On the basis of the reproducing kernel particle method (RKPM), a new meshless method, which is called the complex variable reproducing kernel particle method (CVRKPM), for two-dimensional elastodynamics is present...On the basis of the reproducing kernel particle method (RKPM), a new meshless method, which is called the complex variable reproducing kernel particle method (CVRKPM), for two-dimensional elastodynamics is presented in this paper. The advantages of the CVRKPM are that the correction function of a two-dimensional problem is formed with one-dimensional basis function when the shape function is obtained. The Galerkin weak form is employed to obtain the discretised system equations, and implicit time integration method, which is the Newmark method, is used for time history analysis. And the penalty method is employed to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional elastodynamics are obtained. Three numerical examples of two-dimensional elastodynamics are presented, and the CVRKPM results are compared with the ones of the RKPM and analytical solutions. It is evident that the numerical results of the CVRKPM are in excellent agreement with the analytical solution, and that the CVRKPM has greater precision than the RKPM.展开更多
In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE metho...In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, then the computational efficiency is higher. A hybrid approximation function is applied to combine the CVRKP method with the FE method, and the traditional difference method for two-point boundary value problems is selected as the time discretization scheme. The corresponding formulations of the CVRKP-FE method are presented in detail. Several selected numerical examples of the transient heat conduction problems are presented to illustrate the performance of the CVRKP-FE method.展开更多
The complex variable reproducing kernel particle method (CVRKPM) of solving two-dimensional variable coefficient advection-diffusion problems is presented in this paper. The advantage of the CVRKPM is that the shape...The complex variable reproducing kernel particle method (CVRKPM) of solving two-dimensional variable coefficient advection-diffusion problems is presented in this paper. The advantage of the CVRKPM is that the shape function of a two-dimensional problem is formed with a one-dimensional basis function. The Galerkin weak form is employed to obtain the discretized system equation, and the penalty method is used to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional variable coefficient advection-diffusion problems are obtained. Two numerical examples are given to show that the method in this paper has greater accuracy and computational efficiency than the conventional meshless method such as reproducing the kernel particle method (RKPM) and the element- free Galerkin (EFG) method.展开更多
On the basis of reproducing kernel particle method(RKPM),using complex variable theory,the complex variable reproducing kernel particle method(CVRKPM) is discussed in this paper.The advantage of the CVRKPM is that the...On the basis of reproducing kernel particle method(RKPM),using complex variable theory,the complex variable reproducing kernel particle method(CVRKPM) is discussed in this paper.The advantage of the CVRKPM is that the correction function of a two-dimensional problem is formed with one-dimensional basis function when the shape function is formed.Then the CVRKPM is applied to solve two-dimensional elasto-plasticity problems.The Galerkin weak form is employed to obtain the discretized system equation,the penalty method is used to apply the essential boundary conditions.And then,the CVRKPM for two-dimensional elasto-plasticity problems is formed,the corresponding formulae are obtained,and the Newton-Raphson method is used in the numerical implementation.Three numerical examples are given to show that this method in this paper is effective for elasto-plasticity analysis.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.10871124)the Innovation Program of Shanghai Municipal Education Commission,China (Grant No.09ZZ99)
文摘On the basis of the reproducing kernel particle method (RKPM), a new meshless method, which is called the complex variable reproducing kernel particle method (CVRKPM), for two-dimensional elastodynamics is presented in this paper. The advantages of the CVRKPM are that the correction function of a two-dimensional problem is formed with one-dimensional basis function when the shape function is obtained. The Galerkin weak form is employed to obtain the discretised system equations, and implicit time integration method, which is the Newmark method, is used for time history analysis. And the penalty method is employed to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional elastodynamics are obtained. Three numerical examples of two-dimensional elastodynamics are presented, and the CVRKPM results are compared with the ones of the RKPM and analytical solutions. It is evident that the numerical results of the CVRKPM are in excellent agreement with the analytical solution, and that the CVRKPM has greater precision than the RKPM.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Special Fund for Basic Scientific Research of Central Colleges of Chang’an University, China (Grant No. CHD2011JC080)
文摘In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, then the computational efficiency is higher. A hybrid approximation function is applied to combine the CVRKP method with the FE method, and the traditional difference method for two-point boundary value problems is selected as the time discretization scheme. The corresponding formulations of the CVRKP-FE method are presented in detail. Several selected numerical examples of the transient heat conduction problems are presented to illustrate the performance of the CVRKP-FE method.
基金supported by the National Natural Science Foundation of China (Grant No. 11171208)the Leading Academic Discipline Project of Shanghai City,China (Grant No. S30106)
文摘The complex variable reproducing kernel particle method (CVRKPM) of solving two-dimensional variable coefficient advection-diffusion problems is presented in this paper. The advantage of the CVRKPM is that the shape function of a two-dimensional problem is formed with a one-dimensional basis function. The Galerkin weak form is employed to obtain the discretized system equation, and the penalty method is used to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional variable coefficient advection-diffusion problems are obtained. Two numerical examples are given to show that the method in this paper has greater accuracy and computational efficiency than the conventional meshless method such as reproducing the kernel particle method (RKPM) and the element- free Galerkin (EFG) method.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10571118 and 10871124)Innovation Program of Shanghai Municipal Education Commission (Grant No. 09ZZ99)
文摘On the basis of reproducing kernel particle method(RKPM),using complex variable theory,the complex variable reproducing kernel particle method(CVRKPM) is discussed in this paper.The advantage of the CVRKPM is that the correction function of a two-dimensional problem is formed with one-dimensional basis function when the shape function is formed.Then the CVRKPM is applied to solve two-dimensional elasto-plasticity problems.The Galerkin weak form is employed to obtain the discretized system equation,the penalty method is used to apply the essential boundary conditions.And then,the CVRKPM for two-dimensional elasto-plasticity problems is formed,the corresponding formulae are obtained,and the Newton-Raphson method is used in the numerical implementation.Three numerical examples are given to show that this method in this paper is effective for elasto-plasticity analysis.