In this paper, we present a large-update primal-dual interior-point method for symmetric cone optimization(SCO) based on a new kernel function, which determines both search directions and the proximity measure betwe...In this paper, we present a large-update primal-dual interior-point method for symmetric cone optimization(SCO) based on a new kernel function, which determines both search directions and the proximity measure between the iterate and the center path. The kernel function is neither a self-regular function nor the usual logarithmic kernel function. Besides, by using Euclidean Jordan algebraic techniques, we achieve the favorable iteration complexity O( √r(1/2)(log r)^2 log(r/ ε)), which is as good as the convex quadratic semi-definite optimization analogue.展开更多
In this paper, the basic formulae for the semi-analytical graded FEM on FGM members are derived. Since FGM parameters vary along three space coordinates, the parameters can be integrated in mechanical equations. There...In this paper, the basic formulae for the semi-analytical graded FEM on FGM members are derived. Since FGM parameters vary along three space coordinates, the parameters can be integrated in mechanical equations. Therefore with the parameters of a given FGM plate, problems of FGM plate under various conditions can be solved. The approach uses 1D discretization to obtain 3D solutions, which is proven to be an effective numerical method for the mechanical analyses of FGM structures. Examples of FGM plates with complex shapes and various holes are presented.展开更多
Fracture of Kirchhoff plates is analyzed by the theory of complex variables and boundary collocation method. The deflections, moments and shearing forces of the plates are assumed to be the functions of complex variab...Fracture of Kirchhoff plates is analyzed by the theory of complex variables and boundary collocation method. The deflections, moments and shearing forces of the plates are assumed to be the functions of complex variables. The functions can satisfy a series of basic equations and governing conditions, such as the equilibrium equations in the domain, the boundary conditions on the crack surfaces and stress singularity at the crack tips. Thus, it is only necessary to consider the boundary conditions on the external boundaries of the plate, which can be approximately satisfied by the collocation method and least square technique. Different boundary conditions and loading cases of the cracked plates are analyzed and calculated. Compared to other methods, the numerical examples show that the present method has many advantages such as good accuracy and less computer time. This is an effective semi_analytical and semi_numerical method.展开更多
In this paper, we design a primal-dual interior-point algorithm for linear optimization. Search directions and proximity function are proposed based on a new kernel function which includes neither growth term nor barr...In this paper, we design a primal-dual interior-point algorithm for linear optimization. Search directions and proximity function are proposed based on a new kernel function which includes neither growth term nor barrier term. Iteration bounds both for large-and small-update methods are derived, namely, O(nlog(n/c)) and O(√nlog(n/ε)). This new kernel function has simple algebraic expression and the proximity function has not been used before. Analogous to the classical logarithmic kernel function, our complexity analysis is easier than the other pri- mal-dual interior-point methods based on logarithmic barrier functions and recent kernel functions.展开更多
基金Supported by the Natural Science Foundation of Hubei Province(2008CDZD47)
文摘In this paper, we present a large-update primal-dual interior-point method for symmetric cone optimization(SCO) based on a new kernel function, which determines both search directions and the proximity measure between the iterate and the center path. The kernel function is neither a self-regular function nor the usual logarithmic kernel function. Besides, by using Euclidean Jordan algebraic techniques, we achieve the favorable iteration complexity O( √r(1/2)(log r)^2 log(r/ ε)), which is as good as the convex quadratic semi-definite optimization analogue.
基金Project supported by the National Natural Science Foundation of China (No. 10432030)
文摘In this paper, the basic formulae for the semi-analytical graded FEM on FGM members are derived. Since FGM parameters vary along three space coordinates, the parameters can be integrated in mechanical equations. Therefore with the parameters of a given FGM plate, problems of FGM plate under various conditions can be solved. The approach uses 1D discretization to obtain 3D solutions, which is proven to be an effective numerical method for the mechanical analyses of FGM structures. Examples of FGM plates with complex shapes and various holes are presented.
文摘Fracture of Kirchhoff plates is analyzed by the theory of complex variables and boundary collocation method. The deflections, moments and shearing forces of the plates are assumed to be the functions of complex variables. The functions can satisfy a series of basic equations and governing conditions, such as the equilibrium equations in the domain, the boundary conditions on the crack surfaces and stress singularity at the crack tips. Thus, it is only necessary to consider the boundary conditions on the external boundaries of the plate, which can be approximately satisfied by the collocation method and least square technique. Different boundary conditions and loading cases of the cracked plates are analyzed and calculated. Compared to other methods, the numerical examples show that the present method has many advantages such as good accuracy and less computer time. This is an effective semi_analytical and semi_numerical method.
基金Supported by the Natural Science Foundation of Hubei Province (2008CDZD47)
文摘In this paper, we design a primal-dual interior-point algorithm for linear optimization. Search directions and proximity function are proposed based on a new kernel function which includes neither growth term nor barrier term. Iteration bounds both for large-and small-update methods are derived, namely, O(nlog(n/c)) and O(√nlog(n/ε)). This new kernel function has simple algebraic expression and the proximity function has not been used before. Analogous to the classical logarithmic kernel function, our complexity analysis is easier than the other pri- mal-dual interior-point methods based on logarithmic barrier functions and recent kernel functions.