期刊文献+
共找到251篇文章
< 1 2 13 >
每页显示 20 50 100
Enhanced Cutaneous Melanoma Segmentation in Dermoscopic Images Using a Dual U-Net Framework with Multi-Path Convolution Block Attention Module and SE-Res-Conv
1
作者 Kun Lan Feiyang Gao +2 位作者 Xiaoliang Jiang Jianzhen Cheng Simon Fong 《Computers, Materials & Continua》 2025年第9期4805-4824,共20页
With the continuous development of artificial intelligence and machine learning techniques,there have been effective methods supporting the work of dermatologist in the field of skin cancer detection.However,object si... With the continuous development of artificial intelligence and machine learning techniques,there have been effective methods supporting the work of dermatologist in the field of skin cancer detection.However,object significant challenges have been presented in accurately segmenting melanomas in dermoscopic images due to the objects that could interfere human observations,such as bubbles and scales.To address these challenges,we propose a dual U-Net network framework for skin melanoma segmentation.In our proposed architecture,we introduce several innovative components that aim to enhance the performance and capabilities of the traditional U-Net.First,we establish a novel framework that links two simplified U-Nets,enabling more comprehensive information exchange and feature integration throughout the network.Second,after cascading the second U-Net,we introduce a skip connection between the decoder and encoder networks,and incorporate a modified receptive field block(MRFB),which is designed to capture multi-scale spatial information.Third,to further enhance the feature representation capabilities,we add a multi-path convolution block attention module(MCBAM)to the first two layers of the first U-Net encoding,and integrate a new squeeze-and-excitation(SE)mechanism with residual connections in the second U-Net.To illustrate the performance of our proposed model,we conducted comprehensive experiments on widely recognized skin datasets.On the ISIC-2017 dataset,the IoU value of our proposed model increased from 0.6406 to 0.6819 and the Dice coefficient increased from 0.7625 to 0.8023.On the ISIC-2018 dataset,the IoU value of proposed model also improved from 0.7138 to 0.7709,while the Dice coefficient increased from 0.8285 to 0.8665.Furthermore,the generalization experiments conducted on the jaw cyst dataset from Quzhou People’s Hospital further verified the outstanding segmentation performance of the proposed model.These findings collectively affirm the potential of our approach as a valuable tool in supporting clinical decision-making in the field of skin cancer detection,as well as advancing research in medical image analysis. 展开更多
关键词 Dual u-net skin lesion segmentation squeeze-and-excitation modified receptive field block multi-path convolution block attention module
在线阅读 下载PDF
A novel complex-high-order graph convolutional network paradigm:ChyGCN
2
作者 郑和翔 苗书宇 顾长贵 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期665-672,共8页
In recent years,there has been a growing interest in graph convolutional networks(GCN).However,existing GCN and variants are predominantly based on simple graph or hypergraph structures,which restricts their ability t... In recent years,there has been a growing interest in graph convolutional networks(GCN).However,existing GCN and variants are predominantly based on simple graph or hypergraph structures,which restricts their ability to handle complex data correlations in practical applications.These limitations stem from the difficulty in establishing multiple hierarchies and acquiring adaptive weights for each of them.To address this issue,this paper introduces the latest concept of complex hypergraphs and constructs a versatile high-order multi-level data correlation model.This model is realized by establishing a three-tier structure of complexes-hypergraphs-vertices.Specifically,we start by establishing hyperedge clusters on a foundational network,utilizing a second-order hypergraph structure to depict potential correlations.For this second-order structure,truncation methods are used to assess and generate a three-layer composite structure.During the construction of the composite structure,an adaptive learning strategy is implemented to merge correlations across different levels.We evaluate this model on several popular datasets and compare it with recent state-of-the-art methods.The comprehensive assessment results demonstrate that the proposed model surpasses the existing methods,particularly in modeling implicit data correlations(the classification accuracy of nodes on five public datasets Cora,Citeseer,Pubmed,Github Web ML,and Facebook are 86.1±0.33,79.2±0.35,83.1±0.46,83.8±0.23,and 80.1±0.37,respectively).This indicates that our approach possesses advantages in handling datasets with implicit multi-level structures. 展开更多
关键词 raph convolutional network complex modeling complex hypergraph
原文传递
Review of Artificial Intelligence for Oil and Gas Exploration: Convolutional Neural Network Approaches and the U-Net 3D Model
3
作者 Weiyan Liu 《Open Journal of Geology》 CAS 2024年第4期578-593,共16页
Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou... Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis. 展开更多
关键词 Deep Learning convolutional Neural Networks (CNN) Seismic Fault Identification u-net 3D Model Geological Exploration
在线阅读 下载PDF
An Image Manipulation Localization Method Based on Dual-Branch Hybrid Convolution
4
作者 Chengliang Yan Lei Zhang Minhui Chang 《Journal of Electronic Research and Application》 2025年第5期172-184,共13页
In existing image manipulation localization methods,the receptive field of standard convolution is limited,and during feature transfer,it is easy to lose high-frequency information about traces of manipulation.In addi... In existing image manipulation localization methods,the receptive field of standard convolution is limited,and during feature transfer,it is easy to lose high-frequency information about traces of manipulation.In addition,during feature fusion,the use of fixed sampling kernels makes it difficult to focus on local changes in features,leading to limited localization accuracy.This paper proposes an image manipulation localization method based on dual-branch hybrid convolution.First,a dual-branch hybrid convolution module is designed to expand the receptive field of the model to enhance the feature extraction ability of contextual semantic information,while also enabling the model to focus more on the high-frequency detail features of manipulation traces while localizing the manipulated area.Second,a multiscale content-aware feature fusion module is used to dynamically generate adaptive sampling kernels for each position in the feature map,enabling the model to focus more on the details of local features while locating the manipulated area.Experimental results on multiple datasets show that this method not only effectively improves the accuracy of image manipulation localization but also enhances the robustness of the model. 展开更多
关键词 Image manipulation localization Content awareness Dual branch Hybrid convolution u-net
在线阅读 下载PDF
Construction of complex digital rock physics based on full convolution network 被引量:6
5
作者 Jia Kang Nian-Yin Li +4 位作者 Li-Qiang Zhao Gang Xiong Dao-Cheng Wang Ying Xiong Zhi-Feng Luo 《Petroleum Science》 SCIE CAS CSCD 2022年第2期651-662,共12页
Digital rock physics(DRP)is a paramount technology to improve the economic benefits of oil and gas fields,devise more scientific oil and gas field development plans,and create digital oil and gas fields.Currently,a si... Digital rock physics(DRP)is a paramount technology to improve the economic benefits of oil and gas fields,devise more scientific oil and gas field development plans,and create digital oil and gas fields.Currently,a significant gap is present between DRP theory and practical applications.Conventional digital-core construction focuses only on simple cores,and the recognition and segmentation effect of fractures and pores of complex cores is poor.The identification of rock minerals is inaccurate,which leads to the difference between the digital and actual cores.To promote the application of DRP in developing oil and gas fields,based on the high-precision X-ray computed tomography scanning technology,the U-Net deep learning model of the full convolution neural network is used to segment the pores,fractures,and matrix from the complex rock core with natural fractures innovatively.Simultaneously,the distribution of rock minerals is divided,and the distribution of rock conditions is corrected by X-ray diffraction.A pore—fracture network model is established based on the equivalent radius,which lays the foundation for fluid seepage simulation.Finally,the accuracy of the established a digital core is verified by the porosity measured via nuclear magnetic resonance technology,which is of great significance to the development and application of DRP in oil and gas fields. 展开更多
关键词 Digital rock physics Depth learning u-net complex core complex fracture
原文传递
Mu-Net:Multi-Path Upsampling Convolution Network for Medical Image Segmentation 被引量:2
6
作者 Jia Chen Zhiqiang He +3 位作者 Dayong Zhu Bei Hui Rita Yi Man Li Xiao-Guang Yue 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第4期73-95,共23页
Medical image segmentation plays an important role in clinical diagnosis,quantitative analysis,and treatment process.Since 2015,U-Net-based approaches have been widely used formedical image segmentation.The purpose of... Medical image segmentation plays an important role in clinical diagnosis,quantitative analysis,and treatment process.Since 2015,U-Net-based approaches have been widely used formedical image segmentation.The purpose of the U-Net expansive path is to map low-resolution encoder feature maps to full input resolution feature maps.However,the consecutive deconvolution and convolutional operations in the expansive path lead to the loss of some high-level information.More high-level information can make the segmentationmore accurate.In this paper,we propose MU-Net,a novel,multi-path upsampling convolution network to retain more high-level information.The MU-Net mainly consists of three parts:contracting path,skip connection,and multi-expansive paths.The proposed MU-Net architecture is evaluated based on three different medical imaging datasets.Our experiments show that MU-Net improves the segmentation performance of U-Net-based methods on different datasets.At the same time,the computational efficiency is significantly improved by reducing the number of parameters by more than half. 展开更多
关键词 Medical image segmentation Mu-net(multi-path upsampling convolution network) u-net clinical diagnosis encoder-decoder networks
在线阅读 下载PDF
A DISCRETE ALGORITHM FOR COMPLEX FREQUENCY-DOMAIN CONVOLUTIONS
7
作者 蔡坤宝 杨瑞芳 俞集辉 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第5期537-542,共6页
A discrete algorithm suitable for the computation of complex frequency-domain convolution on computers was derived. The Durbin's numerical inversion of Laplace transforms can be used to figure out the time-domain ... A discrete algorithm suitable for the computation of complex frequency-domain convolution on computers was derived. The Durbin's numerical inversion of Laplace transforms can be used to figure out the time-domain digital solution of the result of complex frequency-domain convolutions. Compared with the digital solutions and corresponding analytical solutions, it is shown that the digital solutions have high precision. 展开更多
关键词 complex frequency-domain convolutION Laplace transforms numerical inversion
在线阅读 下载PDF
Irregularly sampled seismic data interpolation via wavelet-based convolutional block attention deep learning 被引量:2
8
作者 Yihuai Lou Lukun Wu +4 位作者 Lin Liu Kai Yu Naihao Liu Zhiguo Wang Wei Wang 《Artificial Intelligence in Geosciences》 2022年第1期192-202,共11页
Seismic data interpolation,especially irregularly sampled data interpolation,is a critical task for seismic processing and subsequent interpretation.Recently,with the development of machine learning and deep learning,... Seismic data interpolation,especially irregularly sampled data interpolation,is a critical task for seismic processing and subsequent interpretation.Recently,with the development of machine learning and deep learning,convolutional neural networks(CNNs)are applied for interpolating irregularly sampled seismic data.CNN based approaches can address the apparent defects of traditional interpolation methods,such as the low computational efficiency and the difficulty on parameters selection.However,current CNN based methods only consider the temporal and spatial features of irregularly sampled seismic data,which fail to consider the frequency features of seismic data,i.e.,the multi-scale features.To overcome these drawbacks,we propose a wavelet-based convolutional block attention deep learning(W-CBADL)network for irregularly sampled seismic data reconstruction.We firstly introduce the discrete wavelet transform(DWT)and the inverse wavelet transform(IWT)to the commonly used U-Net by considering the multi-scale features of irregularly sampled seismic data.Moreover,we propose to adopt the convolutional block attention module(CBAM)to precisely restore sampled seismic traces,which could apply the attention to both channel and spatial dimensions.Finally,we adopt the proposed W-CBADL model to synthetic and pre-stack field data to evaluate its validity and effectiveness.The results demonstrate that the proposed W-CBADL model could reconstruct irregularly sampled seismic data more effectively and more efficiently than the state-of-the-art contrastive CNN based models. 展开更多
关键词 Irregularly sampled seismic data reconstruction Deep learning u-net Discrete wavelet transform convolutional block attention module
在线阅读 下载PDF
Experimental optical computing of complex vector convolution with twisted light 被引量:2
9
作者 Ling Hong Haoxu Guo +3 位作者 Xiaodong Qiu Fei Lin Wuhong Zhang Lixiang Chen 《Advanced Photonics Nexus》 2023年第4期96-101,共6页
Orbital angular momentum(OAM),emerging as an inherently high-dimensional property of photons,has boosted information capacity in optical communications.However,the potential of OAM in optical computing remains almost ... Orbital angular momentum(OAM),emerging as an inherently high-dimensional property of photons,has boosted information capacity in optical communications.However,the potential of OAM in optical computing remains almost unexplored.Here,we present a highly efficient optical computing protocol for complex vector convolution with the superposition of high-dimensional OAM eigenmodes.We used two cascaded spatial light modulators to prepare suitable OAM superpositions to encode two complex vectors.Then,a deep-learning strategy is devised to decode the complex OAM spectrum,thus accomplishing the optical convolution task.In our experiment,we succeed in demonstrating 7-,9-,and 11-dimensional complex vector convolutions,in which an average proximity better than 95%and a mean relative error<6%are achieved.Our present scheme can be extended to incorporate other degrees of freedom for a more versatile optical computing in the high-dimensional Hilbert space. 展开更多
关键词 optical computing complex vector convolution orbital angular momentum photonic spatial modes
在线阅读 下载PDF
Intelligent recognition and information extraction of radar complex jamming based on time-frequency features
10
作者 PENG Ruihui WU Xingrui +3 位作者 WANG Guohong SUN Dianxing YANG Zhong LI Hongwen 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1148-1166,共19页
In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise p... In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise parameter information,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jamming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spectrum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under−15 dB SNR,according to simulation and real data verification results. 展开更多
关键词 complex jamming recognition time frequency feature convolutional neural network(CNN) parameter estimation
在线阅读 下载PDF
基于复数域卷积神经网络的ISAR包络对齐方法研究 被引量:1
11
作者 王勇 夏浩然 刘明帆 《信号处理》 北大核心 2025年第3期409-425,共17页
在逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)成像领域,运动补偿是确保高质量图像生成的关键环节。包络对齐(Range Alignment,RA)作为运动补偿的首要步骤,对于校正由平动分量引起的回波信号包络偏移至关重要。本文提出了... 在逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)成像领域,运动补偿是确保高质量图像生成的关键环节。包络对齐(Range Alignment,RA)作为运动补偿的首要步骤,对于校正由平动分量引起的回波信号包络偏移至关重要。本文提出了一种基于复数域卷积神经网络(Complex-Valued Convolutional Neural Network,CVCNN)的包络对齐新方法,旨在通过深度学习策略提升包络对齐的精度与计算效率。本文所提方法利用了卷积神经网络强大的特征学习能力,构建了一个能够映射一维距离像与包络补偿量之间复杂关系的模型。通过将传统的实值卷积神经网络拓展至复数域,不仅完整保留了回波信号中的相位信息,而且有效引入了复数域残差块及线性连接机制,进一步精细化了网络结构设计。这种架构改进使得所提算法能实现低信噪比(Signal-to-Noise Ratio,SNR)条件下对ISAR距离像的高效包络对齐。在数据生成方面,本文基于雷达仿真参数,通过成像模拟仿真构建了ISAR回波数据集。该数据集经过归一化处理后,输入网络进行训练,使网络能够学习从未对齐回波到对应补偿量的映射关系。本文所提方法采用迁移学习策略,对基于仿真数据预训练的模型进行微调,以适应实测数据。这一策略不仅增强了结果的可靠性,同时也大幅缩短了模型的迭代周期。在实验验证方面,本文采用仿真与实测数据进行综合测试,以包络对齐精度、成像结果质量和计算效率为评价指标,全面验证了算法的有效性。实验结果表明,在不同信噪比条件下,本文所提方法均展现出了优越的包络对齐性能,进而可以实现高质量成像,同时在计算效率上也具有显著优势。 展开更多
关键词 逆合成孔径雷达 包络对齐 复数域卷积神经网络 有监督学习
在线阅读 下载PDF
复杂场景下的多人人体姿态估计算法
12
作者 石磊 王天宝 +3 位作者 孟彩霞 王清贤 高宇飞 卫琳 《郑州大学学报(理学版)》 北大核心 2025年第4期1-7,共7页
复杂场景下人员的交叉遮挡,导致现有的人体姿态估计算法存在准确度不高和人体骨架错连的问题。为此,提出一种复杂场景下的多人人体姿态估计优化算法。首先,使用分组分块级联卷积替换普通卷积,结合特征融合促进特征通道之间的信息交互,... 复杂场景下人员的交叉遮挡,导致现有的人体姿态估计算法存在准确度不高和人体骨架错连的问题。为此,提出一种复杂场景下的多人人体姿态估计优化算法。首先,使用分组分块级联卷积替换普通卷积,结合特征融合促进特征通道之间的信息交互,在不引入额外计算成本的前提下提高算法精度;其次,引入空间注意力机制挖掘与人体姿态估计任务相关的空间语义特征,将网络结构并行化处理以提高算法性能;最后,对大卷积核和空间注意力机制的嵌入位置进行轻量化处理,减少时间开销。与现有的自底向上的姿态估计算法OpenPifPaf++相比,所提算法在COCO 2017数据集上平均准确率提高0.8个百分点;在CrowdPose数据集上平均准确率比OpenPifPaf算法提高1.2个百分点,复杂场景下对应的准确率提高1.5个百分点。 展开更多
关键词 复杂场景 多人人体姿态估计 分组卷积 空间注意力机制 轻量化
在线阅读 下载PDF
基于SDE-YOLO的矮砧密植化果园苹果检测方法
13
作者 朱立成 王文贝 +4 位作者 赵博 韩振浩 高建波 陈凯康 冯旭光 《农业机械学报》 北大核心 2025年第9期638-647,共10页
矮砧密植化苹果园是未来机器人采摘的典型应用场景,面临复杂光照、果实重叠和枝叶遮挡等挑战,精准检测果实是苹果采摘机器人的关键核心技术之一。为进一步提高矮砧密植化种植的果园中苹果的检测准确性和鲁棒性,提出一种基于SDE-YOLO的... 矮砧密植化苹果园是未来机器人采摘的典型应用场景,面临复杂光照、果实重叠和枝叶遮挡等挑战,精准检测果实是苹果采摘机器人的关键核心技术之一。为进一步提高矮砧密植化种植的果园中苹果的检测准确性和鲁棒性,提出一种基于SDE-YOLO的矮砧密植果园苹果检测模型。构建包含不同光照环境、遮挡状态的果实数据集,并对果实遮挡类型进行了统计学分类。然后,通过在骨干网络中设计复合特征提取结构,将后两层C2f模块替换为Swin Transformer,增强模型建立长程依赖的能力,有效提升密集场景下的检测性能;同时主干融入EMA注意力机制,通过不降维的通道重构方式实现像素级自适应注意力分配,有效抑制枝叶等背景干扰,降低计算复杂度;在特征融合网络中引入DCN v2模块,通过动态可变形卷积提升对不同形态和姿态苹果的检测能力。最后利用Grad-CAM方法产生目标检测热力图,形成有效特征可视化语言,提高模型关注区域的理解能力。结果表明,SDE-YOLO精确率、召回率和平均精度均值分别达到88.9%、86.6%和94.2%,相比基线模型分别提高2.0、1.7、3.3个百分点,模型参数量减少9.38%。通过与其他主流目标检测模型的对比,SDE-YOLO在处理光照变化、果实重叠遮挡和枝叶遮挡等复杂场景时表现出更好的性能。采用本文方法可在矮砧密植化果园对苹果果实进行较准确的果实检测,为苹果采摘机器人提供有效的目标定位信息。 展开更多
关键词 苹果 复杂光照 重叠遮挡 枝叶遮挡 卷积神经网络 目标检测
在线阅读 下载PDF
基于深度复数门控扩张循环卷积网络的语音增强
14
作者 郭业才 周雪 +1 位作者 赵涵优 毛湘南 《中国电子科学研究院学报》 2025年第2期194-202,共9页
为了解决语音增强任务中语音信息未充分利用的问题,提出一种基于深度学习的方法,即深度复数门控扩张循环卷积网络(Deep Complex Gated Dilated Recurrent Convolutional Network,DCGDRCN)。该网络使用复数卷积和复数循环层处理复数域信... 为了解决语音增强任务中语音信息未充分利用的问题,提出一种基于深度学习的方法,即深度复数门控扩张循环卷积网络(Deep Complex Gated Dilated Recurrent Convolutional Network,DCGDRCN)。该网络使用复数卷积和复数循环层处理复数域信号,同时处理语音信号的幅度和相位信息,从而更精确地捕捉和还原语音信号。DCGDRCN由编码器、复数循环卷积层和解码器三部分组成,还在编码器中引入了有效通道注意力机制,增加了模型的非线性特征提取能力和参数效率,以更准确地分离出有用的语音信号,并抑制噪音和干扰信号。实验数据表明,GDRCNN网络在参数量和模型大小方面明显优于深度神经网络(Deep Neural Network,DNN)、卷积循环神经网络(Convolutional Recurrent Neural Network,CRN)、深度复数卷积循环网络(Reep Complex Convdution Recurrent Network,DCCRN)等网络,PESQ平均提高了0.68、0.47、0.3,STOI平均提高了0.14、0.08、0.05,在语音增强方面表现出色。 展开更多
关键词 语音增强 深度学习 复数卷积 扩张卷积 门控机制 循环卷积
在线阅读 下载PDF
基于改进YOLOv8的复杂路况下的目标识别
15
作者 张成涛 李习刊 +1 位作者 徐伟航 王瑞敏 《广西科技大学学报》 2025年第3期85-91,122,共8页
目标识别检测是自动驾驶技术中的关键技术,但是现有目标识别算法在复杂路况场景下检测精度偏低。本文首先对YOLOv8算法进行改进,引入多头自注意力(multi-head self-attention,MHSA)机制到特征检测层,由于MHSA具有对存在车辆和行人的区... 目标识别检测是自动驾驶技术中的关键技术,但是现有目标识别算法在复杂路况场景下检测精度偏低。本文首先对YOLOv8算法进行改进,引入多头自注意力(multi-head self-attention,MHSA)机制到特征检测层,由于MHSA具有对存在车辆和行人的区域进行选择性关注的特点,最终能捕获更高级的语义特征;然后引入可变形卷积v2,在各位置上通过学习获得偏移参数,自适应调整感知区域以适应复杂的视觉任务,并能够更好地捕获目标的空间变化和形状信息;最后在城市道路数据集进行训练,得到消融实验和对比实验结果。结果表明,改进后的YOLOv8算法在复杂场景下的性能优于原算法,平均精度均值达到93.14%,提升了5.29%,目标检测性能更好。 展开更多
关键词 目标识别检测 YOLOv8 复杂路况 多头自注意力(MHSA)机制 可变形卷积
在线阅读 下载PDF
基于复数协方差卷积神经网络的运动想象脑电信号解码方法 被引量:1
16
作者 黄仁慧 张锐锋 +3 位作者 文晓浩 闭金杰 黄守麟 李廷会 《广西师范大学学报(自然科学版)》 北大核心 2025年第3期43-56,共14页
深度挖掘和利用脑电信号的特征信息,以提高运动想象的分类性能,一直是脑机接口的研究热点。考虑到脑电特征空间具有高维性且与幅值和相位密切相关,如何有效表达和同时利用脑电的幅值和相位信息已经成为一个难题。为此,本研究提出一种基... 深度挖掘和利用脑电信号的特征信息,以提高运动想象的分类性能,一直是脑机接口的研究热点。考虑到脑电特征空间具有高维性且与幅值和相位密切相关,如何有效表达和同时利用脑电的幅值和相位信息已经成为一个难题。为此,本研究提出一种基于复数协方差特征的三维复值卷积神经网络。首先,构建脑电不同频率下的复数协方差矩阵特征,不仅通过复值表示将幅值和相位信息结合在一起,并且保留分类所需的多变量信息,如幅值、相位、空间位置、频率等。其次,设计针对多复数协方差特征的全复数卷积神经网络,实现运动想象任务的高性能分类。在2个公开数据集上的实验结果表明,本研究提出的方法可获得比现有前沿方法至少高出2.49和1.85个百分点的平均准确率。 展开更多
关键词 脑电信号 脑机接口 幅相信息融合 复数协方差特征 复值卷积神经网络 信息交互
在线阅读 下载PDF
复杂场景下无人驾驶障碍检测算法 被引量:1
17
作者 程铄棋 伊力哈木·亚尔买买提 +2 位作者 谢丽蓉 侯雪扬 马颖 《哈尔滨工业大学学报》 北大核心 2025年第6期160-170,共11页
为解决复杂路况下因目标遮挡及小目标信息缺失导致现有无人驾驶目标检测算法准确率低的问题,提出了基于改进YOLOv8的无人驾驶障碍检测算法(YOLOv8 effectual accurate,YOLOv8-EA)。该算法首先引入快速神经网络作为主干网络,利用部分卷... 为解决复杂路况下因目标遮挡及小目标信息缺失导致现有无人驾驶目标检测算法准确率低的问题,提出了基于改进YOLOv8的无人驾驶障碍检测算法(YOLOv8 effectual accurate,YOLOv8-EA)。该算法首先引入快速神经网络作为主干网络,利用部分卷积提取空间特征,保证特征的完整性;其次,利用大内核深度卷积层重构快速金字塔池化层,采用并行多尺度连接的方式融合不同分辨率的自注意力特征,增强模型在复杂环境中的特征提取能力;然后,采用多分支结构和重参数化抑制信息干扰,并通过不断堆叠梯度流的方式提升特征融合能力;最后,基于部分卷积设计小目标检测头以处理小目标像素级特征信息。对比实验结果表明,相较于原模型,上述改进后,模型在性能上均有明显提升,并在检测精度上显著优于其他改进方式。消融实验结果表明,YOLOv8-EA在障碍检测精度方面取得显著提升,在KITTI数据集下,mAP50和mAP50-95分别提升了2.4%和4.7%;采用SODA10M数据集进行二次验证,mAP50和mAP50-95分别提升了1.4%和1.1%,证明YOLOv8-EA算法具有很好的泛化能力。所提算法在处理遮挡目标及小目标时,展现了出色的性能,为无人驾驶系统中的后续决策任务提供了更加可靠的支持。 展开更多
关键词 目标检测 无人驾驶 复杂道路场景 部分卷积 大内核深度卷积层
在线阅读 下载PDF
粤港澳大湾区并发复合灾害敏感性评估 被引量:1
18
作者 徐峥辉 王伟 +1 位作者 宋月 黄莉 《河海大学学报(自然科学版)》 北大核心 2025年第4期99-107,共9页
为精确评估粤港澳大湾区并发复合灾害的敏感性,构建了崩塌滑坡并发复合灾害敏感性评价指标体系,同时建立并推导了考虑并发复合灾害空间维度叠加效应的敏感性评估模型。结果表明:粤港澳大湾区滑坡崩塌并发复合灾害高敏感区在怀集县、封... 为精确评估粤港澳大湾区并发复合灾害的敏感性,构建了崩塌滑坡并发复合灾害敏感性评价指标体系,同时建立并推导了考虑并发复合灾害空间维度叠加效应的敏感性评估模型。结果表明:粤港澳大湾区滑坡崩塌并发复合灾害高敏感区在怀集县、封开县等湾区西北部地区和龙岗区、惠城区等湾区东北部地区集中分布,低敏感区在三水区、南海区等湾区中部地区和台山市、恩平市等湾区西南部地区集中分布,较高敏感区、中敏感区、较低敏感区主要作为过渡区零星散布于高、低敏感区之间。 展开更多
关键词 并发复合灾害 敏感性 滑坡崩塌 评估模型 卷积神经网络 粤港澳大湾区
在线阅读 下载PDF
基于复值卷积降噪自编码器去噪的矢量水听器DOA估计方法 被引量:1
19
作者 任晶 谭秀辉 +3 位作者 白艳萍 王宏妍 续婷 程蓉 《测试技术学报》 2025年第4期475-482,490,共9页
针对现有的基于实值卷积神经网络估计矢量水听器波达方向(Direction of Arrival, DOA)对阵列接收到信号的相位特征提取不充分的缺点,提出了一种基于复值卷积降噪自编码器(Complex-Valued Convolutional Denoising Autoencoder, CV-CDAE... 针对现有的基于实值卷积神经网络估计矢量水听器波达方向(Direction of Arrival, DOA)对阵列接收到信号的相位特征提取不充分的缺点,提出了一种基于复值卷积降噪自编码器(Complex-Valued Convolutional Denoising Autoencoder, CV-CDAE)和复值卷积神经网络(Complex-Valued Convolutional Neural Network, CVCNN)联合的矢量水听器DOA估计方法CV-CDAE-CNN。首先,将矢量水听器接收信号的复值协方差矩阵输入CV-CDAE模块去除噪声,之后,将去噪后的样本输入CV-CNN进行分类。其中,CV-CNN在下采样前使用双尺度膨胀卷积增大特征图的感受野,缓解下采样带来的信息损失。通过CV-CDAE去噪以及CV-CNN独特的处理复值方式实现角度分类,进而得到DOA估计值。仿真结果表明,所提出方法与现有的CV-CNN相比,在低信噪比或有限快拍数下泛化能力更强,DOA估计准确率更高,且具有更高的估计精度。 展开更多
关键词 波达方向估计 复值卷积降噪自编码器 复值卷积神经网络 双尺度膨胀卷积 矢量水听器
在线阅读 下载PDF
斯特林曲线的离散卷积生成及其求值算法
20
作者 王瑜 刘婉柔 +1 位作者 解滨 韩力文 《浙江大学学报(理学版)》 北大核心 2025年第1期122-132,共11页
斯特林基函数是由离散概率模型生成的一类有理基函数。通过分析基函数的逐层递推关系,构造了斯特林基函数的离散卷积结构。结合离散卷积满足的交换性,得到n次斯特林曲线的n!种de Casteljau算法,并将其用于曲线的递归求值,进而得到n次斯... 斯特林基函数是由离散概率模型生成的一类有理基函数。通过分析基函数的逐层递推关系,构造了斯特林基函数的离散卷积结构。结合离散卷积满足的交换性,得到n次斯特林曲线的n!种de Casteljau算法,并将其用于曲线的递归求值,进而得到n次斯特林曲线的2种线性求值算法、速端曲线离散卷积表示以及首末两个n次斯特林基函数的导函数显式表达式。研究可推广至一类嵌套空间中的有理基函数及其曲线曲面。 展开更多
关键词 斯特林曲线 离散卷积 de Casteljau算法 线性复杂度 速端曲线
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部