Complex Field Theory (CFT) proposes that dark matter (DM) and dark energy (DE) are pervasive, complex fields of charged complex masses of equally positive and negative complex charges, respectively. It proposes that e...Complex Field Theory (CFT) proposes that dark matter (DM) and dark energy (DE) are pervasive, complex fields of charged complex masses of equally positive and negative complex charges, respectively. It proposes that each material object, including living creatures, is concomitant with a fraction of the charged complex masses of DM and DE in proportion to its mass. This perception provides new insights into the physics of nature and its constituents from subatomic to cosmic scales. This complex nature of DM and DE explains our inability to see DM or harvest DE for the last several decades. The positive complex DM is responsible for preserving the integrity of galaxies and all material systems. The negative complex charged DE induces a positive repelling force with the positively charged DM and contributes to the universe’s expansion. Both fields are Lorentz invariants in all directions and entangle the whole universe. The paper uses CFT to investigate zero-point energy, particle-wave duality, relativistic mass increase, and entanglement phenomenon and unifies Coulomb’s and Newton’s laws. The paper also verifies the existence of tachyons and explains the spooky action of quantum mechanics at a distance. The paper encourages further research into how CFT might resolve several physical mysteries in physics.展开更多
A numerical method is presented that simulates 3D explosive field problems. A code MMIC3D using this method can be used to simulate the propagation and reflected effects of all kinds of rigid boundaries to shock waves...A numerical method is presented that simulates 3D explosive field problems. A code MMIC3D using this method can be used to simulate the propagation and reflected effects of all kinds of rigid boundaries to shock waves produced by an explosive source. These numerical results indicate that the code MMIC3D has the ability in computing cases such as 3D shock waves produced by air explosion, vortex region of the shock wave, the Mach wave, and reflected waves behind rigid boundaries.展开更多
提出了综合处理Burton-Miller方法所导致的奇异积分与近奇异积分问题的数值求积方法,以此改进了基于常量元素的常规边界元和低频快速多极边界元方法。对于奇异积分问题,利用Hadamard有限积分方法进行解决;对于近奇异积分问题,则采用极...提出了综合处理Burton-Miller方法所导致的奇异积分与近奇异积分问题的数值求积方法,以此改进了基于常量元素的常规边界元和低频快速多极边界元方法。对于奇异积分问题,利用Hadamard有限积分方法进行解决;对于近奇异积分问题,则采用极坐标变换法和PART方法(Projection and Angular&Radial Transformation)进行克服。与解析解和LMS Virtual.Lab商业软件的结果比较验证了方法的正确性,并对比分析了奇异积分与近奇异积分对计算精度的影响。采用低频快速多极子方法以加速常规边界元法的计算效率,计算分析了计算复杂度,并成功实现了34万自由度大规模问题的计算。结果表明,近奇异积分问题主要由超奇异核函数引起,对计算精度的影响不容忽略;快速多极边界元法的精度与常规边界元法一致,但计算复杂度要远低于后者。展开更多
文摘Complex Field Theory (CFT) proposes that dark matter (DM) and dark energy (DE) are pervasive, complex fields of charged complex masses of equally positive and negative complex charges, respectively. It proposes that each material object, including living creatures, is concomitant with a fraction of the charged complex masses of DM and DE in proportion to its mass. This perception provides new insights into the physics of nature and its constituents from subatomic to cosmic scales. This complex nature of DM and DE explains our inability to see DM or harvest DE for the last several decades. The positive complex DM is responsible for preserving the integrity of galaxies and all material systems. The negative complex charged DE induces a positive repelling force with the positively charged DM and contributes to the universe’s expansion. Both fields are Lorentz invariants in all directions and entangle the whole universe. The paper uses CFT to investigate zero-point energy, particle-wave duality, relativistic mass increase, and entanglement phenomenon and unifies Coulomb’s and Newton’s laws. The paper also verifies the existence of tachyons and explains the spooky action of quantum mechanics at a distance. The paper encourages further research into how CFT might resolve several physical mysteries in physics.
文摘A numerical method is presented that simulates 3D explosive field problems. A code MMIC3D using this method can be used to simulate the propagation and reflected effects of all kinds of rigid boundaries to shock waves produced by an explosive source. These numerical results indicate that the code MMIC3D has the ability in computing cases such as 3D shock waves produced by air explosion, vortex region of the shock wave, the Mach wave, and reflected waves behind rigid boundaries.
文摘提出了综合处理Burton-Miller方法所导致的奇异积分与近奇异积分问题的数值求积方法,以此改进了基于常量元素的常规边界元和低频快速多极边界元方法。对于奇异积分问题,利用Hadamard有限积分方法进行解决;对于近奇异积分问题,则采用极坐标变换法和PART方法(Projection and Angular&Radial Transformation)进行克服。与解析解和LMS Virtual.Lab商业软件的结果比较验证了方法的正确性,并对比分析了奇异积分与近奇异积分对计算精度的影响。采用低频快速多极子方法以加速常规边界元法的计算效率,计算分析了计算复杂度,并成功实现了34万自由度大规模问题的计算。结果表明,近奇异积分问题主要由超奇异核函数引起,对计算精度的影响不容忽略;快速多极边界元法的精度与常规边界元法一致,但计算复杂度要远低于后者。