期刊文献+
共找到658篇文章
< 1 2 33 >
每页显示 20 50 100
Channel-Feedback-Free Transmission for Downlink FD-RAN:A Radio Map Based Complex-Valued Precoding Network Approach
1
作者 Zhao Jiwei Chen Jiacheng +3 位作者 Sun Zeyu Shi Yuhang Zhou Haibo Xuemin(Sherman)Shen 《China Communications》 SCIE CSCD 2024年第4期10-22,共13页
As the demand for high-quality services proliferates,an innovative network architecture,the fully-decoupled RAN(FD-RAN),has emerged for more flexible spectrum resource utilization and lower network costs.However,with ... As the demand for high-quality services proliferates,an innovative network architecture,the fully-decoupled RAN(FD-RAN),has emerged for more flexible spectrum resource utilization and lower network costs.However,with the decoupling of uplink base stations and downlink base stations in FDRAN,the traditional transmission mechanism,which relies on real-time channel feedback,is not suitable as the receiver is not able to feedback accurate and timely channel state information to the transmitter.This paper proposes a novel transmission scheme without relying on physical layer channel feedback.Specifically,we design a radio map based complex-valued precoding network(RMCPNet)model,which outputs the base station precoding based on user location.RMCPNet comprises multiple subnets,with each subnet responsible for extracting unique modal features from diverse input modalities.Furthermore,the multimodal embeddings derived from these distinct subnets are integrated within the information fusion layer,culminating in a unified representation.We also develop a specific RMCPNet training algorithm that employs the negative spectral efficiency as the loss function.We evaluate the performance of the proposed scheme on the public DeepMIMO dataset and show that RMCPNet can achieve 16%and 76%performance improvements over the conventional real-valued neural network and statistical codebook approach,respectively. 展开更多
关键词 beamforming complex neural networks deep learning FD-RAN
在线阅读 下载PDF
Synthesization of high-capacity auto-associative memories using complex-valued neural networks 被引量:1
2
作者 黄玉娇 汪晓妍 +1 位作者 龙海霞 杨旭华 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第12期194-201,共8页
In this paper, a novel design procedure is proposed for synthesizing high-capacity auto-associative memories based on complex-valued neural networks with real-imaginary-type activation functions and constant delays. S... In this paper, a novel design procedure is proposed for synthesizing high-capacity auto-associative memories based on complex-valued neural networks with real-imaginary-type activation functions and constant delays. Stability criteria dependent on external inputs of neural networks are derived. The designed networks can retrieve the stored patterns by external inputs rather than initial conditions. The derivation can memorize the desired patterns with lower-dimensional neural networks than real-valued neural networks, and eliminate spurious equilibria of complex-valued neural networks. One numerical example is provided to show the effectiveness and superiority of the presented results. 展开更多
关键词 associative memory complex-valued neural network real-imaginary-type activation function external input
原文传递
The Complex System Modeling Method Based on Uniform Design and Neural Network 被引量:1
3
作者 Zhang Yong(Beijing Simulation Center, P.O.Box 142-23, Beijing 100854, P.R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1996年第4期27-36,共10页
In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the model... In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the modeling samples and obtain the overall information of the system;for the purpose of modeling the system or its characteristics, the artificial neural network is used to construct the model. Experiment indicates that this method can model the complex system effectively. 展开更多
关键词 Modeling method Uniform design neural network complex system Simulation.
在线阅读 下载PDF
Learning Dynamics of the Complex-Valued Neural Network in the Neighborhood of Singular Points
4
作者 Tohru Nitta 《Journal of Computer and Communications》 2014年第1期27-32,共6页
In this paper, the singularity and its effect on learning dynamics in the complex-valued neural network are elucidated. It has learned that the linear combination structure in the updating rule of the complex-valued n... In this paper, the singularity and its effect on learning dynamics in the complex-valued neural network are elucidated. It has learned that the linear combination structure in the updating rule of the complex-valued neural network increases the speed of moving away from the singular points, and the complex-valued neural network cannot be easily influenced by the singular points, whereas the learning of the usual real-valued neural network can be attracted in the neighborhood of singular points, which causes a standstill in learning. Simulation results on the learning dynamics of the three-layered real-valued and complex-valued neural networks in the neighborhood of singularities support the analytical results. 展开更多
关键词 complex-Valued neural network complex Number LEARNING SINGULAR Point
在线阅读 下载PDF
Multistability of delayed complex-valued recurrent neural networks with discontinuous real-imaginarytype activation functions
5
作者 黄玉娇 胡海根 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第12期271-279,共9页
In this paper, the multistability issue is discussed for delayed complex-valued recurrent neural networks with discontinuous real-imaginary-type activation functions. Based on a fixed theorem and stability definition,... In this paper, the multistability issue is discussed for delayed complex-valued recurrent neural networks with discontinuous real-imaginary-type activation functions. Based on a fixed theorem and stability definition, sufficient criteria are established for the existence and stability of multiple equilibria of complex-valued recurrent neural networks. The number of stable equilibria is larger than that of real-valued recurrent neural networks, which can be used to achieve high-capacity associative memories. One numerical example is provided to show the effectiveness and superiority of the presented results. 展开更多
关键词 complex-valued recurrent neural network discontinuous real-imaginary-type activation function MULTISTABILITY delay
原文传递
The Fuzzy Modeling Algorithm for Complex Systems Based on Stochastic Neural Network
6
作者 李波 张世英 李银惠 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2002年第3期46-51,共6页
A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Suge... A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Sugeno's (MTS) fuzzy model and one-order GSNN. Using expectation-maximization(EM) algorithm, parameter estimation and model selection procedures are given. It avoids the shortcomings brought by other methods such as BP algorithm, when the number of parameters is large, BP algorithm is still difficult to apply directly without fine tuning and subjective tinkering. Finally, the simulated example demonstrates the effectiveness. 展开更多
关键词 complex system modeling General stochastic neural network MTS fuzzy model Expectation-maximization algorithm
在线阅读 下载PDF
Lyapunov-Based Dynamic Neural Network for Adaptive Control of Complex Systems
7
作者 Farouk Zouari Kamel Ben Saad Mohamed Benrejeb 《Journal of Software Engineering and Applications》 2012年第4期225-248,共24页
In this paper, an adaptive neuro-control structure for complex dynamic system is proposed. A recurrent Neural Network is trained-off-line to learn the inverse dynamics of the system from the observation of the input-o... In this paper, an adaptive neuro-control structure for complex dynamic system is proposed. A recurrent Neural Network is trained-off-line to learn the inverse dynamics of the system from the observation of the input-output data. The direct adaptive approach is performed after the training process is achieved. A lyapunov-Base training algorithm is proposed and used to adjust on-line the network weights so that the neural model output follows the desired one. The simulation results obtained verify the effectiveness of the proposed control method. 展开更多
关键词 complex DYNAMICAL Systems LYAPUNOV Approach RECURRENT neural networks Adaptive Control
在线阅读 下载PDF
Pinning control of a generalized complex dynamical network model 被引量:1
8
作者 Huizhong YANG Li SHENG 《控制理论与应用(英文版)》 EI 2009年第1期1-8,共8页
This paper investigates the local and global synchronization of a generalized complex dynamical network model with constant and delayed coupling. Without assuming symmetry of the couplings, we proved that a single con... This paper investigates the local and global synchronization of a generalized complex dynamical network model with constant and delayed coupling. Without assuming symmetry of the couplings, we proved that a single controller can pin the generalized complex network to a homogenous solution. Some previous synchronization results are generalized. In this paper, we first discuss how to pin an array of delayed neural networks to the synchronous solution by adding only one controller. Next, by using the Lyapunov functional method, some sufficient conditions are derived for the local and global synchronization of the coupled systems. The obtained results are expressed in terms of LMIs, which can be efficiently checked by the Matlab LMI toolbox. Finally, an example is given to illustrate the theoretical results. 展开更多
关键词 complex network neural network Pinning control SYNCHRONIZATION Delayed coupling
在线阅读 下载PDF
Analysis on Design of Kohonen-network System Based on Classification of Complex Signals 被引量:1
9
作者 YOU Rong yi, XU Shen chu (Dept. of Phys., Xiamen University, Xiamen 361005, CHN) 《Semiconductor Photonics and Technology》 CAS 2002年第3期174-178,185-192,共7页
The key methods of detection and classification of the electroencephalogram(EEG) used in recent years are introduced . Taking EEG for example, the design plan of Kohonen neural network system based on detection and cl... The key methods of detection and classification of the electroencephalogram(EEG) used in recent years are introduced . Taking EEG for example, the design plan of Kohonen neural network system based on detection and classification of complex signals is proposed, and both the network design and signal processing are analyzed, including pre-processing of signals, extraction of signal features, classification of signal and network topology, etc. 展开更多
关键词 complex SIGNAL CLASSIFICATION of SIGNAL KOHONEN neural network
在线阅读 下载PDF
Synchronization of stochastically hybrid coupled neural networks with coupling discrete and distributed time-varying delays
10
作者 唐漾 钟恢凰 方建安 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第11期4080-4090,共11页
A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed, which is composed of constant coupling, coupling discrete time-varying delay and coupling distri... A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed, which is composed of constant coupling, coupling discrete time-varying delay and coupling distributed timevarying delay. All the coupling terms are subjected to stochastic disturbances described in terms of Brownian motion, which reflects a more realistic dynamical behaviour of coupled systems in practice. Based on a simple adaptive feedback controller and stochastic stability theory, several sufficient criteria are presented to ensure the synchronization of linearly stochastically coupled complex networks with coupling mixed time-varying delays. Finally, numerical simulations illustrated by scale-free complex networks verify the effectiveness of the proposed controllers. 展开更多
关键词 stochastically hybrid coupling discrete and distributed time-varying delays complex dynamical networks chaotic neural networks
原文传递
PROBE:NOISE-AND-ROTATION RESISTANCE OF HOPFIELD NEURAL NETWORK IN IMAGED TRAFFIC SIGN RECALL
11
作者 Chen Ken Yang Shoujian Celal Batur 《Journal of Electronics(China)》 2013年第2期183-189,共7页
This paper examines the noise and rotation resistance capacity of Hopfield Neural Network (HNN) given four corrupted traffic sign images. In the study, Signal-to-Noise Ratio (SNR), recall rate and pattern complexi... This paper examines the noise and rotation resistance capacity of Hopfield Neural Network (HNN) given four corrupted traffic sign images. In the study, Signal-to-Noise Ratio (SNR), recall rate and pattern complexity are defined and employed to evaluate the recall performance. The experimental results indicate that the HNN possesses significant recall capacity against the strong noise corruption, and certain restoring competence to the rotation. It is also found that combining noise with rotation does not further challenge the HNN corruption resistance capability as the noise or rotation alone does. 展开更多
关键词 Hopfield neural network (HNN) Traffic sign identification Pattern complexity Recall rate
在线阅读 下载PDF
复频域注意力和多尺度频域增强驱动的语音增强网络
12
作者 吕景刚 彭绍睿 +1 位作者 高硕 周金 《计算机应用》 北大核心 2025年第9期2957-2965,共9页
现有语音增强方法的目标信号为复频谱信号,而训练网络通常采用实值网络,训练时分别并行处理实部和虚部信号降低了特征提取的准确度,并且对复频域的语义特征提取不充分。为解决上述问题,提出一种基于复频域注意力和多尺度频域增强(CFAFE... 现有语音增强方法的目标信号为复频谱信号,而训练网络通常采用实值网络,训练时分别并行处理实部和虚部信号降低了特征提取的准确度,并且对复频域的语义特征提取不充分。为解决上述问题,提出一种基于复频域注意力和多尺度频域增强(CFAFE)的复数域网络实现语音增强。该网络以U-Net为基本架构,首先,利用短时傅里叶变换(STFT)将语音时序含噪信号转换到复频域;其次,针对复频域特征,设计复数域多尺度频域增强模块,构建复频域条件下增强的含噪语音局部特征挖掘模块,从而增强频域干扰和识别期望信号特征的能力;再次,在ViT(Vision Transformer)的基础上设计基于复频域的自注意力算法,实现并行复频域特征的增强;最后,在基准数据集VoiceBank+Demand上进行对比实验和消融实验,并在使用Noise92加噪后的Timit数据集上进行迁移泛化实验。实验结果表明,在VoiceBank+Demand数据集上,相较于深度复卷积递归网络(DCCRN),所提网络在语音质量的感知评估(PESQ)、MOS信号失真(CSIG)、MOS噪声失真(CBAK)、MOS整体语音质量(COVL)指标上分别提升了16.6%、10.9%、44.4%和14.1%;在Timit+Noise92数据集上,相较于DCCRN模型,在babble噪声信噪比(SNR)为-5 dB的条件下,所提网络的PESQ和STOI(Short-Time Objective Intelligibility)分别提高了29.8%和5.2%。 展开更多
关键词 语音增强 复神经网络 U-Net 注意力机制 TRANSFORMER
在线阅读 下载PDF
基于复数域卷积神经网络的ISAR包络对齐方法研究 被引量:1
13
作者 王勇 夏浩然 刘明帆 《信号处理》 北大核心 2025年第3期409-425,共17页
在逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)成像领域,运动补偿是确保高质量图像生成的关键环节。包络对齐(Range Alignment,RA)作为运动补偿的首要步骤,对于校正由平动分量引起的回波信号包络偏移至关重要。本文提出了... 在逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)成像领域,运动补偿是确保高质量图像生成的关键环节。包络对齐(Range Alignment,RA)作为运动补偿的首要步骤,对于校正由平动分量引起的回波信号包络偏移至关重要。本文提出了一种基于复数域卷积神经网络(Complex-Valued Convolutional Neural Network,CVCNN)的包络对齐新方法,旨在通过深度学习策略提升包络对齐的精度与计算效率。本文所提方法利用了卷积神经网络强大的特征学习能力,构建了一个能够映射一维距离像与包络补偿量之间复杂关系的模型。通过将传统的实值卷积神经网络拓展至复数域,不仅完整保留了回波信号中的相位信息,而且有效引入了复数域残差块及线性连接机制,进一步精细化了网络结构设计。这种架构改进使得所提算法能实现低信噪比(Signal-to-Noise Ratio,SNR)条件下对ISAR距离像的高效包络对齐。在数据生成方面,本文基于雷达仿真参数,通过成像模拟仿真构建了ISAR回波数据集。该数据集经过归一化处理后,输入网络进行训练,使网络能够学习从未对齐回波到对应补偿量的映射关系。本文所提方法采用迁移学习策略,对基于仿真数据预训练的模型进行微调,以适应实测数据。这一策略不仅增强了结果的可靠性,同时也大幅缩短了模型的迭代周期。在实验验证方面,本文采用仿真与实测数据进行综合测试,以包络对齐精度、成像结果质量和计算效率为评价指标,全面验证了算法的有效性。实验结果表明,在不同信噪比条件下,本文所提方法均展现出了优越的包络对齐性能,进而可以实现高质量成像,同时在计算效率上也具有显著优势。 展开更多
关键词 逆合成孔径雷达 包络对齐 复数域卷积神经网络 有监督学习
在线阅读 下载PDF
基于增强图神经网络和对比学习的复杂网络节点分类
14
作者 徐培玲 王玉 谭艳丽 《电信科学》 北大核心 2025年第8期127-138,共12页
复杂网络节点分类大多基于图神经网络学习节点表示而实现,图神经网络通过邻域聚合对复杂网络局部结构信息进行编码。然而,图神经网络的过平滑问题导致复杂网络节点分类性能受限。基于此,提出一种基于增强图神经网络和对比学习的复杂网... 复杂网络节点分类大多基于图神经网络学习节点表示而实现,图神经网络通过邻域聚合对复杂网络局部结构信息进行编码。然而,图神经网络的过平滑问题导致复杂网络节点分类性能受限。基于此,提出一种基于增强图神经网络和对比学习的复杂网络节点分类方法。该方法不仅为邻域节点引入注意力来区分各邻居节点的重要性,而且采用局部邻域重叠度和全局邻域重叠度构造边的特征,从而扩大节点表示的信息量。最后,引入对比学习对神经网络进行训练,从而利用网络全局节点分类先验信息对节点表示进行联合优化。在Cora、Citeseer、PubMed和Chameleon公开网络数据集上进行了实验,结果表明,相较于其他先进方法,所提方法的节点分类性能更好,并通过消融实验验证了所提方法的有效性。 展开更多
关键词 网络节点分类 复杂网络 图神经网络 图注意力网络 对比学习
在线阅读 下载PDF
Dynamic Coordination of Uncalibrated Hand/Eye Robotic System Based on Neural Network 被引量:1
15
作者 Su, J. Pan, Q. Xi, Y. 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第3期45-50,共6页
A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation ... A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation results show that this method can drive the static tracking error to zero quickly and keep good robustness and adaptability at the same time. In addition, the algorithm is very easy to be implemented with low computational complexity. 展开更多
关键词 Adaptive algorithms Computational complexity Computer simulation Coordinate measuring machines Error detection Mathematical models neural networks Robotic arms Robustness (control systems) Stereo vision
在线阅读 下载PDF
Classification of Cardiovascular Disease Using Feature Extraction and Artificial Neural Networks
16
作者 Shalin Savalia Eder Acosta Vahid Emamian 《Journal of Biosciences and Medicines》 2017年第11期64-79,共16页
Electrocardiogram (ECG) signals are used to identify cardiovascular disease. The availability of signal processing and neural networks techniques for processing ECG signals has inspired us to do research that consists... Electrocardiogram (ECG) signals are used to identify cardiovascular disease. The availability of signal processing and neural networks techniques for processing ECG signals has inspired us to do research that consists of extracting features of an ECG signals to identify types of cardiovascular diseases. We distinguish between normal and abnormal ECG data using signal processing and neural networks toolboxes in Matlab. Data, which are downloaded from an ECG database, Physiobank, are used for training and testing the neural network. To distinguish normal and abnormal ECG with the significant accuracy, pattern recognition tools with NN is used. Feature Extraction method is also used to identify specific heart diseases. The diseases that were identified include Tachycardia, Bradycardia, first-degree Atrioventricular (AV), and second-degree Atrioventricular. Since ECG signals are very noisy, signal processing techniques are applied to remove the noise contamination. The heart rate of each signal is calculated by finding the distance between R-R intervals of the signal. The QRS complex is also used to detect Atrioventricular blocks. The algorithm successfully distinguished between normal and abnormal data as well as identifying the type of disease. 展开更多
关键词 ELECTROCARDIOGRAM (ECG) CARDIOVASCULAR Disease MATLAB Artificial neural network Physiobank R-R interval MATLAB QRS complex Atrioventricular TACHYCARDIA BRADYCARDIA
暂未订购
基于改进YOLOv5的降雪天气高速列车障碍物检测
17
作者 马晓君 王栋 +1 位作者 刘德胜 梁晨 《计算机仿真》 2025年第1期155-161,451,共8页
针对降雪天气造成的铁路场景不清晰,以及遮挡造成的目标误检率等问题,提出了一种基于改进的YOLOv5的铁路障碍物入侵检测网络模型。在原有算法基础上引入坐标注意力检测机制,提高特征的提取能力,增强对遮挡目标及小目标的检测能力;提出Fo... 针对降雪天气造成的铁路场景不清晰,以及遮挡造成的目标误检率等问题,提出了一种基于改进的YOLOv5的铁路障碍物入侵检测网络模型。在原有算法基础上引入坐标注意力检测机制,提高特征的提取能力,增强对遮挡目标及小目标的检测能力;提出Focal-SIoU边界框回归损失函数,加快训练的收敛速度并提升预测框的定位精度;引入RepGFPN提高网络的检测速度,保证识别的实时性。在数据集RD和VOC 2012上的实验结果表明,提出的算法与原YOLOv5算法相比,mAP_(@0.5)分别提高了6.1%和2%,检测速度分别达到64FPS和67FPS,表明提出的算法可以在降雪的天气下快速、准确地检测出障碍物。 展开更多
关键词 复杂天气 障碍物识别 高速列车 神经网络
在线阅读 下载PDF
基于复数协方差卷积神经网络的运动想象脑电信号解码方法 被引量:1
18
作者 黄仁慧 张锐锋 +3 位作者 文晓浩 闭金杰 黄守麟 李廷会 《广西师范大学学报(自然科学版)》 北大核心 2025年第3期43-56,共14页
深度挖掘和利用脑电信号的特征信息,以提高运动想象的分类性能,一直是脑机接口的研究热点。考虑到脑电特征空间具有高维性且与幅值和相位密切相关,如何有效表达和同时利用脑电的幅值和相位信息已经成为一个难题。为此,本研究提出一种基... 深度挖掘和利用脑电信号的特征信息,以提高运动想象的分类性能,一直是脑机接口的研究热点。考虑到脑电特征空间具有高维性且与幅值和相位密切相关,如何有效表达和同时利用脑电的幅值和相位信息已经成为一个难题。为此,本研究提出一种基于复数协方差特征的三维复值卷积神经网络。首先,构建脑电不同频率下的复数协方差矩阵特征,不仅通过复值表示将幅值和相位信息结合在一起,并且保留分类所需的多变量信息,如幅值、相位、空间位置、频率等。其次,设计针对多复数协方差特征的全复数卷积神经网络,实现运动想象任务的高性能分类。在2个公开数据集上的实验结果表明,本研究提出的方法可获得比现有前沿方法至少高出2.49和1.85个百分点的平均准确率。 展开更多
关键词 脑电信号 脑机接口 幅相信息融合 复数协方差特征 复值卷积神经网络 信息交互
在线阅读 下载PDF
基于复数深度神经网络的电磁信号调制识别 被引量:1
19
作者 袁德品 赵亮 葛宪生 《电子科技》 2025年第3期1-6,共6页
在复杂电磁环境区域中,较难获取信号调制类型。传统调制信号识别分类方法因自身缺陷导致识别成功率不佳。目前用于信号调制的深度学习方法均基于实数来表征和处理,但因丢失复数原本的内在联系而容易出现识别偏差。针对这种情况,文中将... 在复杂电磁环境区域中,较难获取信号调制类型。传统调制信号识别分类方法因自身缺陷导致识别成功率不佳。目前用于信号调制的深度学习方法均基于实数来表征和处理,但因丢失复数原本的内在联系而容易出现识别偏差。针对这种情况,文中将复数深度神经网络应用于电磁信号的调制识别,设计了复卷积、批归一化和全连接网络等复数卷积深度神经网络,并通过Softmax函数完成最终的分类任务。采用标准数据集RML2016.10a完成网络训练以及测试工作。实验结果表明,通过训练后的复数深度神经网络优于传统识别算法,可以有效提升电磁信号识别率。 展开更多
关键词 复数神经网络 复杂电磁环境 调制样式 相位信息 调制识别 I/Q数据 潜在特征 电磁信号
在线阅读 下载PDF
基于图神经网络的中药系统生物学信息挖掘算法研究
20
作者 张代峰 卞国强 +3 位作者 何佳怡 谢佳东 胡晨骏 胡孔法 《南京中医药大学学报》 北大核心 2025年第4期483-493,共11页
目的构建中药-基因-蛋白复杂网络,优化中药潜在关联基因的挖掘方法,提升中药系统生物学信息的挖掘效能,为进一步探究中药作用机制提供帮助。方法提出融合注意力机制的图神经网络模型HERBGAT,以公开数据平台中少量的中药关联基因数据为输... 目的构建中药-基因-蛋白复杂网络,优化中药潜在关联基因的挖掘方法,提升中药系统生物学信息的挖掘效能,为进一步探究中药作用机制提供帮助。方法提出融合注意力机制的图神经网络模型HERBGAT,以公开数据平台中少量的中药关联基因数据为输入,在中药-基因-蛋白复杂网络中进行深度挖掘,输出潜在的中药关联基因,将预测结果通过生信平台进行Disease关联分析、KEGG信号通路分析阐明其作用机制,并借助文献检索平台进行预测结果验证。结果训练结果表明,HERBGAT模型预测准确率均值可达94%,相较于其他2种先进的复杂网络挖掘方法,HERBGAT在ACC、AUC和AUPR三项指标中均表现出更优秀的性能;在文献验证环节,模型预测结果得到中医临床文献及现代药理学文献证明,展现出HERBGAT在实际应用中的良好效果。最后,以借助HERBGAT模型和改进的EMOGI模型探究半夏治疗肺癌作用机制为例,发现半夏治疗肺癌的潜在关联基因199个,并借助生物信息学方法对这些潜在关联基因进行初步分析探讨。结论HERBGAT模型能有效挖掘潜在的中药关联基因,提高中药-基因-蛋白复杂网络的挖掘效能,为中药系统生物学信息挖掘方法的优化提供新的思路与参考,为探究中药作用机制等研究提供数据基础及实验方向。 展开更多
关键词 复杂网络 图神经网络模型 系统生物学 中药作用机制
暂未订购
上一页 1 2 33 下一页 到第
使用帮助 返回顶部