By introducing a convenient complex form of the α-th 2-dimensional fractional Fourier transform (CFFT) operation we find that it possesses new eigenmodes which are two-mode Hermite polynomials. We prove the eigenvalu...By introducing a convenient complex form of the α-th 2-dimensional fractional Fourier transform (CFFT) operation we find that it possesses new eigenmodes which are two-mode Hermite polynomials. We prove the eigenvalues of propagation in quadratic graded-index medium over a definite distance are the same as the eigenvalues of the α-th CFFT, which means that our definition of the α-th CFFT is physically meaningful.展开更多
Jordan's lemma can be used for a wider range than the original one. The extended Jordan's lemma can be described as follows. Let f(z) be analytic in the upper half of the z plane (Imz≥0), with the exception o...Jordan's lemma can be used for a wider range than the original one. The extended Jordan's lemma can be described as follows. Let f(z) be analytic in the upper half of the z plane (Imz≥0), with the exception of a finite number of isolated singularities, and for P>o, if then where z=Rei and CR is the open semicircle in the upper half of the z plane.With the extended Jordan's lemma one can find that Laplace transform and Fourier transform are a pair of integral transforms which relate to each other.展开更多
The aim of this paper is to propose a novel technique for the detection of multicomponent chirp signal and the parameter estimation based on fractional Fourier transform (FRFT). The relationship between the FRFT and t...The aim of this paper is to propose a novel technique for the detection of multicomponent chirp signal and the parameter estimation based on fractional Fourier transform (FRFT). The relationship between the FRFT and the Wigner-Ville distribution (WVD) is investigated and the performance of the new approach is analyzed both in the computation complexity and the resolution in the fractional Fourier domain.展开更多
Firstly,the Fourier transforms in finite fields and the concept of linear complexityof sequences are described.Then several known lower bounds on the minimum distance of cycliccodes are outlined.Finally,the minimum di...Firstly,the Fourier transforms in finite fields and the concept of linear complexityof sequences are described.Then several known lower bounds on the minimum distance of cycliccodes are outlined.Finally,the minimum distance of cyclic codes is analyzed via linear complexityof sequences,and new theorems about the lower bounds are obtained.展开更多
The authors define the holomorphic Fourier transform of holomorphic functions on complex reductive groups, prove some properties such as the Fourier inversion formula, and give some applications. The definition of the...The authors define the holomorphic Fourier transform of holomorphic functions on complex reductive groups, prove some properties such as the Fourier inversion formula, and give some applications. The definition of the holomorphic Fourier transform makes use of the notion of K-admissible measures. The authors prove that K-admissible measures are abundant, and the definition of holomorphic Fourier transform is independent of the choice of K-admissible measures.展开更多
Linear complexity is an important standard to scale the randomicity of stream ciphers. The distribution function of a sequence complexity measure gives the function expression for the number of sequences with a given ...Linear complexity is an important standard to scale the randomicity of stream ciphers. The distribution function of a sequence complexity measure gives the function expression for the number of sequences with a given complexity measure value. In this paper, we mainly determine the distribution function of sequences with period over using Discrete Fourier Transform (DFT), where and the characteristics of are odd primes, gcd and is a primitive root modulo The results presented can be used to study the randomness of periodic sequences and the analysis and design of stream cipher.展开更多
In this paper, we present a new representation of gamma function as a series of complex delta functions. We establish the convergence of this representation in the sense of distributions. It turns out that the gamma f...In this paper, we present a new representation of gamma function as a series of complex delta functions. We establish the convergence of this representation in the sense of distributions. It turns out that the gamma function can be defined over a space of complex test functions of slow growth denoted by Z. Some properties of gamma function are discussed by using the properties of delta function.展开更多
In this paper, we have proved that the lower bound of the number of real multiplications for computing a length 2(t) real GFT(a,b) (a = +/-1/2, b = 0 or b = +/-1/2, a = 0) is 2(t+1) - 2t - 2 and that for computing a l...In this paper, we have proved that the lower bound of the number of real multiplications for computing a length 2(t) real GFT(a,b) (a = +/-1/2, b = 0 or b = +/-1/2, a = 0) is 2(t+1) - 2t - 2 and that for computing a length 2t real GFT(a,b)(a = +/-1/2, b = +/-1/2) is 2(t+1) - 2. Practical algorithms which meet the lower bounds of multiplications are given.展开更多
文摘By introducing a convenient complex form of the α-th 2-dimensional fractional Fourier transform (CFFT) operation we find that it possesses new eigenmodes which are two-mode Hermite polynomials. We prove the eigenvalues of propagation in quadratic graded-index medium over a definite distance are the same as the eigenvalues of the α-th CFFT, which means that our definition of the α-th CFFT is physically meaningful.
文摘Jordan's lemma can be used for a wider range than the original one. The extended Jordan's lemma can be described as follows. Let f(z) be analytic in the upper half of the z plane (Imz≥0), with the exception of a finite number of isolated singularities, and for P>o, if then where z=Rei and CR is the open semicircle in the upper half of the z plane.With the extended Jordan's lemma one can find that Laplace transform and Fourier transform are a pair of integral transforms which relate to each other.
文摘The aim of this paper is to propose a novel technique for the detection of multicomponent chirp signal and the parameter estimation based on fractional Fourier transform (FRFT). The relationship between the FRFT and the Wigner-Ville distribution (WVD) is investigated and the performance of the new approach is analyzed both in the computation complexity and the resolution in the fractional Fourier domain.
文摘Firstly,the Fourier transforms in finite fields and the concept of linear complexityof sequences are described.Then several known lower bounds on the minimum distance of cycliccodes are outlined.Finally,the minimum distance of cyclic codes is analyzed via linear complexityof sequences,and new theorems about the lower bounds are obtained.
基金supported by the 973 Project Foundation of China (#TG1999075102)
文摘The authors define the holomorphic Fourier transform of holomorphic functions on complex reductive groups, prove some properties such as the Fourier inversion formula, and give some applications. The definition of the holomorphic Fourier transform makes use of the notion of K-admissible measures. The authors prove that K-admissible measures are abundant, and the definition of holomorphic Fourier transform is independent of the choice of K-admissible measures.
基金Supported by the National Natural Science Foundation of China (No. 60973125)
文摘Linear complexity is an important standard to scale the randomicity of stream ciphers. The distribution function of a sequence complexity measure gives the function expression for the number of sequences with a given complexity measure value. In this paper, we mainly determine the distribution function of sequences with period over using Discrete Fourier Transform (DFT), where and the characteristics of are odd primes, gcd and is a primitive root modulo The results presented can be used to study the randomness of periodic sequences and the analysis and design of stream cipher.
文摘In this paper, we present a new representation of gamma function as a series of complex delta functions. We establish the convergence of this representation in the sense of distributions. It turns out that the gamma function can be defined over a space of complex test functions of slow growth denoted by Z. Some properties of gamma function are discussed by using the properties of delta function.
文摘In this paper, we have proved that the lower bound of the number of real multiplications for computing a length 2(t) real GFT(a,b) (a = +/-1/2, b = 0 or b = +/-1/2, a = 0) is 2(t+1) - 2t - 2 and that for computing a length 2t real GFT(a,b)(a = +/-1/2, b = +/-1/2) is 2(t+1) - 2. Practical algorithms which meet the lower bounds of multiplications are given.