期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于重参数化MobileNetV2的农作物叶片病害识别模型
被引量:
18
1
作者
彭玉寒
李书琴
《农业工程学报》
EI
CAS
CSCD
北大核心
2023年第17期132-140,共9页
针对基于卷积神经网络识别农作物叶片病害存在参数众多,计算量大且实时性差的问题,提出一种轻量级农作物叶片病害识别模型RLDNet(reparameterized leaf diseases identification network)。首先,基于MobileNetV2利用重参数化倒残差模块...
针对基于卷积神经网络识别农作物叶片病害存在参数众多,计算量大且实时性差的问题,提出一种轻量级农作物叶片病害识别模型RLDNet(reparameterized leaf diseases identification network)。首先,基于MobileNetV2利用重参数化倒残差模块提升推理速度,并设计浅而窄的网络结构增强对浅层特征的提取,降低模型参数量。其次,使用轻量级ULSAM(ultra-lightweight subspace attention module)注意力机制,结合叶片病害特征,强化模型对病害区域的关注能力。最后,利用DepthShrinker剪枝方法对模型进行剪枝进一步减小空间占用。RLDNet在PlantVillage数据集上识别准确率达99.53%,参数量为0.65 M,对单张叶片病害图像的推理时间为2.51 ms。在自建叶片病害数据集上获得了98.49%识别准确率,比MobileNetV3、ShuffleNetV2等轻量级模型识别准确率更高,更为轻量。
展开更多
关键词
农作物
模型
病害识别
复杂背景
MobileNetV2
重参数化
轻量化
在线阅读
下载PDF
职称材料
题名
基于重参数化MobileNetV2的农作物叶片病害识别模型
被引量:
18
1
作者
彭玉寒
李书琴
机构
西北农林科技大学信息工程学院
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2023年第17期132-140,共9页
基金
中央高校基本科研业务专项资金项目(2452019064)。
文摘
针对基于卷积神经网络识别农作物叶片病害存在参数众多,计算量大且实时性差的问题,提出一种轻量级农作物叶片病害识别模型RLDNet(reparameterized leaf diseases identification network)。首先,基于MobileNetV2利用重参数化倒残差模块提升推理速度,并设计浅而窄的网络结构增强对浅层特征的提取,降低模型参数量。其次,使用轻量级ULSAM(ultra-lightweight subspace attention module)注意力机制,结合叶片病害特征,强化模型对病害区域的关注能力。最后,利用DepthShrinker剪枝方法对模型进行剪枝进一步减小空间占用。RLDNet在PlantVillage数据集上识别准确率达99.53%,参数量为0.65 M,对单张叶片病害图像的推理时间为2.51 ms。在自建叶片病害数据集上获得了98.49%识别准确率,比MobileNetV3、ShuffleNetV2等轻量级模型识别准确率更高,更为轻量。
关键词
农作物
模型
病害识别
复杂背景
MobileNetV2
重参数化
轻量化
Keywords
crops
models
disease identification
complex backgroung
MobileNetV2
re-parameterization
lightweight
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于重参数化MobileNetV2的农作物叶片病害识别模型
彭玉寒
李书琴
《农业工程学报》
EI
CAS
CSCD
北大核心
2023
18
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部