This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling m...This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling matrices to be symmetric or irreducible.We have the advantages of using adaptive control method to reduce control gain and pinning control technology to reduce cost.By con-structing Lyapunov function,some sufficient synchronization criteria are established.Finally,numerical examples are employed to illustrate the effectiveness of the proposed approach.展开更多
A significant number and range of challenges besetting sustainability can be traced to the actions and inter actions of multiple autonomous agents(people mostly)and the entities they create(e.g.,institutions,policies,...A significant number and range of challenges besetting sustainability can be traced to the actions and inter actions of multiple autonomous agents(people mostly)and the entities they create(e.g.,institutions,policies,social network)in the corresponding social-environmental systems(SES).To address these challenges,we need to understand decisions made and actions taken by agents,the outcomes of their actions,including the feedbacks on the corresponding agents and environment.The science of complex adaptive systems-complex adaptive sys tems(CAS)science-has a significant potential to handle such challenges.We address the advantages of CAS science for sustainability by identifying the key elements and challenges in sustainability science,the generic features of CAS,and the key advances and challenges in modeling CAS.Artificial intelligence and data science combined with agent-based modeling promise to improve understanding of agents’behaviors,detect SES struc tures,and formulate SES mechanisms.展开更多
Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to i...Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to investigate the dominant technology by exploring its formation process and mechanism.Specifically,based on complex adaptive system theory and the basic stimulus-response model,we use a combination of agent-based modeling and system dynamics modeling to capture the interactions between dominant technology and the socio-technical landscape.The results indicate the following:(i)The dynamic interaction is“stimulus-reaction-selection”,which promotes the dominant technology’s formation.(ii)The dominant technology’s formation can be described as a dynamic process in which the adaptation intensity of technology standards increases continuously until it becomes the leading technology under the dual action of internal and external mechanisms.(iii)The dominant technology’s formation in the high-tech industry is influenced by learning ability,the number of adopting users and adaptability.Therein,a“critical scale”of learning ability exists to promote the formation of leading technology:a large number of adopting users can promote the dominant technology’s formation by influencing the adaptive response of technology standards to the socio-technical landscape and the choice of technology standards by the socio-technical landscape.There is a minimum threshold and a maximum threshold for the role of adaptability in the dominant technology’s formation.(iv)The socio-technical landscape can promote the leading technology’s shaping in the high-tech industry,and different elements have different effects.This study promotes research on the formation mechanism of dominant technology in the high-tech industry,presents new perspectives and methods for researchers,and provides essential enlightenment for managers to formulate technology strategies.展开更多
The separation of alicyclic ketones and alicyclic alcohols is one of the challenges in the field of petrochemical industry. However, traditional separation methods suffer from excessive energy consumption,complicated ...The separation of alicyclic ketones and alicyclic alcohols is one of the challenges in the field of petrochemical industry. However, traditional separation methods suffer from excessive energy consumption,complicated operation, and unsatisfactory separation efficiency for substances with similar boiling points.Herein, we offer an innovative method for the separation of alicyclic ketones and alicyclic alcohols employing nonporous adaptive crystals(NACs) of perethylated pillar[5]arene(EtP5) and perethylated pillar[6]arene(Et P6). NACs of EtP5 cannot adsorb either alicyclic ketones or alicyclic alcohols because of the small cavity size of Et P5. By contrast, NACs of Et P6 can separate cyclopentanone from the vapor mixture of cyclopentanone/cyclopentanol(v:v = 1:1) and cyclohexanone from the vapor mixture of cyclohexanone/cyclohexanol(v:v = 1:1) with purities of 99.1% and 100%, respectively. Density functional theory calculations show that the selectivity comes from the thermodynamic stability of the newly formed crystal structure after adsorption of the preferred vip molecule. Moreover, NACs of Et P6 can be reused without losing selectivity and performance.展开更多
In recent years,the rapid development of artificial intelligence has driven the widespread deployment of visual systems in complex environments such as autonomous driving,security surveillance,and medical diagnosis.Ho...In recent years,the rapid development of artificial intelligence has driven the widespread deployment of visual systems in complex environments such as autonomous driving,security surveillance,and medical diagnosis.However,existing image sensors—such as CMOS and CCD devices—intrinsically suffer from the limitation of fixed spectral response.Especially in environments with strong glare,haze,or dust,external spectral conditions often severely mismatch the device's design range,leading to significant degradation in image quality and a sharp drop in target recognition accuracy.While algorithmic post-processing(such as color bias correction or background suppression)can mitigate these issues,algorithm approaches typically introduce computational latency and increased energy consumption,making them unsuitable for edge computing or high-speed scenarios.展开更多
The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific re...The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific research institutions. An integrated ANFIS model is built and the effectiveness of the model is verified by means of investigation data and their processing results. The model merges the learning mechanism of neural network and the language inference ability of fuzzy system, and thereby remedies the defects of neural network and fuzzy logic system. Result of this case study shows that the model is suitable for complicated socio-technical systems and has bright application perspective to solve such problems of prediction, evaluation and policy-making in managerial fields.展开更多
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ...Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.展开更多
According to the complex adaptive systems theory, tourist destinations may be regarded as complex adaptive systems formed by multiple adaptive agent interactions and composed of an agent system, tourist attraction sub...According to the complex adaptive systems theory, tourist destinations may be regarded as complex adaptive systems formed by multiple adaptive agent interactions and composed of an agent system, tourist attraction subsystem, tourist service facility subsystem, and external environment system. This paper explores the spatial evolutionary progress of the Southern Anhui tourist area. The period 1979 to 1990 comprised the formation stage of spatial agglomerates, during which tourist attractions centering on Huangshan Scenic Area and Jiuhuashan Scenic Area were gradually exploited and formed scale agglomeration;tourism spatial structure began to show the characteristics of agglomeration development, and Gini indexes of the number of tourists and tourism revenue increased significantly from 0.26 to 0.29, and from 0.33 to 0.35, respectively. From 1991 to 2008, the system experienced a growth stage in which Huangshan Scenic Area and Jiuhuashan Scenic Area were further developed with improved tourist service facilities. Rapid development of Xidi-Hongcun Scenic Area and establishment of Fantawild Tourist Area promoted the formation of more spatial agglomerates with larger scales;Gini indexes of the number of tourists and tourism revenue presented fluctuating changes, reaching low points of 0.15 and 0.25 in 2000 and 0.12 and 0.22 in 2007, respectively. From 2009 to the present day, the system has remained in a blowout-development stage, during which non-linear interactions among agents are strengthened;various emerging development factors generate cultural tourism, vacation tourism, rural tourism and other new tourism products jointly with traditional development factors. New tourism products form a large number of new spatial agglomerates that are interconnected, accelerating the spatial flow of tourists and tourism revenue and reducing the differences in tourism development levels within the region;Gini indexes of the number of tourists and tourism revenue declined steadily from 0.17 and 0.23 in 2009 to 0.12 and 0.15 in 2016.展开更多
The problem of exponential synchronization for a class of general complex dynamical networks with nonlinear coupling delays by adaptive pinning periodically intermittent control is considered in this paper. We use the...The problem of exponential synchronization for a class of general complex dynamical networks with nonlinear coupling delays by adaptive pinning periodically intermittent control is considered in this paper. We use the methods of the adaptive control, pinning control and periodically intermittent control. Based on the piecewise Lyapunov stability theory, some less conservative criteria are derived for the global exponential synchronization of the complex dynamical networks with coupling delays. And several corresponding adaptive pinning feedback synchronization controllers are designed. These controllers have strong robustness against the coupling strength and topological structure of the network. Using the delayed nonlinear system as the nodes of the networks, a numerical example of the complex dynamical networks with nonlinear coupling delays is given to demonstrate the effectiveness of the control strategy.展开更多
This paper focuses on synchronization of fractionalorder complex dynamical networks with decentralized adaptive coupling.Based on local information among neighboring nodes,two fractional-order decentralized adaptive s...This paper focuses on synchronization of fractionalorder complex dynamical networks with decentralized adaptive coupling.Based on local information among neighboring nodes,two fractional-order decentralized adaptive strategies are designed to tune all or only a small fraction of the coupling gains respectively.By constructing quadratic Lyapunov functions and utilizing fractional inequality techniques,Mittag-Leffler function,and Laplace transform,two sufficient conditions are derived for reaching network synchronization by using the proposed adaptive laws.Finally,two numerical examples are given to verify the theoretical results.展开更多
The adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions is investigated in this paper. Based on Lyapunov stability theory...The adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions is investigated in this paper. Based on Lyapunov stability theory and Barbalat's lemma, generalized matrix projective lag synchronization criteria are derived by using the adaptive control method. Furthermore, each network can be undirected or directed, connected or disconnected, and nodes in either network may have identical or different dynamics. The proposed strategy is applicable to almost all kinds of complex networks. In addition, numerical simulation results are presented to illustrate the effectiveness of this method, showing that the synchronization speed is sensitively influenced by the adaptive law strength, the network size, and the network topological structure.展开更多
This paper investigates cascading failures in networks by considering interplay between the flow dynamic and the network topology, where the fluxes exchanged between a pair of nodes can be adaptively adjusted dependin...This paper investigates cascading failures in networks by considering interplay between the flow dynamic and the network topology, where the fluxes exchanged between a pair of nodes can be adaptively adjusted depending on the changes of the shortest path lengths between them. The simulations on both an artificially created scale-free network and the real network structure of the power grid reveal that the adaptive adjustment of the fluxes can drastically enhance the robustness of complex networks against cascading failures. Particularly, there exists an optimal region where the propagation of the cascade is significantly suppressed and the fluxes supported by the network are maximal. With this understanding, a costless strategy of defense for preventing cascade breakdown is proposed. It is shown to be more effective for suppressing the propagation of the cascade than the recent proposed strategy of defense based on the intentional removal of nodes.展开更多
Normal and abnormal hematopoiesis is working as a complex adaptive system. From this perspective, the development and the behavior of hematopoietic cell lineages appear as a balance between normal and abnormal hematop...Normal and abnormal hematopoiesis is working as a complex adaptive system. From this perspective, the development and the behavior of hematopoietic cell lineages appear as a balance between normal and abnormal hematopoiesis in the setting of a functioning or malfunctioning microenvironment under the control of the immune system and the influence of hereditary and environmental events.展开更多
This paper presents a new robust adaptive synchronization method for a class of uncertain dynamical complex networks with network failures and coupling time-varying delays. Adaptive schemes are proposed to adjust cont...This paper presents a new robust adaptive synchronization method for a class of uncertain dynamical complex networks with network failures and coupling time-varying delays. Adaptive schemes are proposed to adjust controller parameters for the faulty network compensations, as well as to estimate the upper and lower bounds of delayed state errors and perturbations to compensate the effects of delay and perturbation on-line without assuming symmetry or irreducibility of networks. It is shown that, through Lyapunov stability theory, distributed adaptive controllers con- structed by the adaptive schemes are successful in ensuring the achievement of asymptotic synchronization of networks in the present of faulty and delayed networks, and perturbation inputs. A Chua's circuit network example is finally given to show the effectiveness of the proposed synchronization criteria.展开更多
A new approach of adaptive distributed control is proposed for a class of networks with unknown time-varying coupling weights. The proposed approach ensures that the complex dynamical networks achieve asymptotical syn...A new approach of adaptive distributed control is proposed for a class of networks with unknown time-varying coupling weights. The proposed approach ensures that the complex dynamical networks achieve asymptotical synchronization and all the closed-loop signals are bounded. Furthermore, the coupling matrix is not assumed to be symmetric or irreducible and asymptotical synchronization can be achieved even when the graph of network is not connected. Finally, a simulation example shows the feasibility and effectiveness of the approach.展开更多
We investigate the problem of function projective synchronization (FPS) in drive–response dynamical networks with non-identical nodes. An adaptive controller is proposed for the FPS of complex dynamical networks wi...We investigate the problem of function projective synchronization (FPS) in drive–response dynamical networks with non-identical nodes. An adaptive controller is proposed for the FPS of complex dynamical networks with uncertain parameters and disturbance. Not only are the unknown parameters of the networks estimated by the adaptive laws obtained from the Lyapunov stability theory and Taylor expansions, but the unknown bounded disturbances are also simultaneously conquered by the proposed control. Finally, a numerical simulation is provided to illustrate the feasibility and effectiveness of the obtained result.展开更多
The global adaptive H∞ synchronization is intensively investigated for the general delayed complex dynamical networks. The network under consideration contains unknown but bounded nonlinear coupling functions, time-v...The global adaptive H∞ synchronization is intensively investigated for the general delayed complex dynamical networks. The network under consideration contains unknown but bounded nonlinear coupling functions, time-varying delay, and external disturbance. Based on the Lyapunov stability theory, linear matrix inequality (LMI) optimization technique and adaptive control, several global adaptive H∞ synchronization schemes are estab- lished, which guarantee robust asymptotical synchronization of noise-perturbed network as well as a prescribed robust H∞ per- formance level. Finally, numerical simulations have shown the feasibility and effectiveness of the proposed techniques.展开更多
In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchro...In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchronization of fractional order complex-variable dynamical networks are derived based on the Lyapunov stability theory. From the theoretical analysis, one concludes that under appropriate conditions, the complex-variable dynamical networks can realize the global synchronization by using the proper adaptive pinning control method. Meanwhile, we succeed in solving the problem about how much coupling strength should be applied to ensure the synchronization of the fraetionla order complex networks. Therefore, compared with the existing results, the synchronization method in this paper is more general and convenient. This result extends the synchronization condition of the real-variable dynamical networks to the complex-valued field, which makes our research more praetical. Finally, two simulation examples show that the derived theoretical results are valid and the proposed adaptive pinning method is effective.展开更多
The idea of network splitting according to time delay and weight is introduced.Based on the cyber physical systems(CPS),a class of multi-weighted complex transportation networks with multiple delays is modeled.The fin...The idea of network splitting according to time delay and weight is introduced.Based on the cyber physical systems(CPS),a class of multi-weighted complex transportation networks with multiple delays is modeled.The finite-time synchronization of the proposed complex transportation networks model is studied systematically.On the basis of the theory of stability,the technique of adaptive control,aperiodically intermittent control and finite-time control,the aperiodically intermittent adaptive finite-time synchronization controller is designed.The controller designed in this paper is beneficial for understanding the synchronization in multi-weighted complex transportation networks with multiple delays.In addition,the conditions for the existence of finite time synchronization have been discussed in detail.And the specific value of the settling finite time for synchronization is obtained.Moreover,the outer coupling configuration matrices are not required to be irreducible or symmetric.Finally,simulation results of the finite-time synchronization problem are given to illustrate the correctness of the results obtained.展开更多
文摘This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling matrices to be symmetric or irreducible.We have the advantages of using adaptive control method to reduce control gain and pinning control technology to reduce cost.By con-structing Lyapunov function,some sufficient synchronization criteria are established.Finally,numerical examples are employed to illustrate the effectiveness of the proposed approach.
基金The National Science Foundation funded this research under the Dy-namics of Coupled Natural and Human Systems program(Grants No.DEB-1212183 and BCS-1826839)support from San Diego State University and Auburn University.
文摘A significant number and range of challenges besetting sustainability can be traced to the actions and inter actions of multiple autonomous agents(people mostly)and the entities they create(e.g.,institutions,policies,social network)in the corresponding social-environmental systems(SES).To address these challenges,we need to understand decisions made and actions taken by agents,the outcomes of their actions,including the feedbacks on the corresponding agents and environment.The science of complex adaptive systems-complex adaptive sys tems(CAS)science-has a significant potential to handle such challenges.We address the advantages of CAS science for sustainability by identifying the key elements and challenges in sustainability science,the generic features of CAS,and the key advances and challenges in modeling CAS.Artificial intelligence and data science combined with agent-based modeling promise to improve understanding of agents’behaviors,detect SES struc tures,and formulate SES mechanisms.
基金supported by the Shanghai Philosophy and Social Science Foundation(2022ECK004)Shanghai Soft Science Research Project(23692123400)。
文摘Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to investigate the dominant technology by exploring its formation process and mechanism.Specifically,based on complex adaptive system theory and the basic stimulus-response model,we use a combination of agent-based modeling and system dynamics modeling to capture the interactions between dominant technology and the socio-technical landscape.The results indicate the following:(i)The dynamic interaction is“stimulus-reaction-selection”,which promotes the dominant technology’s formation.(ii)The dominant technology’s formation can be described as a dynamic process in which the adaptation intensity of technology standards increases continuously until it becomes the leading technology under the dual action of internal and external mechanisms.(iii)The dominant technology’s formation in the high-tech industry is influenced by learning ability,the number of adopting users and adaptability.Therein,a“critical scale”of learning ability exists to promote the formation of leading technology:a large number of adopting users can promote the dominant technology’s formation by influencing the adaptive response of technology standards to the socio-technical landscape and the choice of technology standards by the socio-technical landscape.There is a minimum threshold and a maximum threshold for the role of adaptability in the dominant technology’s formation.(iv)The socio-technical landscape can promote the leading technology’s shaping in the high-tech industry,and different elements have different effects.This study promotes research on the formation mechanism of dominant technology in the high-tech industry,presents new perspectives and methods for researchers,and provides essential enlightenment for managers to formulate technology strategies.
基金supported by the National Natural Science Foundation of China (No. 22101043)the Fundamental Research Funds for the Central Universities (Nos. N2205013, N232410019, N2405013)+2 种基金Natural Science Foundation of Liaoning Province (No. 2023-MSBA-068)the Opening Fund of State Key Laboratory of Heavy Oil Processing (No. SKLHOP202203006)Northeastern University。
文摘The separation of alicyclic ketones and alicyclic alcohols is one of the challenges in the field of petrochemical industry. However, traditional separation methods suffer from excessive energy consumption,complicated operation, and unsatisfactory separation efficiency for substances with similar boiling points.Herein, we offer an innovative method for the separation of alicyclic ketones and alicyclic alcohols employing nonporous adaptive crystals(NACs) of perethylated pillar[5]arene(EtP5) and perethylated pillar[6]arene(Et P6). NACs of EtP5 cannot adsorb either alicyclic ketones or alicyclic alcohols because of the small cavity size of Et P5. By contrast, NACs of Et P6 can separate cyclopentanone from the vapor mixture of cyclopentanone/cyclopentanol(v:v = 1:1) and cyclohexanone from the vapor mixture of cyclohexanone/cyclohexanol(v:v = 1:1) with purities of 99.1% and 100%, respectively. Density functional theory calculations show that the selectivity comes from the thermodynamic stability of the newly formed crystal structure after adsorption of the preferred vip molecule. Moreover, NACs of Et P6 can be reused without losing selectivity and performance.
基金supported in part by STI 2030-Major Projects(2022ZD0209200)in part by National Natural Science Foundation of China(62374099)+2 种基金in part by Beijing Natural Science Foundation−Xiaomi Innovation Joint Fund(L233009)Beijing Natural Science Foundation(L248104)in part by Independent Research Program of School of Integrated Circuits,Tsinghua University,in part by Tsinghua University Fuzhou Data Technology Joint Research Institute.
文摘In recent years,the rapid development of artificial intelligence has driven the widespread deployment of visual systems in complex environments such as autonomous driving,security surveillance,and medical diagnosis.However,existing image sensors—such as CMOS and CCD devices—intrinsically suffer from the limitation of fixed spectral response.Especially in environments with strong glare,haze,or dust,external spectral conditions often severely mismatch the device's design range,leading to significant degradation in image quality and a sharp drop in target recognition accuracy.While algorithmic post-processing(such as color bias correction or background suppression)can mitigate these issues,algorithm approaches typically introduce computational latency and increased energy consumption,making them unsuitable for edge computing or high-speed scenarios.
基金Supported by the Soft Science Program of Jiangsu Province(BR2010079)~~
文摘The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific research institutions. An integrated ANFIS model is built and the effectiveness of the model is verified by means of investigation data and their processing results. The model merges the learning mechanism of neural network and the language inference ability of fuzzy system, and thereby remedies the defects of neural network and fuzzy logic system. Result of this case study shows that the model is suitable for complicated socio-technical systems and has bright application perspective to solve such problems of prediction, evaluation and policy-making in managerial fields.
基金supported in part by the National Natural Science Foundation of China(62222301, 62073085, 62073158, 61890930-5, 62021003)the National Key Research and Development Program of China (2021ZD0112302, 2021ZD0112301, 2018YFC1900800-5)Beijing Natural Science Foundation (JQ19013)。
文摘Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.
基金National Natural Science Foundation of China,No.51278239
文摘According to the complex adaptive systems theory, tourist destinations may be regarded as complex adaptive systems formed by multiple adaptive agent interactions and composed of an agent system, tourist attraction subsystem, tourist service facility subsystem, and external environment system. This paper explores the spatial evolutionary progress of the Southern Anhui tourist area. The period 1979 to 1990 comprised the formation stage of spatial agglomerates, during which tourist attractions centering on Huangshan Scenic Area and Jiuhuashan Scenic Area were gradually exploited and formed scale agglomeration;tourism spatial structure began to show the characteristics of agglomeration development, and Gini indexes of the number of tourists and tourism revenue increased significantly from 0.26 to 0.29, and from 0.33 to 0.35, respectively. From 1991 to 2008, the system experienced a growth stage in which Huangshan Scenic Area and Jiuhuashan Scenic Area were further developed with improved tourist service facilities. Rapid development of Xidi-Hongcun Scenic Area and establishment of Fantawild Tourist Area promoted the formation of more spatial agglomerates with larger scales;Gini indexes of the number of tourists and tourism revenue presented fluctuating changes, reaching low points of 0.15 and 0.25 in 2000 and 0.12 and 0.22 in 2007, respectively. From 2009 to the present day, the system has remained in a blowout-development stage, during which non-linear interactions among agents are strengthened;various emerging development factors generate cultural tourism, vacation tourism, rural tourism and other new tourism products jointly with traditional development factors. New tourism products form a large number of new spatial agglomerates that are interconnected, accelerating the spatial flow of tourists and tourism revenue and reducing the differences in tourism development levels within the region;Gini indexes of the number of tourists and tourism revenue declined steadily from 0.17 and 0.23 in 2009 to 0.12 and 0.15 in 2016.
基金supported by National Natural Science Foundation of China(No.61273008)Science Research Project of Liaoning Provicial Education Department(No.L2012208)Science Foundation of Ministry of Housing and Urban-Rural Development(No.2013-K5-2)
文摘The problem of exponential synchronization for a class of general complex dynamical networks with nonlinear coupling delays by adaptive pinning periodically intermittent control is considered in this paper. We use the methods of the adaptive control, pinning control and periodically intermittent control. Based on the piecewise Lyapunov stability theory, some less conservative criteria are derived for the global exponential synchronization of the complex dynamical networks with coupling delays. And several corresponding adaptive pinning feedback synchronization controllers are designed. These controllers have strong robustness against the coupling strength and topological structure of the network. Using the delayed nonlinear system as the nodes of the networks, a numerical example of the complex dynamical networks with nonlinear coupling delays is given to demonstrate the effectiveness of the control strategy.
基金supported by the"Chunhui Plan"Cooperative Research for Ministry of Education(Z2016133)the Open Research Fund of Key Laboratory of Automobile Engineering(Xihua University)+3 种基金Sichuan Province(szjj2016-017)the National Natural Science Foundation of China(51177137)the Scientific Research Foundation of the Education Department of Sichuan Province(16ZB0163)the China Scholarship Council
文摘This paper focuses on synchronization of fractionalorder complex dynamical networks with decentralized adaptive coupling.Based on local information among neighboring nodes,two fractional-order decentralized adaptive strategies are designed to tune all or only a small fraction of the coupling gains respectively.By constructing quadratic Lyapunov functions and utilizing fractional inequality techniques,Mittag-Leffler function,and Laplace transform,two sufficient conditions are derived for reaching network synchronization by using the proposed adaptive laws.Finally,two numerical examples are given to verify the theoretical results.
文摘The adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions is investigated in this paper. Based on Lyapunov stability theory and Barbalat's lemma, generalized matrix projective lag synchronization criteria are derived by using the adaptive control method. Furthermore, each network can be undirected or directed, connected or disconnected, and nodes in either network may have identical or different dynamics. The proposed strategy is applicable to almost all kinds of complex networks. In addition, numerical simulation results are presented to illustrate the effectiveness of this method, showing that the synchronization speed is sensitively influenced by the adaptive law strength, the network size, and the network topological structure.
基金Project supported by the National Natural Science Foundation of China(Grant No.30570432)the General Project of Hunan Provincial Educational Department of China(Grant No.07C754)
文摘This paper investigates cascading failures in networks by considering interplay between the flow dynamic and the network topology, where the fluxes exchanged between a pair of nodes can be adaptively adjusted depending on the changes of the shortest path lengths between them. The simulations on both an artificially created scale-free network and the real network structure of the power grid reveal that the adaptive adjustment of the fluxes can drastically enhance the robustness of complex networks against cascading failures. Particularly, there exists an optimal region where the propagation of the cascade is significantly suppressed and the fluxes supported by the network are maximal. With this understanding, a costless strategy of defense for preventing cascade breakdown is proposed. It is shown to be more effective for suppressing the propagation of the cascade than the recent proposed strategy of defense based on the intentional removal of nodes.
文摘Normal and abnormal hematopoiesis is working as a complex adaptive system. From this perspective, the development and the behavior of hematopoietic cell lineages appear as a balance between normal and abnormal hematopoiesis in the setting of a functioning or malfunctioning microenvironment under the control of the immune system and the influence of hereditary and environmental events.
基金Project supported by the Funds for Creative Research Groups of China(Grant No.60821063)the National Basic Research Program of China(Grant No.2009CB320604)+2 种基金the National Natural Science Foundation of China(Grant No.60974043)the 111 Project(Grant No.B08015)the Science and Technology Research Project of the Educational Department of Liaoning Province of China(Grant No.2008S156)
文摘This paper presents a new robust adaptive synchronization method for a class of uncertain dynamical complex networks with network failures and coupling time-varying delays. Adaptive schemes are proposed to adjust controller parameters for the faulty network compensations, as well as to estimate the upper and lower bounds of delayed state errors and perturbations to compensate the effects of delay and perturbation on-line without assuming symmetry or irreducibility of networks. It is shown that, through Lyapunov stability theory, distributed adaptive controllers con- structed by the adaptive schemes are successful in ensuring the achievement of asymptotic synchronization of networks in the present of faulty and delayed networks, and perturbation inputs. A Chua's circuit network example is finally given to show the effectiveness of the proposed synchronization criteria.
基金supported by Ph.D.Programs Foundation of Ministry of Education of China(Nos.JY0300137002 and20130203110021)Research Funds for the Central Universities(No.JB142001-6)
文摘A new approach of adaptive distributed control is proposed for a class of networks with unknown time-varying coupling weights. The proposed approach ensures that the complex dynamical networks achieve asymptotical synchronization and all the closed-loop signals are bounded. Furthermore, the coupling matrix is not assumed to be symmetric or irreducible and asymptotical synchronization can be achieved even when the graph of network is not connected. Finally, a simulation example shows the feasibility and effectiveness of the approach.
基金the National Natural Science Foundation of China(Grant No.70871056)the Fundamental Research Funds for the Central Universities,China(Grant No.2013B10014)
文摘We investigate the problem of function projective synchronization (FPS) in drive–response dynamical networks with non-identical nodes. An adaptive controller is proposed for the FPS of complex dynamical networks with uncertain parameters and disturbance. Not only are the unknown parameters of the networks estimated by the adaptive laws obtained from the Lyapunov stability theory and Taylor expansions, but the unknown bounded disturbances are also simultaneously conquered by the proposed control. Finally, a numerical simulation is provided to illustrate the feasibility and effectiveness of the obtained result.
基金Supported by the National Natural Science Foundation of China (60904060,61104127)the Open Foundation of Hubei Province Key Laboratory of Systems Science in Metallurgical Process (C201010)
文摘The global adaptive H∞ synchronization is intensively investigated for the general delayed complex dynamical networks. The network under consideration contains unknown but bounded nonlinear coupling functions, time-varying delay, and external disturbance. Based on the Lyapunov stability theory, linear matrix inequality (LMI) optimization technique and adaptive control, several global adaptive H∞ synchronization schemes are estab- lished, which guarantee robust asymptotical synchronization of noise-perturbed network as well as a prescribed robust H∞ per- formance level. Finally, numerical simulations have shown the feasibility and effectiveness of the proposed techniques.
基金Supported by National Natural Science Foundation of China under Grant No.61201227National Natural Science Foundation of China Guangdong Joint Fund under Grant No.U1201255+2 种基金the Natural Science Foundation of Anhui Province under Grant No.1208085MF93211 Innovation Team of Anhui University under Grant Nos.KJTD007A and KJTD001Bsupported by Chinese Scholarship Council
文摘In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchronization of fractional order complex-variable dynamical networks are derived based on the Lyapunov stability theory. From the theoretical analysis, one concludes that under appropriate conditions, the complex-variable dynamical networks can realize the global synchronization by using the proper adaptive pinning control method. Meanwhile, we succeed in solving the problem about how much coupling strength should be applied to ensure the synchronization of the fraetionla order complex networks. Therefore, compared with the existing results, the synchronization method in this paper is more general and convenient. This result extends the synchronization condition of the real-variable dynamical networks to the complex-valued field, which makes our research more praetical. Finally, two simulation examples show that the derived theoretical results are valid and the proposed adaptive pinning method is effective.
基金Project supported by the National Natural Science Foundation of China(Grant No.61803275)Liaoning Provincial Department of Education Scientific Research Fund Project,China(Grant Nos.lnjc202018 and lnzd202007)+1 种基金Liaoning BaiQianWan Talents Program(Grant No.2017076)Liaoning Province Doctor Starting Foundation(Grant No.20170520283).
文摘The idea of network splitting according to time delay and weight is introduced.Based on the cyber physical systems(CPS),a class of multi-weighted complex transportation networks with multiple delays is modeled.The finite-time synchronization of the proposed complex transportation networks model is studied systematically.On the basis of the theory of stability,the technique of adaptive control,aperiodically intermittent control and finite-time control,the aperiodically intermittent adaptive finite-time synchronization controller is designed.The controller designed in this paper is beneficial for understanding the synchronization in multi-weighted complex transportation networks with multiple delays.In addition,the conditions for the existence of finite time synchronization have been discussed in detail.And the specific value of the settling finite time for synchronization is obtained.Moreover,the outer coupling configuration matrices are not required to be irreducible or symmetric.Finally,simulation results of the finite-time synchronization problem are given to illustrate the correctness of the results obtained.