Understanding the effects of point liquid loading on transversely isotropic poroelastic media is crucial for advancing geomechanics and biomechanics, where precise modeling of fluid-structure interactions is essential...Understanding the effects of point liquid loading on transversely isotropic poroelastic media is crucial for advancing geomechanics and biomechanics, where precise modeling of fluid-structure interactions is essential. This paper presents a comprehensive analysis of infinite transversely isotropic poroelasticity under a fluid source, based on Biot's theory, aiming to uncover new and previously unexplored insights in the literature. We begin our study by deriving a general solution for fluid-saturated, transversely isotropic poroelastic materials in terms of harmonic functions that satisfy sixth-order homogeneous partial differential equations, using potential theory and Almansi's theorem. Based on these general solutions and potential functions, we construct a Green's function for a point fluid source, introducing three new harmonic functions with undetermined constants. These constants are determined by enforcing continuity and equilibrium conditions. Substituting these into the general solution yields fundamental solutions for poroelasticity that provide crucial support for a wide range of project problems. Numerical results and comparisons with existing literature are provided to illustrate physical mechanisms through contour plots. Our observations reveal that all components tend to zero in the far field and become singular at the concentrated source. Additionally, the contours exhibit rapid changes near the point fluid source but display gradual variations at a distance from it. These findings highlight the intricate behavior of the system under point liquid loading, offering valuable insights for further research and practical applications.展开更多
The singularities, oscillatory performances and the contributing factors to the 3-'D translating-pulsating source Green function of deep-water Havelock form which consists of a local disturbance part and a far-field ...The singularities, oscillatory performances and the contributing factors to the 3-'D translating-pulsating source Green function of deep-water Havelock form which consists of a local disturbance part and a far-field wave-like part, are analyzed systematically. Relative numerical integral methods about the two parts are presented in this paper. An improved method based on LOBATTO rule is used to eliminate singularities caused respectively by infinite discontinuity and jump discontinuous node from the local disturbance part function, which makes the improvement of calculation efficiency and accuracy possible. And variable substitution is applied to remove the singularity existing at the end of the integral interval of the far-field wave-like part function. Two auxiliary techniques such as valid interval calculation and local refinement of integral steps technique in narrow zones near false singularities are applied so as to avoid unnecessary integration of invalid interval and improve integral accordance. Numerical test results have proved the efficiency and accuracy in these integral methods that thus can be applied to calculate hydrodynamic performance of floating structures moving in waves.展开更多
The singularities and oscillatory performance of translating-pulsating source Green's function in Bessho form were analyzed. Relative numerical integration methods such as Gaussian quadrature rule, variable substitut...The singularities and oscillatory performance of translating-pulsating source Green's function in Bessho form were analyzed. Relative numerical integration methods such as Gaussian quadrature rule, variable substitution method (VSM), and steepest descent integration method (SDIM) were used to evaluate this type of Green's function. For SDIM, the complex domain was restricted only on the 0-plane. Meanwhile, the integral along the real axis was computed by use of the VSM to avoid the complication of a numerical search of the steepest descent line. Furthermore, the steepest descent line was represented by the B-spline function. Based on this representation, a new self-compatible integration method corresponding to parametric t was established. The numerical method was validated through comparison with other existing results, and was shown to be efficient and reliable in the calculation of the velocity potentials for the 3D seakeeping and hydrodynamic performance of floating struc- tures moving in waves.展开更多
The possible exotic nuclear properties in the neutron-rich Ca,Ni,Zr,and Sn isotopes are examined with the continuum Skyrme Hartree-Fock-Bogoliubov theory in the framework of the Green’s function method.The pairing co...The possible exotic nuclear properties in the neutron-rich Ca,Ni,Zr,and Sn isotopes are examined with the continuum Skyrme Hartree-Fock-Bogoliubov theory in the framework of the Green’s function method.The pairing correlation,the couplings with the continuum,and the blocking effects for the unpaired nucleon in odd-A nuclei are properly treated.The Skyrme interaction SLy4 is adopted for the ph channel and the density-dependentinteraction is adopted for the pp chan-nel,which well reproduce the experimental two-neutron separation energies S_(2n)and one-neutron separation energies Sn.It is found that the criterion S_(n)>0 predicts a neutron drip line with neutron numbers much smaller than those for S_(2n)>0.Owing to the unpaired odd neutron,the neutron pairing energies−E_(pair)in odd-A nuclei are much lower than those in the neighbor-ing even-even nuclei.By investigating the single-particle structures,the possible halo structures in the neutron-rich Ca,Ni,and Sn isotopes are predicted,where sharp increases in the root-mean-square(rms)radii with significant deviations from the traditional rA^(1∕3)rule and diffuse spatial density distributions are observed.Analyzing the contributions of various partial waves to the total neutron densityρlj(r)∕ρ(r)reveals that the orbitals located around the Fermi surface-particularly those with small angular momenta-significantly affect the extended nuclear density and large rms radii.The number of neutrons Nλ(N_(0))occupying above the Fermi surfacen(continuum threshold)is discussed,whose evolution as a function of the mass number A in each isotope is consistent with that of the pairing energy,supporting the key role of the pairing correlation in halo phenomena.展开更多
In this paper, an extended spectral theorem is given, which enables one to calculate the correlation functions when complex eigenvalues appear. To do so, a Fourier transformation with a complex argument is utilized. W...In this paper, an extended spectral theorem is given, which enables one to calculate the correlation functions when complex eigenvalues appear. To do so, a Fourier transformation with a complex argument is utilized. We treat all the Matsbara frequencies, including Fermionic and Bosonic frequencies, on an equal footing. It is pointed out that when complex eigenvalues appear, the dissipation of a system cannot simply be ascribed to the pure imaginary part of the Green function. Therefore, the use of the name fluctuation-dissipation theorem should be careful.展开更多
In this paper, the Adomian decomposition method with Green’s function (Standard Adomian and Modified Technique) is applied to solve linear and nonlinear tenth-order boundary value problems with boundary conditions de...In this paper, the Adomian decomposition method with Green’s function (Standard Adomian and Modified Technique) is applied to solve linear and nonlinear tenth-order boundary value problems with boundary conditions defined at any order derivatives. The numerical results obtained with a small amount of computation are compared with the exact solutions to show the efficiency of the method. The results show that the decomposition method is of high accuracy, more convenient and efficient for solving high-order boundary value problems.展开更多
The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-s...The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-space.The loaded layer is fixed to obtain solutions restricted in it and the corresponding reactions forces,which are then applied to the total system with the opposite sign.By adding solutions restricted in the loaded layer to solutions from the reaction forces,the global solutions in the wavenumber domain are obtained,and the dynamic Green’s functions in the space domain are recovered by the inverse Fourier transform.The presented formulations can be reduced to the isotropic case developed by Wolf(1985),and are further verified by comparisons with existing solutions in a uniform isotropic as well as a layered TI halfspace subjected to horizontally distributed loads which are special cases of the more general problem addressed.The deduced Green’s functions,in conjunction with boundary element methods,will lead to significant advances in the investigation of a variety of wave scattering,wave radiation and soil-structure interaction problems in a layered TI site.Selected numerical results are given to investigate the influence of material anisotropy,frequency of excitation,inclination angle and layered on the responses of displacement and stress,and some conclusions are drawn.展开更多
The accurate analyses for a plate fin heat sink with the ability to control the temperature of the avionics devices within a pre-set controllable temperature range are required both in the process of circuit design an...The accurate analyses for a plate fin heat sink with the ability to control the temperature of the avionics devices within a pre-set controllable temperature range are required both in the process of circuit design and for the real-time temperature monitoring purposes. In order to provide an insight into the behavior of the temperature of a plate fin heat sink subjected non-uniform heat density on the surfaces, it is necessary to obtain accurate analytical solutions yielding explicit formulas relating the dissipated power to the temperature rise at any point of avionics devices. This paper presents a method for thermal simulation of a plate fin heat sink using an analytical solution of the three-dimensional heat equation resulting from an appropriate plate fin heat sink transient thermal model. The entire solution methodology is illustrated in detail on the particular examples of the plate fin heat sink subjected non-uniform heat density on the surfaces. The transient temperature profiles are obtained for different positions at the surface of the plate fin heat sink. The analytical results are compared with measurements made on the surface of the cold plate and it is found that they are in good agreement with an error of less than 3 K.展开更多
Green’s function for the T-stress near a crack tip is addressed with an analytic function method for a semi-infinite crack lying in an elastical, isotropic, and infinite plate. The cracked plate is loaded by a single...Green’s function for the T-stress near a crack tip is addressed with an analytic function method for a semi-infinite crack lying in an elastical, isotropic, and infinite plate. The cracked plate is loaded by a single inclined concentrated force at an interior point. The complex potentials are obtained based on a superposition principle, which provide the solutions to the plane problems of elasticity. The regular parts of the potentials are extracted in an asymptotic analysis. Based on the regular parts, Green’s function for the T-stress is obtained in a straightforward manner. Furthermore, Green’s functions are derived for a pair of symmetrically and anti-symmetrically concentrated forces by the superimposing method. Then, Green’s function is used to predict the domain-switch-induced T-stress in a ferroelectric double cantilever beam (DCB) test. The T-stress induced by the electromechanical loading is used to judge the stable and unstable crack growth behaviors observed in the test. The prediction results generally agree with the experimental data.展开更多
The principle objective of the paper is to study the acoustic radiation problem of the 3D space domain with control boundary. By using the conformal transformation theory, the Green's function for acoustic point s...The principle objective of the paper is to study the acoustic radiation problem of the 3D space domain with control boundary. By using the conformal transformation theory, the Green's function for acoustic point source in the control domain space is obtained. With it, the expression of acoustic radiation function of the control domain is formed. Discussion about the acoustic radiation of pulsating sphere in right-angle space is drawn in the end, including the acoustic radiation directivity effect by the boundary characteristics, acoustic radiation frequency and acoustic source location. Numerical results show that: for the lower frequency radiation, the infection of free surface is significant; for the high frequency radiation, the infection of location is significant on the contrary. The research provides a new method for boundary characteristic problem of the structural-acoustic acoustic.展开更多
Fracture of Kirchhoff plates is analyzed by the theory of complex variables and boundary collocation method. The deflections, moments and shearing forces of the plates are assumed to be the functions of complex variab...Fracture of Kirchhoff plates is analyzed by the theory of complex variables and boundary collocation method. The deflections, moments and shearing forces of the plates are assumed to be the functions of complex variables. The functions can satisfy a series of basic equations and governing conditions, such as the equilibrium equations in the domain, the boundary conditions on the crack surfaces and stress singularity at the crack tips. Thus, it is only necessary to consider the boundary conditions on the external boundaries of the plate, which can be approximately satisfied by the collocation method and least square technique. Different boundary conditions and loading cases of the cracked plates are analyzed and calculated. Compared to other methods, the numerical examples show that the present method has many advantages such as good accuracy and less computer time. This is an effective semi_analytical and semi_numerical method.展开更多
To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitr...To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitrary orientation. The boundary integral equation(BIE) representation solves the two-dimensional convected Helmholtz equation(CHE) and its fundamental solution, which must satisfy a new Sommerfeld radiation condition(SRC) in the physical space. In order to facilitate conventional formulations, the variables of the advanced form are expressed only in terms of the acoustic pressure as well as its normal and tangential derivatives, and their multiplication operators are based on the convected Green's kernel and its modified derivative. The proposed approach significantly reduces the CPU times of classical computational codes for modeling acoustic domains with arbitrary mean flow. It is validated by a comparison with the analytical solutions for the sound radiation problems of monopole,dipole and quadrupole sources in the presence of a subsonic uniform flow with arbitrary orientation.展开更多
Using a polarization method, the scattering problem for a two-dimensional inclusion embedded in infinite piezoelectric/piezomagnetic matrices is investigated. To achieve the purpose, the polarization method for a two-...Using a polarization method, the scattering problem for a two-dimensional inclusion embedded in infinite piezoelectric/piezomagnetic matrices is investigated. To achieve the purpose, the polarization method for a two-dimensional piezoelectric/piezomagnetic "comparison body" is formulated. For simple harmonic motion, kernel of the polarization method reduces to a 2-D time-harmonic Green's function, which is obtained using the Radon transform. The expression is further simplified under conditions of low frequency of the incident wave and small diameter of the inclusion. Some analytical expressions are obtained. The analytical solutions for generalized piezoelectric/piezomagnetic anisotropic composites are given followed by simplified results for piezoelectric composites. Based on the latter results, two numerical results are provided for an elliptical cylindrical inclusion in a PZT-5H-matrix, showing the effect of different factors including size, shape, material properties, and piezoelectricity on the scattering cross-section.展开更多
A new exact and universal conformal mapping is proposed. Using Muskhelishvili's complex potential method, the plane elasticity problem of power function curved cracks is investigated with an arbitrary power of a natu...A new exact and universal conformal mapping is proposed. Using Muskhelishvili's complex potential method, the plane elasticity problem of power function curved cracks is investigated with an arbitrary power of a natural number, and the general solutions of the stress intensity factors (SIFs) for mode I and mode II at the crack tip are obtained under the remotely uniform tensile loads. The present results can be reduced to the well-known solutions when the power of the function takes different natural numbers. Numerical examples are conducted to reveal the effects of the coefficient, the power, and the projected length along the x-axis of the power function curved crack on the SIFs for mode I and mode II.展开更多
On the basis of reproducing kernel particle method(RKPM),using complex variable theory,the complex variable reproducing kernel particle method(CVRKPM) is discussed in this paper.The advantage of the CVRKPM is that the...On the basis of reproducing kernel particle method(RKPM),using complex variable theory,the complex variable reproducing kernel particle method(CVRKPM) is discussed in this paper.The advantage of the CVRKPM is that the correction function of a two-dimensional problem is formed with one-dimensional basis function when the shape function is formed.Then the CVRKPM is applied to solve two-dimensional elasto-plasticity problems.The Galerkin weak form is employed to obtain the discretized system equation,the penalty method is used to apply the essential boundary conditions.And then,the CVRKPM for two-dimensional elasto-plasticity problems is formed,the corresponding formulae are obtained,and the Newton-Raphson method is used in the numerical implementation.Three numerical examples are given to show that this method in this paper is effective for elasto-plasticity analysis.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 12272269, 11972257,11832014 and 11472193)the Shanghai Pilot Program for Basic Researchthe Shanghai Gaofeng Project for University Academic Program Development。
文摘Understanding the effects of point liquid loading on transversely isotropic poroelastic media is crucial for advancing geomechanics and biomechanics, where precise modeling of fluid-structure interactions is essential. This paper presents a comprehensive analysis of infinite transversely isotropic poroelasticity under a fluid source, based on Biot's theory, aiming to uncover new and previously unexplored insights in the literature. We begin our study by deriving a general solution for fluid-saturated, transversely isotropic poroelastic materials in terms of harmonic functions that satisfy sixth-order homogeneous partial differential equations, using potential theory and Almansi's theorem. Based on these general solutions and potential functions, we construct a Green's function for a point fluid source, introducing three new harmonic functions with undetermined constants. These constants are determined by enforcing continuity and equilibrium conditions. Substituting these into the general solution yields fundamental solutions for poroelasticity that provide crucial support for a wide range of project problems. Numerical results and comparisons with existing literature are provided to illustrate physical mechanisms through contour plots. Our observations reveal that all components tend to zero in the far field and become singular at the concentrated source. Additionally, the contours exhibit rapid changes near the point fluid source but display gradual variations at a distance from it. These findings highlight the intricate behavior of the system under point liquid loading, offering valuable insights for further research and practical applications.
基金supported by the National Natural Science Foundation of China (Grant No. 50879090)
文摘The singularities, oscillatory performances and the contributing factors to the 3-'D translating-pulsating source Green function of deep-water Havelock form which consists of a local disturbance part and a far-field wave-like part, are analyzed systematically. Relative numerical integral methods about the two parts are presented in this paper. An improved method based on LOBATTO rule is used to eliminate singularities caused respectively by infinite discontinuity and jump discontinuous node from the local disturbance part function, which makes the improvement of calculation efficiency and accuracy possible. And variable substitution is applied to remove the singularity existing at the end of the integral interval of the far-field wave-like part function. Two auxiliary techniques such as valid interval calculation and local refinement of integral steps technique in narrow zones near false singularities are applied so as to avoid unnecessary integration of invalid interval and improve integral accordance. Numerical test results have proved the efficiency and accuracy in these integral methods that thus can be applied to calculate hydrodynamic performance of floating structures moving in waves.
基金Project supported by the National Natural Science Foundation of China (No. 50879090), and the Key Research Program of Hydrody- namics of China (No. 9140A 14030712JB 11044)
文摘The singularities and oscillatory performance of translating-pulsating source Green's function in Bessho form were analyzed. Relative numerical integration methods such as Gaussian quadrature rule, variable substitution method (VSM), and steepest descent integration method (SDIM) were used to evaluate this type of Green's function. For SDIM, the complex domain was restricted only on the 0-plane. Meanwhile, the integral along the real axis was computed by use of the VSM to avoid the complication of a numerical search of the steepest descent line. Furthermore, the steepest descent line was represented by the B-spline function. Based on this representation, a new self-compatible integration method corresponding to parametric t was established. The numerical method was validated through comparison with other existing results, and was shown to be efficient and reliable in the calculation of the velocity potentials for the 3D seakeeping and hydrodynamic performance of floating struc- tures moving in waves.
基金the National Natural Science Foundation of China(No.U2032141)the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(No.NLK2022-02)+4 种基金the Central Government Guidance Funds for Local Scientific and Technological Development,China(Guike ZY22096024)the Natural Science Foundation of Henan Province(No.202300410479)the Guizhou Provincial Science and Technology Projects(No.ZK[2022]203)the Foundation of Fundamental Research for Young Teachers of Zhengzhou University(No.JC202041041)the Physics Research and Development Program of Zhengzhou University(No.32410217).
文摘The possible exotic nuclear properties in the neutron-rich Ca,Ni,Zr,and Sn isotopes are examined with the continuum Skyrme Hartree-Fock-Bogoliubov theory in the framework of the Green’s function method.The pairing correlation,the couplings with the continuum,and the blocking effects for the unpaired nucleon in odd-A nuclei are properly treated.The Skyrme interaction SLy4 is adopted for the ph channel and the density-dependentinteraction is adopted for the pp chan-nel,which well reproduce the experimental two-neutron separation energies S_(2n)and one-neutron separation energies Sn.It is found that the criterion S_(n)>0 predicts a neutron drip line with neutron numbers much smaller than those for S_(2n)>0.Owing to the unpaired odd neutron,the neutron pairing energies−E_(pair)in odd-A nuclei are much lower than those in the neighbor-ing even-even nuclei.By investigating the single-particle structures,the possible halo structures in the neutron-rich Ca,Ni,and Sn isotopes are predicted,where sharp increases in the root-mean-square(rms)radii with significant deviations from the traditional rA^(1∕3)rule and diffuse spatial density distributions are observed.Analyzing the contributions of various partial waves to the total neutron densityρlj(r)∕ρ(r)reveals that the orbitals located around the Fermi surface-particularly those with small angular momenta-significantly affect the extended nuclear density and large rms radii.The number of neutrons Nλ(N_(0))occupying above the Fermi surfacen(continuum threshold)is discussed,whose evolution as a function of the mass number A in each isotope is consistent with that of the pairing energy,supporting the key role of the pairing correlation in halo phenomena.
文摘In this paper, an extended spectral theorem is given, which enables one to calculate the correlation functions when complex eigenvalues appear. To do so, a Fourier transformation with a complex argument is utilized. We treat all the Matsbara frequencies, including Fermionic and Bosonic frequencies, on an equal footing. It is pointed out that when complex eigenvalues appear, the dissipation of a system cannot simply be ascribed to the pure imaginary part of the Green function. Therefore, the use of the name fluctuation-dissipation theorem should be careful.
文摘In this paper, the Adomian decomposition method with Green’s function (Standard Adomian and Modified Technique) is applied to solve linear and nonlinear tenth-order boundary value problems with boundary conditions defined at any order derivatives. The numerical results obtained with a small amount of computation are compared with the exact solutions to show the efficiency of the method. The results show that the decomposition method is of high accuracy, more convenient and efficient for solving high-order boundary value problems.
基金National Natural Science Foundation of China under grant No.51578373 and 51578372the Natural Science Foundation of Tianjin Municipality under Grant No.16JCYBJC21600
文摘The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-space.The loaded layer is fixed to obtain solutions restricted in it and the corresponding reactions forces,which are then applied to the total system with the opposite sign.By adding solutions restricted in the loaded layer to solutions from the reaction forces,the global solutions in the wavenumber domain are obtained,and the dynamic Green’s functions in the space domain are recovered by the inverse Fourier transform.The presented formulations can be reduced to the isotropic case developed by Wolf(1985),and are further verified by comparisons with existing solutions in a uniform isotropic as well as a layered TI halfspace subjected to horizontally distributed loads which are special cases of the more general problem addressed.The deduced Green’s functions,in conjunction with boundary element methods,will lead to significant advances in the investigation of a variety of wave scattering,wave radiation and soil-structure interaction problems in a layered TI site.Selected numerical results are given to investigate the influence of material anisotropy,frequency of excitation,inclination angle and layered on the responses of displacement and stress,and some conclusions are drawn.
基金Aeronautical Science Foundation of China (2008ZC52024)
文摘The accurate analyses for a plate fin heat sink with the ability to control the temperature of the avionics devices within a pre-set controllable temperature range are required both in the process of circuit design and for the real-time temperature monitoring purposes. In order to provide an insight into the behavior of the temperature of a plate fin heat sink subjected non-uniform heat density on the surfaces, it is necessary to obtain accurate analytical solutions yielding explicit formulas relating the dissipated power to the temperature rise at any point of avionics devices. This paper presents a method for thermal simulation of a plate fin heat sink using an analytical solution of the three-dimensional heat equation resulting from an appropriate plate fin heat sink transient thermal model. The entire solution methodology is illustrated in detail on the particular examples of the plate fin heat sink subjected non-uniform heat density on the surfaces. The transient temperature profiles are obtained for different positions at the surface of the plate fin heat sink. The analytical results are compared with measurements made on the surface of the cold plate and it is found that they are in good agreement with an error of less than 3 K.
基金Project supported by the National Natural Science Foundation of China(Nos.10702071 and 11090334)the China Postdoctoral Science Foundation(No.201003281)+2 种基金the Shanghai Postdoctoral Scientific Program(No.10R21415800)the Shanghai Leading Academic Discipline Project(No.B302)sponsored by the"Sino-German Center for Research Promotion"under a project of"Crack Growth in Ferroelectrics Driven by Cyclic Electric Loading"
文摘Green’s function for the T-stress near a crack tip is addressed with an analytic function method for a semi-infinite crack lying in an elastical, isotropic, and infinite plate. The cracked plate is loaded by a single inclined concentrated force at an interior point. The complex potentials are obtained based on a superposition principle, which provide the solutions to the plane problems of elasticity. The regular parts of the potentials are extracted in an asymptotic analysis. Based on the regular parts, Green’s function for the T-stress is obtained in a straightforward manner. Furthermore, Green’s functions are derived for a pair of symmetrically and anti-symmetrically concentrated forces by the superimposing method. Then, Green’s function is used to predict the domain-switch-induced T-stress in a ferroelectric double cantilever beam (DCB) test. The T-stress induced by the electromechanical loading is used to judge the stable and unstable crack growth behaviors observed in the test. The prediction results generally agree with the experimental data.
文摘The principle objective of the paper is to study the acoustic radiation problem of the 3D space domain with control boundary. By using the conformal transformation theory, the Green's function for acoustic point source in the control domain space is obtained. With it, the expression of acoustic radiation function of the control domain is formed. Discussion about the acoustic radiation of pulsating sphere in right-angle space is drawn in the end, including the acoustic radiation directivity effect by the boundary characteristics, acoustic radiation frequency and acoustic source location. Numerical results show that: for the lower frequency radiation, the infection of free surface is significant; for the high frequency radiation, the infection of location is significant on the contrary. The research provides a new method for boundary characteristic problem of the structural-acoustic acoustic.
文摘Fracture of Kirchhoff plates is analyzed by the theory of complex variables and boundary collocation method. The deflections, moments and shearing forces of the plates are assumed to be the functions of complex variables. The functions can satisfy a series of basic equations and governing conditions, such as the equilibrium equations in the domain, the boundary conditions on the crack surfaces and stress singularity at the crack tips. Thus, it is only necessary to consider the boundary conditions on the external boundaries of the plate, which can be approximately satisfied by the collocation method and least square technique. Different boundary conditions and loading cases of the cracked plates are analyzed and calculated. Compared to other methods, the numerical examples show that the present method has many advantages such as good accuracy and less computer time. This is an effective semi_analytical and semi_numerical method.
基金supported by National Engineering School of Tunis (No.13039.1)
文摘To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitrary orientation. The boundary integral equation(BIE) representation solves the two-dimensional convected Helmholtz equation(CHE) and its fundamental solution, which must satisfy a new Sommerfeld radiation condition(SRC) in the physical space. In order to facilitate conventional formulations, the variables of the advanced form are expressed only in terms of the acoustic pressure as well as its normal and tangential derivatives, and their multiplication operators are based on the convected Green's kernel and its modified derivative. The proposed approach significantly reduces the CPU times of classical computational codes for modeling acoustic domains with arbitrary mean flow. It is validated by a comparison with the analytical solutions for the sound radiation problems of monopole,dipole and quadrupole sources in the presence of a subsonic uniform flow with arbitrary orientation.
基金supported by the National Natural Science Foundation of China (Nos. 10732100, 10572155)the Science and Technology Planning Project of Guangdong Province of China (No. 2006A11001002)the Ph. D. Programs Foundation of Ministry of Education of China (No. 2006300004111179)
文摘Using a polarization method, the scattering problem for a two-dimensional inclusion embedded in infinite piezoelectric/piezomagnetic matrices is investigated. To achieve the purpose, the polarization method for a two-dimensional piezoelectric/piezomagnetic "comparison body" is formulated. For simple harmonic motion, kernel of the polarization method reduces to a 2-D time-harmonic Green's function, which is obtained using the Radon transform. The expression is further simplified under conditions of low frequency of the incident wave and small diameter of the inclusion. Some analytical expressions are obtained. The analytical solutions for generalized piezoelectric/piezomagnetic anisotropic composites are given followed by simplified results for piezoelectric composites. Based on the latter results, two numerical results are provided for an elliptical cylindrical inclusion in a PZT-5H-matrix, showing the effect of different factors including size, shape, material properties, and piezoelectricity on the scattering cross-section.
基金supported by the National Natural Science Foundation of China(Nos.10932001,11072015, and 10761005)the Scientific Research Key Program of Beijing Municipal Commission of Education (No.KZ201010005003)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20101102110016)the Ph.D.Innovation Foundation of Beijing University of Aeronautics and Astronautics(No.300351)
文摘A new exact and universal conformal mapping is proposed. Using Muskhelishvili's complex potential method, the plane elasticity problem of power function curved cracks is investigated with an arbitrary power of a natural number, and the general solutions of the stress intensity factors (SIFs) for mode I and mode II at the crack tip are obtained under the remotely uniform tensile loads. The present results can be reduced to the well-known solutions when the power of the function takes different natural numbers. Numerical examples are conducted to reveal the effects of the coefficient, the power, and the projected length along the x-axis of the power function curved crack on the SIFs for mode I and mode II.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10571118 and 10871124)Innovation Program of Shanghai Municipal Education Commission (Grant No. 09ZZ99)
文摘On the basis of reproducing kernel particle method(RKPM),using complex variable theory,the complex variable reproducing kernel particle method(CVRKPM) is discussed in this paper.The advantage of the CVRKPM is that the correction function of a two-dimensional problem is formed with one-dimensional basis function when the shape function is formed.Then the CVRKPM is applied to solve two-dimensional elasto-plasticity problems.The Galerkin weak form is employed to obtain the discretized system equation,the penalty method is used to apply the essential boundary conditions.And then,the CVRKPM for two-dimensional elasto-plasticity problems is formed,the corresponding formulae are obtained,and the Newton-Raphson method is used in the numerical implementation.Three numerical examples are given to show that this method in this paper is effective for elasto-plasticity analysis.