The dual three-phase PMSM(DTP-PMSM)drives have received wide attention at high-power high-efficiency applications due to their merits of high output current ability and copper-loss-free field excitation.Meanwhile,the ...The dual three-phase PMSM(DTP-PMSM)drives have received wide attention at high-power high-efficiency applications due to their merits of high output current ability and copper-loss-free field excitation.Meanwhile,the DTPPMSM drive provides higher fault-tolerant capability for highreliability applications,e.g.,pumps and actuators in aircraft.For high-power drives with limited switching frequencies and highspeed drives with large fundamental frequencies,the ratio of switching frequency to fundamental frequency,i.e.,the carrier ratio,is usually below 15,which would significantly degrade the control performance.The purpose of this paper is to review the recent work on the modulation and control schemes for improving the operation performance of DTP-PMSM drives with low carrier ratios.Specifically,three categories of methods,i.e.,the space vector modulation based control,the model predictive control(MPC),and the optimized pulse pattern(OPP)based control are reviewed with principles and performance.In addition,brief discussions regarding the comparison and future trends are presented for low-carrier-ratio(LCR)modulation and control schemes of DTP-PMSM drives.展开更多
针对传统永磁同步电机(permanent magnet synchronous motor,PMSM)三矢量模型预测电流控制(three-vector model predictive current control,TV-MPCC)存在开关频率不固定和计算复杂的问题,提出一种固定开关频率TV-MPCC策略。利用前一周...针对传统永磁同步电机(permanent magnet synchronous motor,PMSM)三矢量模型预测电流控制(three-vector model predictive current control,TV-MPCC)存在开关频率不固定和计算复杂的问题,提出一种固定开关频率TV-MPCC策略。利用前一周期的零电压矢量和参考电压矢量所在扇区来快速筛选所需最优电压矢量和次优电压矢量,避免了无效枚举计算,从而降低了开关频率和计算复杂度。引入系统d和q轴电流差参数,计算各电压矢量的作用时间,确保电压矢量作用时间恒大于零和开关频率固定。以三相两电平电压型逆变器驱动的表贴式PMSM为被控对象,通过仿真和实验对传统TV-MPCC策略和所提三矢量固定开关频率模型预测电流控制策略进行对比研究,仿真和实验结果表明,所提策略在保证系统稳态和动态性能的基础上,在固定和降低开关频率的同时,降低了计算复杂度。展开更多
Properties of the current controller are essential for permanent magnet synchronous machine(PMSM)drives,but the conventional continuous-time current controller cannot fully decouple the cross-coupling terms when appli...Properties of the current controller are essential for permanent magnet synchronous machine(PMSM)drives,but the conventional continuous-time current controller cannot fully decouple the cross-coupling terms when applied in the digital processor.Its performance is related closely to the rotational speed.To improve the performance of the current loop,the direct design method in the discrete-time domain is adopted using the accurate discrete-time complex vector model.An integrated accurate hold-equivalent discrete model for PMSM is derived considering the difference between the output of the voltage source inverter and the back electro-motive force.Then an accurate two-degree-of-freedom(2DOF)current controller with a third-order closed-loop transfer function is designed.The 2DOF controller has more freedom in pole placement,and two schemes with a different cancelled pole-zero pair are investigated.Analysis is conducted by the robust root locus method via the complex vector root locus and sensitivity functions,showing properties in disturbance rejection and sensitivity to parameter variation of two schemes.Both schemes have their own advantages.Finally,the dynamic performance and flexibility of the proposed current controller is verified on a 2.5-kW PMSM test bench.展开更多
基金supported by the National Key Research and Development Program of China under the grant of 2022YFB3403100。
文摘The dual three-phase PMSM(DTP-PMSM)drives have received wide attention at high-power high-efficiency applications due to their merits of high output current ability and copper-loss-free field excitation.Meanwhile,the DTPPMSM drive provides higher fault-tolerant capability for highreliability applications,e.g.,pumps and actuators in aircraft.For high-power drives with limited switching frequencies and highspeed drives with large fundamental frequencies,the ratio of switching frequency to fundamental frequency,i.e.,the carrier ratio,is usually below 15,which would significantly degrade the control performance.The purpose of this paper is to review the recent work on the modulation and control schemes for improving the operation performance of DTP-PMSM drives with low carrier ratios.Specifically,three categories of methods,i.e.,the space vector modulation based control,the model predictive control(MPC),and the optimized pulse pattern(OPP)based control are reviewed with principles and performance.In addition,brief discussions regarding the comparison and future trends are presented for low-carrier-ratio(LCR)modulation and control schemes of DTP-PMSM drives.
文摘针对传统永磁同步电机(permanent magnet synchronous motor,PMSM)三矢量模型预测电流控制(three-vector model predictive current control,TV-MPCC)存在开关频率不固定和计算复杂的问题,提出一种固定开关频率TV-MPCC策略。利用前一周期的零电压矢量和参考电压矢量所在扇区来快速筛选所需最优电压矢量和次优电压矢量,避免了无效枚举计算,从而降低了开关频率和计算复杂度。引入系统d和q轴电流差参数,计算各电压矢量的作用时间,确保电压矢量作用时间恒大于零和开关频率固定。以三相两电平电压型逆变器驱动的表贴式PMSM为被控对象,通过仿真和实验对传统TV-MPCC策略和所提三矢量固定开关频率模型预测电流控制策略进行对比研究,仿真和实验结果表明,所提策略在保证系统稳态和动态性能的基础上,在固定和降低开关频率的同时,降低了计算复杂度。
基金Project supported by the National Natural Science Foundation of China(No.51777191)the Natural Science Foundation of Zhejiang Province,China(No.LZ13E070001)the Collaborative Innovation Center for Advanced Aero-engine,China
文摘Properties of the current controller are essential for permanent magnet synchronous machine(PMSM)drives,but the conventional continuous-time current controller cannot fully decouple the cross-coupling terms when applied in the digital processor.Its performance is related closely to the rotational speed.To improve the performance of the current loop,the direct design method in the discrete-time domain is adopted using the accurate discrete-time complex vector model.An integrated accurate hold-equivalent discrete model for PMSM is derived considering the difference between the output of the voltage source inverter and the back electro-motive force.Then an accurate two-degree-of-freedom(2DOF)current controller with a third-order closed-loop transfer function is designed.The 2DOF controller has more freedom in pole placement,and two schemes with a different cancelled pole-zero pair are investigated.Analysis is conducted by the robust root locus method via the complex vector root locus and sensitivity functions,showing properties in disturbance rejection and sensitivity to parameter variation of two schemes.Both schemes have their own advantages.Finally,the dynamic performance and flexibility of the proposed current controller is verified on a 2.5-kW PMSM test bench.