To improve the grinding quality of robotic belt grinding systems for the workpieces with complex shaped surfaces, new concepts of the dexterity grinding point and the dexterity grinding space are proposed and their ma...To improve the grinding quality of robotic belt grinding systems for the workpieces with complex shaped surfaces, new concepts of the dexterity grinding point and the dexterity grinding space are proposed and their mathematical descriptions are defined. Factors influencing the dexterity grinding space are analyzed. And a method to determine the necessary dexterity grinding space is suggested. Based on particle swarm optimization (PSO) method, a strategy to optimize the grinding robot structural dimensions and position with respect to the grinding wheel is put forward to obtain the necessary dexterity grinding space. Finally, to grind an aerial engine blade, a dedicated PPPRRR (P: prismatic R: rotary) grinding robot structural dimensions and position with respect to the grinding wheel are optimized using the above strategy. According to simulation results, if the blade is placed within the dexterity grinding space, only one gripper and one grinding machine are needed to grind its complex shaped surfaces.展开更多
A high-accuracy multiresolution method is proposed to solve mechanics problems subject to complex shapes or irregular domains.To realize this method,we design a new wavelet basis function,by which we construct a fifth...A high-accuracy multiresolution method is proposed to solve mechanics problems subject to complex shapes or irregular domains.To realize this method,we design a new wavelet basis function,by which we construct a fifth-order numerical scheme for the approximation of multi-dimensional functions and their multiple integrals defined in complex domains.In the solution of differential equations,various derivatives of the unknown function are denoted as new functions.Then,the integral relations between these functions are applied in terms of wavelet approximation of multiple integrals.Therefore,the original equation with derivatives of various orders can be converted to a system of algebraic equations with discrete nodal values of the highest-order derivative.During the application of the proposed method,boundary conditions can be automatically included in the integration operations,and relevant matrices can be assured to exhibit perfect sparse patterns.As examples,we consider several second-order mathematics problems defined on regular and irregular domains and the fourth-order bending problems of plates with various shapes.By comparing the solutions obtained by the proposed method with the exact solutions,the new multiresolution method is found to have a convergence rate of fifth order.The solution accuracy of this method with only a few hundreds of nodes can be much higher than that of the finite element method(FEM)with tens of thousands of elements.In addition,because the accuracy order for direct approximation of a function using the proposed basis function is also fifth order,we may conclude that the accuracy of the proposed method is almost independent of the equation order and domain complexity.展开更多
In this paper, the basic formulae for the semi-analytical graded FEM on FGM members are derived. Since FGM parameters vary along three space coordinates, the parameters can be integrated in mechanical equations. There...In this paper, the basic formulae for the semi-analytical graded FEM on FGM members are derived. Since FGM parameters vary along three space coordinates, the parameters can be integrated in mechanical equations. Therefore with the parameters of a given FGM plate, problems of FGM plate under various conditions can be solved. The approach uses 1D discretization to obtain 3D solutions, which is proven to be an effective numerical method for the mechanical analyses of FGM structures. Examples of FGM plates with complex shapes and various holes are presented.展开更多
To explore the mechanism of carbonyl iron flake composites for microwave complex permeability, this paper investigates the feature of the flakes. The shape anisotropy was certified by the results of the magnetization ...To explore the mechanism of carbonyl iron flake composites for microwave complex permeability, this paper investigates the feature of the flakes. The shape anisotropy was certified by the results of the magnetization hysteresis loops and the Mossbauer spectra. Furthermore, the shape anisotropy was used to explain the origin of composite microwave performance, and the calculated results agree with the experiment. It is believed that the shape anisotropy dominates microwave complex permeability, and the natural resonance plays main role in flake.展开更多
The complexes of poly(methacrylic acid-co-methyl methacrylate) network with poly(ethylene glycol) stabilized byhydrogen bonds were prepared. By introducing the poly(ethylene glycol), a large difference in storage modu...The complexes of poly(methacrylic acid-co-methyl methacrylate) network with poly(ethylene glycol) stabilized byhydrogen bonds were prepared. By introducing the poly(ethylene glycol), a large difference in storage modulus below andabove the glass transition temperature occurred and the complexes exhibited shape memory behaviors. The morphology ofcomplexes was studied by using DSC, WAXD, and DMA. The results indicate that the fixed phase of this kind of novelshape memory materials is the network, and the reversible phase is the amorphous state of PEG:PMAA complex phase. Theshape recoverability almost reaches 100%. This type of complexes can be regarded as a novel shape memory network.展开更多
Both four-ann star-shaped poly(ε-caprolactone) (4sPCL) and two-ann linear PCL (2LPCL) were synthesized and their inclusion complexation with α-cyclodextrin (α-CD) were studied. The inclusion complexes (ICs...Both four-ann star-shaped poly(ε-caprolactone) (4sPCL) and two-ann linear PCL (2LPCL) were synthesized and their inclusion complexation with α-cyclodextrin (α-CD) were studied. The inclusion complexes (ICs) formed between the PCL polymers and α-CD were characterized by ^1H-NMR, DSC, TGA, WAXD, and FT-1R, respectively. Both branch ann number and molecular weight of the PCL polymers have apparent effect on the stoichiometry (CL:CD, mol:mol) of these ICs. All these analytical results indicate that the branch arms of the PCL polymers are incorporated into the hydrophobic α-CD cavities and their original crystalline properties are completely suppressed. Moreover, the inclusion complexation between two-ann linear or four-ann star-shaped PCL polymers and α-CD not only enhances the thermal stability of the vip PCL polymers but also improves that of α-CD.展开更多
Electrochemical micromachining (EMM) technology for fabricating micro structures is presented in this article. By applying ultra short pulses, dissolution of a workpiece can be restricted to the region very close to...Electrochemical micromachining (EMM) technology for fabricating micro structures is presented in this article. By applying ultra short pulses, dissolution of a workpiece can be restricted to the region very close to the electrode. First, an EMM system for meeting the requirements of the EMM process is established. Second, sets of experiments is carried out to investigate the influence of some of the predominant electrochemical process parameters such as electrical parameters, feed rate, electrode geometry features and electrolyte composition on machining quality, especially the influences of pulse on time on shape precision and working end shape of electrode on machined surface quality. Finally, after the preliminary experiments, a complex microstructure with good shape precision and surface quality is successfully obtained.展开更多
基金National Natural Science Foundation of China (51075013) Beijing Natural Science Foundation (4102035)+1 种基金 Fundamental Research Funds for the Central Universities (YWF-10-01-A09) Research Foundation of State Key Laboratory for Manufacturing Systems Engineering (Xi'an Jiaotong University)
文摘To improve the grinding quality of robotic belt grinding systems for the workpieces with complex shaped surfaces, new concepts of the dexterity grinding point and the dexterity grinding space are proposed and their mathematical descriptions are defined. Factors influencing the dexterity grinding space are analyzed. And a method to determine the necessary dexterity grinding space is suggested. Based on particle swarm optimization (PSO) method, a strategy to optimize the grinding robot structural dimensions and position with respect to the grinding wheel is put forward to obtain the necessary dexterity grinding space. Finally, to grind an aerial engine blade, a dedicated PPPRRR (P: prismatic R: rotary) grinding robot structural dimensions and position with respect to the grinding wheel are optimized using the above strategy. According to simulation results, if the blade is placed within the dexterity grinding space, only one gripper and one grinding machine are needed to grind its complex shaped surfaces.
基金Project supported by the National Natural Science Foundation of China(No.11925204)the 111 Project(No.B14044)。
文摘A high-accuracy multiresolution method is proposed to solve mechanics problems subject to complex shapes or irregular domains.To realize this method,we design a new wavelet basis function,by which we construct a fifth-order numerical scheme for the approximation of multi-dimensional functions and their multiple integrals defined in complex domains.In the solution of differential equations,various derivatives of the unknown function are denoted as new functions.Then,the integral relations between these functions are applied in terms of wavelet approximation of multiple integrals.Therefore,the original equation with derivatives of various orders can be converted to a system of algebraic equations with discrete nodal values of the highest-order derivative.During the application of the proposed method,boundary conditions can be automatically included in the integration operations,and relevant matrices can be assured to exhibit perfect sparse patterns.As examples,we consider several second-order mathematics problems defined on regular and irregular domains and the fourth-order bending problems of plates with various shapes.By comparing the solutions obtained by the proposed method with the exact solutions,the new multiresolution method is found to have a convergence rate of fifth order.The solution accuracy of this method with only a few hundreds of nodes can be much higher than that of the finite element method(FEM)with tens of thousands of elements.In addition,because the accuracy order for direct approximation of a function using the proposed basis function is also fifth order,we may conclude that the accuracy of the proposed method is almost independent of the equation order and domain complexity.
基金Project supported by the National Natural Science Foundation of China (No. 10432030)
文摘In this paper, the basic formulae for the semi-analytical graded FEM on FGM members are derived. Since FGM parameters vary along three space coordinates, the parameters can be integrated in mechanical equations. Therefore with the parameters of a given FGM plate, problems of FGM plate under various conditions can be solved. The approach uses 1D discretization to obtain 3D solutions, which is proven to be an effective numerical method for the mechanical analyses of FGM structures. Examples of FGM plates with complex shapes and various holes are presented.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90505007 and 10774061)
文摘To explore the mechanism of carbonyl iron flake composites for microwave complex permeability, this paper investigates the feature of the flakes. The shape anisotropy was certified by the results of the magnetization hysteresis loops and the Mossbauer spectra. Furthermore, the shape anisotropy was used to explain the origin of composite microwave performance, and the calculated results agree with the experiment. It is believed that the shape anisotropy dominates microwave complex permeability, and the natural resonance plays main role in flake.
文摘The complexes of poly(methacrylic acid-co-methyl methacrylate) network with poly(ethylene glycol) stabilized byhydrogen bonds were prepared. By introducing the poly(ethylene glycol), a large difference in storage modulus below andabove the glass transition temperature occurred and the complexes exhibited shape memory behaviors. The morphology ofcomplexes was studied by using DSC, WAXD, and DMA. The results indicate that the fixed phase of this kind of novelshape memory materials is the network, and the reversible phase is the amorphous state of PEG:PMAA complex phase. Theshape recoverability almost reaches 100%. This type of complexes can be regarded as a novel shape memory network.
基金This work was supported by the National Natural Science Foundation of China (No. 20404007).
文摘Both four-ann star-shaped poly(ε-caprolactone) (4sPCL) and two-ann linear PCL (2LPCL) were synthesized and their inclusion complexation with α-cyclodextrin (α-CD) were studied. The inclusion complexes (ICs) formed between the PCL polymers and α-CD were characterized by ^1H-NMR, DSC, TGA, WAXD, and FT-1R, respectively. Both branch ann number and molecular weight of the PCL polymers have apparent effect on the stoichiometry (CL:CD, mol:mol) of these ICs. All these analytical results indicate that the branch arms of the PCL polymers are incorporated into the hydrophobic α-CD cavities and their original crystalline properties are completely suppressed. Moreover, the inclusion complexation between two-ann linear or four-ann star-shaped PCL polymers and α-CD not only enhances the thermal stability of the vip PCL polymers but also improves that of α-CD.
基金National Natural Science Foundation of China (50635040)National High-tech Research and Development Program (2009AA04Z302)Jiangsu Provincial Natural Science Foundation (BK2008043)
文摘Electrochemical micromachining (EMM) technology for fabricating micro structures is presented in this article. By applying ultra short pulses, dissolution of a workpiece can be restricted to the region very close to the electrode. First, an EMM system for meeting the requirements of the EMM process is established. Second, sets of experiments is carried out to investigate the influence of some of the predominant electrochemical process parameters such as electrical parameters, feed rate, electrode geometry features and electrolyte composition on machining quality, especially the influences of pulse on time on shape precision and working end shape of electrode on machined surface quality. Finally, after the preliminary experiments, a complex microstructure with good shape precision and surface quality is successfully obtained.