structural model of the endogenously purified human canonical BAF complex bound to the nucleosome,generated using cryoelectron microscopy(cryo-EM),cross-linking mass spectrometry,and homology modeling.BAF complexes bilaterally engage the nucleosome H2A/H2B acidic patch regions through the SMARCB1 C-terminalα-helix and the SMARCA4/2 C-terminal SnAc/postSnAc regions,with disease-associated mutations in either causing attenuated chromatin remodeling activities.Further,we define changes in BAF complex architecture upon nucleosome engagement and compare the structural model of endogenous BAF to those of related SWI/SNF-family complexes.Finally,we assign and experimentally interrogate cancer-associated hot-spot mutations localizing within the endogenous human BAF complex,identifying those that disrupt BAF subunit-subunit and subunit-nucleosome interfaces in the nucleosome-bound conformation.Taken together,this integrative structural approach provides important biophysical foundations for understanding the mechanisms of BAF complex function in normal and disease states.展开更多
The Jiuyishan granitic complex,located in the Nanling Range,South China,is composed of five granitic plutons(Xuehuading,Jinjiling,Pangxiemu,Shaziling and Xishan).Zircon U-Pb dating of four plutons(Jinjiling,Pangxiemu,...The Jiuyishan granitic complex,located in the Nanling Range,South China,is composed of five granitic plutons(Xuehuading,Jinjiling,Pangxiemu,Shaziling and Xishan).Zircon U-Pb dating of four plutons(Jinjiling,Pangxiemu,Shaziling and Xishan)yielded similar ages of approximately 153 Ma,indicating indistinguishable ages within error.Three plutons except the Shaziling pluton,have consistentε_(Nd)(t)(-7.8 to-5.8)andε_(Hf)(t)(-9.1 to-2.2)values,which are similar to those of the lower crustal granulitic metasedimentary and meta-igneous rocks in South China.Compared to other three plutons,the Shaziling pluton has consistentε_(Nd)(t)(-7.4 to-6.8)andε_(Hf)(t)(-7.5 to-4.7)values and shows similar source,but the Shaziling mafic microgranular enclaves(MMEs)show variableε_(Hf)(t)(-14.2 to 4.8)values,indicating a remarkable mantle magma injection of the Shaziling pluton.Zircon Ce/Sm-Yb/Gd,whole-rock CaO-P_(2)O_(5)and CaO-TiO_(2)linear trends reveal that from the Xishan to the Shaziling and from the Jinjiling to the Pangxiemu granites,they experienced apatite and titanite fractionation,respectively.Zircon Th,U,Nb,Ta,Hf,Ti,Y,P and rare earth element(REE)contents and whole-rock Sr,Ba and Rb contents also show that the Shaziling,Xishan,Jinjiling and Pangxiemu granites followed a discontinuous evolutionary series,but the Pangxiemu granites exhibit highly evolved nature.Four main controlling factors of W-Sn and rare metal mineralization in granitic rocks were discussed,and we found that the mineralization in Jiuyishan granitic complex was mainly controlled by the fractionation degree and crystallization temperature,but were rarely affected by oxygen fugacity and mantle material input.The Pangxiemu granites show particularly higher Rb and Ta contents than the other three plutons,implying that the ore deposits developed in the Jiuyishan Complex were directly related to the most evolved Pangxiemu pluton,with the occurrence of Rb and Ta as the most likely rare metal mineralization in the Jiuyishan District.A crystal mush model is proposed to interpret the petrogenetic and mineralizing processes of the Jiuyishan granitic complex.展开更多
A phenylphenothiazine anchored Tb(Ⅲ)-cyclen complex PTP-Cy-Tb for hypochlorite ion(ClO^(-))detection has been designed and prepared.PTP-Cy-Tb shows a weak Tb-based emission with AIE-characteristics in aqueous solutio...A phenylphenothiazine anchored Tb(Ⅲ)-cyclen complex PTP-Cy-Tb for hypochlorite ion(ClO^(-))detection has been designed and prepared.PTP-Cy-Tb shows a weak Tb-based emission with AIE-characteristics in aqueous solutions.After addition of ClO^(-),the fluorescence of PTP-Cy-Tb gives a large enhancement for oxidization the thioether to sulfoxide group.The detection limit of PTP-Cy-Tb toward ClO^(-)is as low as 8.85 nmol/L.The sensing mechanism was detailedly investigated by time of flight mass spectrometer(TOF-MS),Fourier transform infrared spectroscopy(FT-IR)and density functional theory(DFT)calculation.In addition,PTP-Cy-Tb has been successfully used for on-site and real-time detection of ClO^(-)in real water samples by using the smartphone-based visualization method and test strips.展开更多
Metal complexes hold significant promise in tumor diagnosis and treatment.However,their potential applications in photodynamic therapy(PDT)are hindered by issues such as poor photostability,low yield of reactive oxyge...Metal complexes hold significant promise in tumor diagnosis and treatment.However,their potential applications in photodynamic therapy(PDT)are hindered by issues such as poor photostability,low yield of reactive oxygen species(ROS),and aggregation-induced ROS quenching.To address these challenges,we present a molecular self-assembly strategy utilizing aggregation-induced emission(AIE)conjugates for metal complexes.As a proof of concept,we synthesized a mitochondrial-targeting cyclometalated Ir(Ⅲ)photosensitizer Ir-TPE.This approach significantly enhances the photodynamic effect while mitigating the dark toxicity associated with AIE groups.Ir-TPE readily self-assembles into nanoaggregates in aqueous solution,leading to a significant production of ROS upon light irradiation.Photoirradiated Ir-TPE triggers multiple modes of death by excessively accumulating ROS in the mitochondria,resulting in mitochondrial DNA damage.This damage can lead to ferroptosis and autophagy,two forms of cell death that are highly cytotoxic to cancer cells.The aggregation-enhanced photodynamic effect of Ir-TPE significantly enhances the production of ROS,leading to a more pronounced cytotoxic effect.In vitro and in vivo experiments demonstrate this aggregation-enhanced PDT approach achieves effective in situ tumor eradication.This study not only addresses the limitations of metal complexes in terms of low ROS production due to aggregation but also highlights the potential of this strategy for enhancing ROS production in PDT.展开更多
Food Science and Human Wellness(FSHW ISSN:2213-4530,CN 10-1750/TS)publishes original research papers demonstrating the latest advancement of multidisci-plinary subjects related to food science and human health.Topics ...Food Science and Human Wellness(FSHW ISSN:2213-4530,CN 10-1750/TS)publishes original research papers demonstrating the latest advancement of multidisci-plinary subjects related to food science and human health.Topics may include but not limited to:nutriology,bio-chemistry,microbiology,immunology and toxicology.展开更多
Food Science and Human Wellness(FSHW ISSN:2213-4530,CN 10-1750/TS)publishes original research papers demonstrating the latest advancement of multidisci-plinary subjects related to food science and human health.Topics ...Food Science and Human Wellness(FSHW ISSN:2213-4530,CN 10-1750/TS)publishes original research papers demonstrating the latest advancement of multidisci-plinary subjects related to food science and human health.Topics may include but not limited to:nutriology,bio-chemistry,microbiology,immunology and toxicology.Papers regarding components of fod especially nutrients and non-nutrient bioactive compounds(with putative health benefits)are welcomed.FSHW aims to unveil the correlations between food science and human health through the dissemination of both fundamental and applied research outcomes worldwide.展开更多
基金supported by the Grant PID2021-126715OB-IOO financed by MCIN/AEI/10.13039/501100011033 and"ERDFA way of making Europe"by the Grant PI22CⅢ/00055 funded by Instituto de Salud CarlosⅢ(ISCⅢ)+6 种基金the UFIECPY 398/19(PEJ2018-004965) grant to RGS funded by AEI(Spain)the UFIECPY-396/19(PEJ2018-004961)grant financed by MCIN (Spain)FI23CⅢ/00003 grant funded by ISCⅢ-PFIS Spain) to PMMthe UFIECPY 328/22 (PEJ-2021-TL/BMD-21001) grant to LM financed by CAM (Spain)the grant by CAPES (Coordination for the Improvement of Higher Education Personnel)through the PDSE program (Programa de Doutorado Sanduiche no Exterior)to VSCG financed by MEC (Brazil)
文摘The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cerebral organoids have emerged as valuable tools offering a more complex,versatile,and human-relevant system than traditional animal models,which are often unable to replicate the intricate architecture and functionality of the human brain.Since human cerebral organoids are a state-of-the-art model for the study of neurodevelopment and different pathologies affecting the brain,this field is currently under constant development,and work in this area is abundant.In this review,we give a complete overview of human cerebral organoids technology,starting from the different types of protocols that exist to generate different human cerebral organoids.We continue with the use of brain organoids for the study of brain pathologies,highlighting neurodevelopmental,psychiatric,neurodegenerative,brain tumor,and infectious diseases.Because of the potential value of human cerebral organoids,we describe their use in transplantation,drug screening,and toxicology assays.We also discuss the technologies available to study cell diversity and physiological characteristics of organoids.Finally,we summarize the limitations that currently exist in the field,such as the development of vasculature and microglia,and highlight some of the novel approaches being pursued through bioengineering.
基金supported by the tenth batch of"3221"industrial innovation and scientific research projects in Bengbu City(beng talent[2020]No.8)the 2021 Bengbu Medical College Science and Technology Project[Natural Science,Project Number:2021byzd217].
文摘Objective Our previous studies established that microRNA(miR)-451 from human umbilical cord mesenchymal stem cell-derived exosomes(hUC-MSC-Exos)alleviates acute lung injury(ALI).This study aims to elucidate the mechanisms by which miR-451 in hUC-MSC-Exos reduces ALI by modulating macrophage autophagy.Methods Exosomes were isolated from hUC-MSCs.Severe burn-induced ALI rat models were treated with hUC-MSC-Exos carrying the miR-451 inhibitor.Hematoxylin-eosin staining evaluated inflammatory injury.Enzyme-linked immunosorbnent assay measured lipopolysaccharide(LPS),tumor necrosis factor-α,and interleukin-1βlevels.qRT-PCR detected miR-451 and tuberous sclerosis complex 1(TSC1)expressions.The regulatory role of miR-451 on TSC1 was determined using a dual-luciferase reporter system.Western blotting determined TSC1 and proteins related to the mammalian target of rapamycin(mTOR)pathway and autophagy.Immunofluorescence analysis was conducted to examine exosomes phagocytosis in alveolar macrophages and autophagy level.Results hUC-MSC-Exos with miR-451 inhibitor reduced burn-induced ALI and promoted macrophage autophagy.MiR-451 could be transferred from hUC-MSCs to alveolar macrophages via exosomes and directly targeted TSC1.Inhibiting miR-451 in hUC-MSC-Exos elevated TSC1 expression and inactivated the mTOR pathway in alveolar macrophages.Silencing TSC1 activated mTOR signaling and inhibited autophagy,while TSC1 knockdown reversed the autophagy from the miR-451 inhibitor-induced.Conclusion miR-451 from hUC-MSC exosomes improves ALI by suppressing alveolar macrophage autophagy through modulation of the TSC1/mTOR pathway,providing a potential therapeutic strategy for ALI.
基金Supported by the National Research Foundation of Korea,No.2020R1A2C1100891Soonchunhyang University Research Fund,No.2024-05-014.
文摘BACKGROUND The high prevalence of human papillomavirus(HPV)infection in oropharyngeal squamous cell carcinoma(SCC)is well established,and p16 expression is a strong predictor.HPV-related tumors exhibit unique mechanisms that target p16 and p53 proteins.However,research on HPV prevalence and the combined predictive value of p16 and p53 expression in head and neck cutaneous SCC(HNCSCC),particularly in Asian populations,remains limited.This retrospective study surveyed 62 patients with HNSCC(2011-2020),excluding those with facial warts or other skin cancer.AIM To explore the prevalence of HPV and the predictive value of p16 and p53 expression in HNCSCC in Asian populations.METHODS All patients underwent wide excision and biopsy.Immunohistochemical staining for HPV,p16,and p53 yielded positive and negative results.The relevance of each marker was investigated by categorizing the tumor locations into high-risk and middle-risk zones based on recurrence frequency.RESULTS Of the 62 patients,20(32.26%)were male,with an average age of 82.27 years(range 26-103 years).High-risk included 19 cases(30.65%),with the eyelid and lip being the most common sites(five cases,8.06%).Middle-risk included 43 cases(69.35%),with the cheek being the most common(29 cases,46.77%).The p16 expression was detected in 24 patients(38.71%),p53 expression in 42 patients(72.58%),and HPV in five patients(8.06%).No significant association was found between p16 expression and the presence of HPV(P>0.99),with a positive predictive value of 8.33%.CONCLUSION This study revealed that p16,a surrogate HPV marker in oropharyngeal SCC,is not reliable in HNCSCC,providing valuable insights for further research in Asian populations.
文摘To expand the study on the structures and biological activities of the anthracyclines anticancer drugs and reduce their toxic side effects,the new anthraquinone derivatives,9‑pyridylanthrahydrazone(9‑PAH)and 9,10‑bispyridylanthrahydrazone(9,10‑PAH)were designed and synthesized.Utilizing 9‑PAH and 9,10‑PAH as promising anticancer ligands,their respective copper complexes,namely[Cu(L1)Cl_(2)]Cl(1)and{[Cu_(4)(μ_(2)‑Cl)_(3)Cl_(4)(9,10‑PAH)_(2)(DMSO)_(2)]Cl_(2)}_(n)(2),were subsequently synthesized,where the new ligand L1 is formed by coupling two 9‑PAH ligands in the coordination reaction.The chemical and crystal structures of 1 and 2 were elucidated by IR,MS,elemental analysis,and single‑crystal X‑ray diffraction.Complex 1 forms a mononuclear structure.L1 coordinates with Cu through its three N atoms,together with two Cl atoms,to form a five‑coordinated square pyramidal geometry.Complex 2 constitutes a polymeric structure,wherein each structural unit centrosymmetrically encompasses two five‑coordinated binuclear copper complexes(Cu1,Cu2)of 9,10‑PAH,with similar square pyramidal geometry.A chlorine atom(Cl_(2)),located at the symmetry center,bridges Cu1 and Cu1A to connect the two binuclear copper structures.Meanwhile,the two five‑coordinated Cu2 atoms symmetrically bridge the adjacent structural units via one coordinated Cl atom,respectively,thus forming a 1D chain‑like polymeric structure.In vitro anticancer activity assessments revealed that 1 and 2 showed significant cytotoxicity even higher than cisplatin.Specifically,the IC_(50)values of 2 against HeLa‑229 and SK‑OV‑3 cancer cell lines were determined to be(5.92±0.32)μmol·L^(-1)and(6.48±0.39)μmol·L^(-1),respectively.2 could also block the proliferation of HeLa‑229 cells in S phase and significantly induce cell apoptosis.In addition,fluorescence quenching competition experiments suggested that 2 might interact with DNA by an intercalative binding mode,offering insights into its underlying anticancer mechanism.CCDC:2388918,1;2388919,2.
文摘BACKGROUND The gold standard of care for patients with severe peripheral nerve injury is autologous nerve grafting;however,autologous nerve grafts are usually limited for patients because of the limited number of autologous nerve sources and the loss of neurosensory sensation in the donor area,whereas allogeneic or xenografts are even more limited by immune rejection.Tissue-engineered peripheral nerve scaffolds,with the morphology and structure of natural nerves and complex biological signals,hold the most promise as ideal peripheral nerve“replacements”.AIM To prepare allogenic peripheral nerve scaffolds using a low-toxicity decellularization method,and use human umbilical cord mesenchymal stem cells(hUCMSCs)as seed cells to cultivate scaffold-cell complexes for the repair of injured peripheral nerves.METHODS After obtaining sciatic nerves from New Zealand rabbits,an optimal acellular scaffold preparation scheme was established by mechanical separation,varying lyophilization cycles,and trypsin and DNase digestion at different times.The scaffolds were evaluated by hematoxylin and eosin(HE)and luxol fast blue(LFB)staining.The maximum load,durability,and elastic modulus of the acellular scaffolds were assessed using a universal material testing machine.The acellular scaffolds were implanted into the dorsal erector spinae muscle of SD rats and the scaffold degradation and systemic inflammatory reactions were observed at 3 days,1 week,3 weeks,and 6 weeks following surgery to determine the histocompatibility between xenografts.The effect of acellular scaffold extracts on fibroblast proliferation was assessed using an MTT assay to measure the cytotoxicity of the scaffold residual reagents.In addition,the umbilical cord from cesarean section fetuses was collected,and the Wharton’s jelly(WJ)was separated into culture cells and confirm the osteogenic and adipogenic differentiation of mesenchymal stem cells(MSCs)and hUC-MSCs.The cultured cells were induced to differentiate into Schwann cells by the antioxidant-growth factor induction method,and the differentiated cells and the myelinogenic properties were identified.RESULTS The experiments effectively decellularized the sciatic nerve of the New Zealand rabbits.After comparing the completed acellular scaffolds among the groups,the optimal decellularization preparation steps were established as follows:Mechanical separation of the epineurium,two cycles of lyophilization-rewarming,trypsin digestion for 5 hours,and DNase digestion for 10 hours.After HE staining,no residual nuclear components were evident on the scaffold,whereas the extracellular matrix remained intact.LFB staining showed a significant decrease in myelin sheath composition of the scaffold compared with that before preparation.Biomechanical testing revealed that the maximum tensile strength,elastic modulus,and durability of the acellular scaffold were reduced compared with normal peripheral nerves.Based on the histocompatibility test,the immune response of the recipient SD rats to the scaffold New Zealand rabbits began to decline3 weeks following surgery,and there was no significant rejection after 6 weeks.The MTT assay revealed that the acellular reagent extract had no obvious effects on cell proliferation.The cells were successfully isolated,cultured,and passaged from human umbilical cord WJ by MSC medium,and their ability to differentiate into Schwann-like cells was demonstrated by morphological and immunohistochemical identification.The differentiated cells could also myelinate in vitro.CONCLUSION The acellular peripheral nerve scaffold with complete cell removal and intact matrix may be prepared by combining lyophilization and enzyme digestion.The resulting scaffold exhibited good histocompatibility and low cytotoxicity.In addition,hUC-MSCs have the potential to differentiate into Schwann-like cells with myelinogenic ability following in vitro induction.
文摘The skin’s primary function is to protect the body against a spectrum of environmental stressors, including mechanical insults, microorganisms, chemicals, and allergens. Located in the outermost layers, the primary structures and components responsible for the skin’s barrier function are susceptible to environmental variables, dermatological conditions, and the aging process. The ensuing alterations to structure, composition, and organizational attributes of the epidermal barrier can impact its integrity and functionality. The aim of this study was to assess the effect of a novel complex composed of a ceramide, energizing peptide, and Camu Camu extract (SUPCERAT<sup>TM</sup> complex) on specific markers of epidermal barrier integrity, as well as epidermal and dermal function. All the experiments were conducted on fresh human abdominal skin explants. Intradermal production of hyaluronic acid, epidermal claudin-1, and ceramide synthase 3 expressions, as well as epidermal lipids content were assessed using specific fluorescent stainings on ex vivo skin after the application of the complex or placebo. Additionally, dermal elastase and collagenase activities were assessed using in tubo enzymatic assays. Lastly, the effect of a cosmetic cream containing SUPCERAT<sup>TM</sup> complex was assessed using subjective Global Aesthetic Improvement Scale (GAIS) in a small cohort of patients after 60 days of use. The application of the SUPCERAT<sup>TM</sup> complex on ex vivo skin led to significant increase in dermal hyaluronic acid content and epidermal activity of claudin-1, ceramide synthase 3 and epidermal ceramide content. Furthermore, in tubo enzymatic assays demonstrated inhibition of both dermal elastase and collagenase activities. In addition, the patient-reported results indicated significant improvements in skin quality and appearance. .
文摘Food Science and Human Wellness(FSHW ISSN:2213-4530,CN 10-1750/TS)publishes original research papers demonstrating the latest advancement of multidisci-plinary subjects related to food science and human health.Topics may include but not limited to:nutriology,biochemistry,microbiology,immunology and toxicology.
文摘Food Science and Human Wellness(FSHW ISSN:2213-4530,CN 10-1750/TS)publishes original research papers demonstrating the latest advancement of multidisci-plinary subjects related to food science and human health.Topics may include but not limited to:nutriology,bio-chemistry,microbiology,immunology and toxicology.
文摘Mitochondrial function is fundamental to neuroregeneration,particularly in neurons,where high energy demands are essential for repair and recovery(Patrón and Zinsmaier,2016;Beckervordersandforth et al.,2017;Iwata et al.,2023).Mitochondrial dysfunction,characterized by an imbalance in ATP levels and excessive production of mitochondrial reactive oxygen species,is a key factor that impedes neural regeneration in neurodegenerative diseases and after neuronal injury(Han et al.,2016,2020;Zheng et al.,2016;Zong et al.,2024).
基金supported by the National Natural Science Foundation of China(32171347)the Foundation of Leading Talents from Shanghai Health Commission(2022XD038)+1 种基金Training Program for Research Physicians in Innovation,the Funda-mental Research Funds for the Central Universities(YG2023QNA23)Transforma-tion from shanghai hospital development center(SHDC2022CRD002).
文摘Stem cells play a crucial role in maintaining tissue regenerative capacity and homeostasis.However,mechanisms associated with stem cell senescence require further investigation.In this study,we conducted a proteomic analysis of human dental pulp stem cells(HDPSCs)obtained from individuals of various ages.Our findings showed that the expression of NUP62 was decreased in aged HDPSCs.We discovered that NUP62 alleviated senescence-associated phenotypes and enhanced differentiation potential both in vitro and in vivo.Conversely,the knocking down of NUP62 expression aggravated the senescence-associated phenotypes and impaired the proliferation and migration capacity of HDPSCs.Through RNA-sequence and decoding the epigenomic landscapes remodeled induced by NUP62 overexpression,we found that NUP62 helps alleviate senescence in HDPSCs by enhancing the nuclear transport of the transcription factor E2F1.This,in turn,stimulates the transcription of the epigenetic enzyme NSD2.Finally,the overexpression of NUP62 influences the H3K36me2 and H3K36me3 modifications of anti-aging genes(HMGA1,HMGA2,and SIRT6).Our results demonstrated that NUP62 regulates the fate of HDPSCs via NSD2-dependent epigenetic reprogramming.
基金Natural science foundation of Inner Mongolia(2024LHMS06018)The basic scientific research funding for directly affiliated universities in the Inner Mongolia(JY20250094)。
文摘A complex system is inherently high-dimensional.Recent studies indicate that,even without complete knowledge of its evolutionary dynamics,the future behavior of such a system can be predicted using time-series data(data-driven prediction).This suggests that the essential dynamics of a complex system can be captured through a low-dimensional representation.Virus evolution and climate change are two examples of complex,time-varying systems.In this article,we show that mutations in the spike protein provide valuable data for predicting SARS-CoV-2 variants,forecasting the possible emergence of the new macro-lineage Q in the near future.Our analysis also demonstrates that carbon dioxide concentration is a reliable indicator for predicting the evolution of the climate system,extending global surface air temperature(GSAT)forecasts through 2500.
基金supported by the Christiane and Claudia Hempel Foundation for Regenerative Medicineby the James and Elisabeth Cloppenburg, Peek and Cloppenburg Düsseldorf Stiftung(to PK)。
文摘Introduction to human endogenous retrovirus type-W(HERV-W): Genomic inheritance from the past includes retroviral sequences that have been stably incorporated into our genomes and account for up to 8% of human DNA.
基金National Natural Science Foundation of China(No.42301518)Hubei Key Laboratory of Regional Development and Environmental Response(No.2023(A)002)Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources(Ministry of Education)(No.TDSYS202304).
文摘Image-maps,a hybrid design with satellite images as background and map symbols uploaded,aim to combine the advantages of maps’high interpretation efficiency and satellite images’realism.The usability of image-maps is influenced by the representations of background images and map symbols.Many researchers explored the optimizations for background images and symbolization techniques for symbols to reduce the complexity of image-maps and improve the usability.However,little literature was found for the optimum amount of symbol loading.This study focuses on the effects of background image complexity and map symbol load on the usability(i.e.,effectiveness and efficiency)of image-maps.Experiments were conducted by user studies via eye-tracking equipment and an online questionnaire survey.Experimental data sets included image-maps with ten levels of map symbol load in ten areas.Forty volunteers took part in the target searching experiments.It has been found that the usability,i.e.,average time viewed(efficiency)and average revisits(effectiveness)of targets recorded,is influenced by the complexity of background images,a peak exists for optimum symbol load for an image-map.The optimum levels for symbol load for different image-maps also have a peak when the complexity of the background image/image map increases.The complexity of background images serves as a guideline for optimum map symbol load in image-map design.This study enhanced user experience by optimizing visual clarity and managing cognitive load.Understanding how these factors interact can help create adaptive maps that maintain clarity and usability,guiding AI algorithms to adjust symbol density based on user context.This research establishes the practices for map design,making cartographic tools more innovative and more user-centric.
文摘Mammalian SWI/SNF complexes are ATP-dependent chromatin remodeling complexes that regulate genomic architecture.Here,we present a structural model of the endogenously purified human canonical BAF complex bound to the nucleosome,generated using cryoelectron microscopy(cryo-EM),cross-linking mass spectrometry,and homology modeling.
文摘Mammalian SWI/SNF complexes are ATP-dependent chromatin remodeling complexes that regulate genomic architecture.Here,we present a structural model of the endogenously purified human canonical BAF complex bound to the nucleosome,generated using cryoelectron microscopy(cryo-EM),cross-linking mass spectrometry,and homology modeling.BAF complexes bilaterally engage the nucleosome H2A/H2B acidic patch regions through the SMARCB1 C-terminalα-helix and the SMARCA4/2 C-terminal SnAc/postSnAc regions,with disease-associated mutations in either causing attenuated chromatin remodeling activities.Further,we define changes in BAF complex architecture upon nucleosome engagement and compare the structural model of endogenous BAF to those of related SWI/SNF-family complexes.Finally,we assign and experimentally interrogate cancer-associated hot-spot mutations localizing within the endogenous human BAF complex,identifying those that disrupt BAF subunit-subunit and subunit-nucleosome interfaces in the nucleosome-bound conformation.Taken together,this integrative structural approach provides important biophysical foundations for understanding the mechanisms of BAF complex function in normal and disease states.
基金financially supported by the Provincial Natural Science Foundation of Hunan(Nos.2019JJ50831,2023JJ30505 and 2023JJ40541)the China Postdoctoral Science Foundation(Nos.2017M622597 and 2021M690591)+2 种基金the Open Research Fund Program of Fundamental Science on Radioactive Geology and Exploration Technology Laboratory(East China University of Technology)(No.2022RGET04)the National Foreign Expert Project(No.G2022029012L)the National Nature Science Foundation of China(No.41002022)。
文摘The Jiuyishan granitic complex,located in the Nanling Range,South China,is composed of five granitic plutons(Xuehuading,Jinjiling,Pangxiemu,Shaziling and Xishan).Zircon U-Pb dating of four plutons(Jinjiling,Pangxiemu,Shaziling and Xishan)yielded similar ages of approximately 153 Ma,indicating indistinguishable ages within error.Three plutons except the Shaziling pluton,have consistentε_(Nd)(t)(-7.8 to-5.8)andε_(Hf)(t)(-9.1 to-2.2)values,which are similar to those of the lower crustal granulitic metasedimentary and meta-igneous rocks in South China.Compared to other three plutons,the Shaziling pluton has consistentε_(Nd)(t)(-7.4 to-6.8)andε_(Hf)(t)(-7.5 to-4.7)values and shows similar source,but the Shaziling mafic microgranular enclaves(MMEs)show variableε_(Hf)(t)(-14.2 to 4.8)values,indicating a remarkable mantle magma injection of the Shaziling pluton.Zircon Ce/Sm-Yb/Gd,whole-rock CaO-P_(2)O_(5)and CaO-TiO_(2)linear trends reveal that from the Xishan to the Shaziling and from the Jinjiling to the Pangxiemu granites,they experienced apatite and titanite fractionation,respectively.Zircon Th,U,Nb,Ta,Hf,Ti,Y,P and rare earth element(REE)contents and whole-rock Sr,Ba and Rb contents also show that the Shaziling,Xishan,Jinjiling and Pangxiemu granites followed a discontinuous evolutionary series,but the Pangxiemu granites exhibit highly evolved nature.Four main controlling factors of W-Sn and rare metal mineralization in granitic rocks were discussed,and we found that the mineralization in Jiuyishan granitic complex was mainly controlled by the fractionation degree and crystallization temperature,but were rarely affected by oxygen fugacity and mantle material input.The Pangxiemu granites show particularly higher Rb and Ta contents than the other three plutons,implying that the ore deposits developed in the Jiuyishan Complex were directly related to the most evolved Pangxiemu pluton,with the occurrence of Rb and Ta as the most likely rare metal mineralization in the Jiuyishan District.A crystal mush model is proposed to interpret the petrogenetic and mineralizing processes of the Jiuyishan granitic complex.
基金supported by the National Nature Science Foundation of China(Nos.22061028 and 22361028)Jiangxi Provincial Natural Science Foundation(No.20224ACB203012)。
文摘A phenylphenothiazine anchored Tb(Ⅲ)-cyclen complex PTP-Cy-Tb for hypochlorite ion(ClO^(-))detection has been designed and prepared.PTP-Cy-Tb shows a weak Tb-based emission with AIE-characteristics in aqueous solutions.After addition of ClO^(-),the fluorescence of PTP-Cy-Tb gives a large enhancement for oxidization the thioether to sulfoxide group.The detection limit of PTP-Cy-Tb toward ClO^(-)is as low as 8.85 nmol/L.The sensing mechanism was detailedly investigated by time of flight mass spectrometer(TOF-MS),Fourier transform infrared spectroscopy(FT-IR)and density functional theory(DFT)calculation.In addition,PTP-Cy-Tb has been successfully used for on-site and real-time detection of ClO^(-)in real water samples by using the smartphone-based visualization method and test strips.
基金support from the National Natural Science Foundation of China(Nos.22277056,21977052)the Distinguished Young Scholars of Jiangsu Province(No.BK20230006)+2 种基金the Natural Science Foundation of Jiangsu Province(Nos.BK20230977,BK20231090)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(No.23KJB150020)the Jiangsu Excellent Postdoctoral Program(No.2022ZB758)。
文摘Metal complexes hold significant promise in tumor diagnosis and treatment.However,their potential applications in photodynamic therapy(PDT)are hindered by issues such as poor photostability,low yield of reactive oxygen species(ROS),and aggregation-induced ROS quenching.To address these challenges,we present a molecular self-assembly strategy utilizing aggregation-induced emission(AIE)conjugates for metal complexes.As a proof of concept,we synthesized a mitochondrial-targeting cyclometalated Ir(Ⅲ)photosensitizer Ir-TPE.This approach significantly enhances the photodynamic effect while mitigating the dark toxicity associated with AIE groups.Ir-TPE readily self-assembles into nanoaggregates in aqueous solution,leading to a significant production of ROS upon light irradiation.Photoirradiated Ir-TPE triggers multiple modes of death by excessively accumulating ROS in the mitochondria,resulting in mitochondrial DNA damage.This damage can lead to ferroptosis and autophagy,two forms of cell death that are highly cytotoxic to cancer cells.The aggregation-enhanced photodynamic effect of Ir-TPE significantly enhances the production of ROS,leading to a more pronounced cytotoxic effect.In vitro and in vivo experiments demonstrate this aggregation-enhanced PDT approach achieves effective in situ tumor eradication.This study not only addresses the limitations of metal complexes in terms of low ROS production due to aggregation but also highlights the potential of this strategy for enhancing ROS production in PDT.
文摘Food Science and Human Wellness(FSHW ISSN:2213-4530,CN 10-1750/TS)publishes original research papers demonstrating the latest advancement of multidisci-plinary subjects related to food science and human health.Topics may include but not limited to:nutriology,bio-chemistry,microbiology,immunology and toxicology.
文摘Food Science and Human Wellness(FSHW ISSN:2213-4530,CN 10-1750/TS)publishes original research papers demonstrating the latest advancement of multidisci-plinary subjects related to food science and human health.Topics may include but not limited to:nutriology,bio-chemistry,microbiology,immunology and toxicology.Papers regarding components of fod especially nutrients and non-nutrient bioactive compounds(with putative health benefits)are welcomed.FSHW aims to unveil the correlations between food science and human health through the dissemination of both fundamental and applied research outcomes worldwide.