期刊文献+
共找到2,150篇文章
< 1 2 108 >
每页显示 20 50 100
Effective forecast of Northeast Pacific sea surface temperature based on a complementary ensemble empirical mode decomposition–support vector machine method 被引量:1
1
作者 LI Qi-Jie ZHAO Ying +1 位作者 LIAO Hong-Lin LI Jia-Kang 《Atmospheric and Oceanic Science Letters》 CSCD 2017年第3期261-267,共7页
The sea surface temperature (SST) has substantial impacts on the climate; however, due to its highly nonlinear nature, evidently non-periodic and strongly stochastic properties, it is rather difficult to predict SST... The sea surface temperature (SST) has substantial impacts on the climate; however, due to its highly nonlinear nature, evidently non-periodic and strongly stochastic properties, it is rather difficult to predict SST. Here, the authors combine the complementary ensemble empirical mode decomposition (CEEMD) and support vector machine (SVM) methods to predict SST. Extensive tests from several different aspects are presented to validate the effectiveness of the CEEMD-SVM method. The results suggest that the new method works well in forecasting Northeast Pacific SST at a 12-month lead time, with an average absolute error of approximately 0.3℃ and a correlation coefficient of 0.85. Moreover, no spring predictability barrier is observed in our experiments. 展开更多
关键词 Sea surface temperature complementary ensemble empirical mode decomposition support vector machine PREDICTION
在线阅读 下载PDF
Pressure fluctuation signal analysis of pump based on ensemble empirical mode decomposition method 被引量:3
2
作者 Hong PAN Min-sheng BU 《Water Science and Engineering》 EI CAS CSCD 2014年第2期227-235,共9页
Pressure fluctuations, which are inevitable in the operation of pumps, have a strong non-stationary characteristic and contain a great deal of important information representing the operation conditions. With an axial... Pressure fluctuations, which are inevitable in the operation of pumps, have a strong non-stationary characteristic and contain a great deal of important information representing the operation conditions. With an axial-flow pump as an example, a new method for time-frequency analysis based on the ensemble empirical mode decomposition (EEMD) method is proposed for research on the characteristics of pressure fluctuations. First, the pressure fluctuation signals are preprocessed with the empirical mode decomposition (EMD) method, and intrinsic mode functions (IMFs) are extracted. Second, the EEMD method is used to extract more precise decomposition results, and the number of iterations is determined according to the number of IMFs produced by the EMD method. Third, correlation coefficients between IMFs produced by the EMD and EEMD methods and the original signal are calculated, and the most sensitive IMFs are chosen to analyze the frequency spectrum. Finally, the operation conditions of the pump are identified with the frequency features. The results show that, compared with the EMD method, the EEMD method can improve the time-frequency resolution and extract main vibration components from pressure fluctuation signals. 展开更多
关键词 pressure fluctuation ensemble empirical mode decomposition intrinsic modefunction correlation coefficient
在线阅读 下载PDF
A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise,minimum mean square variance criterion and least mean square adaptive filter 被引量:9
3
作者 Yu-xing Li Long Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期543-554,共12页
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ... Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals. 展开更多
关键词 Underwater acoustic signal Noise reduction empirical mode decomposition(EMD) ensemble EMD(EEMD) Complete EEMD with adaptive noise(CEEMDAN) Minimum mean square variance criterion(MMSVC) Least mean square adaptive filter(LMSAF) Ship-radiated noise
在线阅读 下载PDF
Study on the Improvement of the Application of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise in Hydrology Based on RBFNN Data Extension Technology 被引量:3
4
作者 Jinping Zhang Youlai Jin +2 位作者 Bin Sun Yuping Han Yang Hong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第2期755-770,共16页
The complex nonlinear and non-stationary features exhibited in hydrologic sequences make hydrological analysis and forecasting difficult.Currently,some hydrologists employ the complete ensemble empirical mode decompos... The complex nonlinear and non-stationary features exhibited in hydrologic sequences make hydrological analysis and forecasting difficult.Currently,some hydrologists employ the complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)method,a new time-frequency analysis method based on the empirical mode decomposition(EMD)algorithm,to decompose non-stationary raw data in order to obtain relatively stationary components for further study.However,the endpoint effect in CEEMDAN is often neglected,which can lead to decomposition errors that reduce the accuracy of the research results.In this study,we processed an original runoff sequence using the radial basis function neural network(RBFNN)technique to obtain the extension sequence before utilizing CEEMDAN decomposition.Then,we compared the decomposition results of the original sequence,RBFNN extension sequence,and standard sequence to investigate the influence of the endpoint effect and RBFNN extension on the CEEMDAN method.The results indicated that the RBFNN extension technique effectively reduced the error of medium and low frequency components caused by the endpoint effect.At both ends of the components,the extension sequence more accurately reflected the true fluctuation characteristics and variation trends.These advances are of great significance to the subsequent study of hydrology.Therefore,the CEEMDAN method,combined with an appropriate extension of the original runoff series,can more precisely determine multi-time scale characteristics,and provide a credible basis for the analysis of hydrologic time series and hydrological forecasting. 展开更多
关键词 Complete ensemble empirical mode decomposition with adaptive noise data extension radial basis function neural network multi-time scales RUNOFF
在线阅读 下载PDF
A method for extracting human gait series from accelerometer signals based on the ensemble empirical mode decomposition 被引量:1
5
作者 符懋敬 庄建军 +3 位作者 侯凤贞 展庆波 邵毅 宁新宝 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第5期592-601,共10页
In this paper, the ensemble empirical mode decomposition (EEMD) is applied to analyse accelerometer signals collected during normal human walking. First, the self-adaptive feature of EEMD is utilised to decompose th... In this paper, the ensemble empirical mode decomposition (EEMD) is applied to analyse accelerometer signals collected during normal human walking. First, the self-adaptive feature of EEMD is utilised to decompose the ac- celerometer signals, thus sifting out several intrinsic mode functions (IMFs) at disparate scales. Then, gait series can be extracted through peak detection from the eigen IMF that best represents gait rhythmicity. Compared with the method based on the empirical mode decomposition (EMD), the EEMD-based method has the following advantages: it remarkably improves the detection rate of peak values hidden in the original accelerometer signal, even when the signal is severely contaminated by the intermittent noises; this method effectively prevents the phenomenon of mode mixing found in the process of EMD. And a reasonable selection of parameters for the stop-filtering criteria can improve the calculation speed of the EEMD-based method. Meanwhile, the endpoint effect can be suppressed by using the auto regressive and moving average model to extend a short-time series in dual directions. The results suggest that EEMD is a powerful tool for extraction of gait rhythmicity and it also provides valuable clues for extracting eigen rhythm of other physiological signals. 展开更多
关键词 ensemble empirical mode decomposition gait series peak detection intrinsic mode functions
原文传递
Significant wave height forecasts integrating ensemble empirical mode decomposition with sequence-to-sequence model 被引量:1
6
作者 Lina Wang Yu Cao +2 位作者 Xilin Deng Huitao Liu Changming Dong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第10期54-66,共13页
As wave height is an important parameter in marine climate measurement,its accurate prediction is crucial in ocean engineering.It also plays an important role in marine disaster early warning and ship design,etc.Howev... As wave height is an important parameter in marine climate measurement,its accurate prediction is crucial in ocean engineering.It also plays an important role in marine disaster early warning and ship design,etc.However,challenges in the large demand for computing resources and the improvement of accuracy are currently encountered.To resolve the above mentioned problems,sequence-to-sequence deep learning model(Seq-to-Seq)is applied to intelligently explore the internal law between the continuous wave height data output by the model,so as to realize fast and accurate predictions on wave height data.Simultaneously,ensemble empirical mode decomposition(EEMD)is adopted to reduce the non-stationarity of wave height data and solve the problem of modal aliasing caused by empirical mode decomposition(EMD),and then improves the prediction accuracy.A significant wave height forecast method integrating EEMD with the Seq-to-Seq model(EEMD-Seq-to-Seq)is proposed in this paper,and the prediction models under different time spans are established.Compared with the long short-term memory model,the novel method demonstrates increased continuity for long-term prediction and reduces prediction errors.The experiments of wave height prediction on four buoys show that the EEMD-Seq-to-Seq algorithm effectively improves the prediction accuracy in short-term(3-h,6-h,12-h and 24-h forecast horizon)and long-term(48-h and 72-h forecast horizon)predictions. 展开更多
关键词 significant wave height wave forecasting ensemble empirical mode decomposition(EEMD) Seq-to-Seq long short-term memory
在线阅读 下载PDF
Automatic target recognition of moving target based on empirical mode decomposition and genetic algorithm support vector machine 被引量:4
7
作者 张军 欧建平 占荣辉 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1389-1396,共8页
In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(S... In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively. 展开更多
关键词 automatic target recognition(ATR) moving target empirical mode decomposition genetic algorithm support vector machine
在线阅读 下载PDF
The Modified Ensemble Empirical Mode Decomposition Method and Extraction of Oceanic Internal Wave from Synthetic Aperture Radar Image
8
作者 王静涛 许晓革 孟祥花 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第2期243-250,共8页
In this paper a modified ensemble empirical mode decomposition(EEMD) method is presented, which is named winning-EEMD(W-EEMD). Two aspects of the EEMD, the amplitude of added white noise and the number of intrinsic mo... In this paper a modified ensemble empirical mode decomposition(EEMD) method is presented, which is named winning-EEMD(W-EEMD). Two aspects of the EEMD, the amplitude of added white noise and the number of intrinsic mode functions(IMFs), are discussed in this method. The signal-to-noise ratio(SNR) is used to measure the amplitude of added noise and the winning number of IMFs(which results most frequency) is used to unify the number of IMFs. By this method, the calculation speed of decomposition is improved, and the relative error between original data and sum of decompositions is reduced. In addition, the feasibility and effectiveness of this method are proved by the example of the oceanic internal solitary wave. 展开更多
关键词 winning ensemble empirical mode decomposition(W-EEMD) signal-to-noise ratio(SNR) winning number intrinsic mode functions OCEANIC
原文传递
Segmented second algorithm of empirical mode decomposition
9
作者 张敏聪 朱开玉 李从心 《Journal of Shanghai University(English Edition)》 CAS 2008年第5期444-449,共6页
A new algorithm, named segmented second empirical mode decomposition (EMD) algorithm, is proposed in this paper in order to reduce the computing time of EMD and make EMD algorithm available to online time-frequency ... A new algorithm, named segmented second empirical mode decomposition (EMD) algorithm, is proposed in this paper in order to reduce the computing time of EMD and make EMD algorithm available to online time-frequency analysis. The original data is divided into some segments with the same length. Each segment data is processed based on the principle of the first-level EMD decomposition. The algorithm is compared with the traditional EMD and results show that it is more useful and effective for analyzing nonlinear and non-stationary signals. 展开更多
关键词 segmented second empirical mode decomposition (EMD) algorithm time-frequency analysis intrinsic mode functions (IMF) first-level decomposition
在线阅读 下载PDF
A new combined model for forecasting geomagnetic variation
10
作者 Chao Niu Yi-wei Wei +4 位作者 Hong-ru Li Xi-hai Li Xiao-niu Zeng Ji-hao Liu Ai-min Du 《Applied Geophysics》 2025年第3期600-610,891,892,共13页
Modeling and forecasting of the geomagnetic variation are important research topics concerning geomagnetic navigation and space environment monitoring.We propose a combined forecasting model using a dynamic recursive ... Modeling and forecasting of the geomagnetic variation are important research topics concerning geomagnetic navigation and space environment monitoring.We propose a combined forecasting model using a dynamic recursive neural network called echo state network(ESN),the method of complementary ensemble empirical mode decomposition(EEMD)and the complexity theory of sample entropy(SampEn).Firstly,we use EEMD-SampEn to decompose the geomagnetic variation time series into many series of geomagnetic variation subsequences whose complexity degrees are transparently different.Then,we use ESN to build a forecasting model for each subsequence,selecting the optimal model parameters.Finally,we use the real data collected from the geomagnetic observatory to conduct simulations.The results show that the forecasting value of the combined model can closely conform to the tendency of geomagnetic variation field,and is superior to the least square support vector machine(LSSVM)model.The mean absolute error of the model for three-hour forecasting is less than 1.40nT when Kp index is less than 3. 展开更多
关键词 Geomagnetic variation Forecasting model ensemble empirical mode decomposition(EEMD) Sample entropy(SampEn) Echo state network(ESN)
在线阅读 下载PDF
Application of EEMD combined with cross-correlation algorithm in Doppler flow signal
11
作者 SHI Fengdong GONG Ruishi +1 位作者 LIANG Tongtong LÜDong 《Journal of Measurement Science and Instrumentation》 2025年第1期58-65,共8页
To address the issue of low measurement accuracy caused by noise interference in the acquisition of low fluid flow rate signals with ultrasonic Doppler flow meters,a novel signal processing algorithm that combines ens... To address the issue of low measurement accuracy caused by noise interference in the acquisition of low fluid flow rate signals with ultrasonic Doppler flow meters,a novel signal processing algorithm that combines ensemble empirical mode decomposition(EEMD)and cross-correlation algorithm was proposed.Firstly,a fast Fourier transform(FFT)spectrum analysis was utilized to ascertain the frequency range of the signal.Secondly,data acquisition was conducted at an appropriate sampling frequency,and the acquired Doppler flow rate signal was then decomposed into a series of intrinsic mode functions(IMFs)by EEMD.Subsequently,these decomposed IMFs were recombined based on their energy entropy,and then the noise of the recombined Doppler flow rate signal was removed by cross-correlation filtering.Finally,an ideal ultrasonic Doppler flow rate signal was extracted.Simulation and experimental verification show that the proposed Doppler flow signal processing method can effectively enhance the signal-to-noise ratio(SNR)and extend the lower limit of measurement of the ultrasonic Doppler flow meter. 展开更多
关键词 ultrasonic Doppler flow meter ensemble empirical mode decomposition(EEMD) CROSS-CORRELATION fast Fourier transform(FFT)spectrum analysis energy entropy
在线阅读 下载PDF
基于特高频信号的GIS局部放电诊断方法
12
作者 张凯祥 方瑞明 +2 位作者 尚荣艳 邵鹏飞 彭长青 《华侨大学学报(自然科学版)》 2026年第1期41-49,共9页
为提高基于特高频信号的气体绝缘开关设备局部放电诊断中特征提取的区分度及识别准确率,将改进完全集合经验模态分解与Transformer模型结合,提出一种气体绝缘开关设备局部放电诊断方法。首先,采用改进完全集合经验模态分解对特高频局部... 为提高基于特高频信号的气体绝缘开关设备局部放电诊断中特征提取的区分度及识别准确率,将改进完全集合经验模态分解与Transformer模型结合,提出一种气体绝缘开关设备局部放电诊断方法。首先,采用改进完全集合经验模态分解对特高频局部放电信号进行分解,为提高分解性能,引入动麦优化算法对改进完全集合经验模态分解的关键参数进行优化;其次,采用皮尔逊相关系数对分解结果进行进一步筛选,并提取关键特征指标构建局部放电信号的浅层特征矩阵;然后,引入多头因果自注意力机制改进的Transformer模型对局部放电信号的深度特征进行提取和融合;最后,搭建气体绝缘开关设备局部放电故障模拟平台,对气体绝缘开关设备的4种典型故障的局部放电进行模拟,将采集到的特高频局部放电信号采用文中方法进行特征提取和融合,并建立动麦优化算法优化的径向基支持向量机模型进行故障诊断。结果表明:文中方法能够有效提取特高频局部放电信号中的特征,可提高诊断精度。 展开更多
关键词 特高频 气体绝缘开关设备 局部放电 改进完全集合经验模态分解
在线阅读 下载PDF
基于延拓补偿策略的气体传感器端点效应诊断
13
作者 朱健松 邢博轩 +2 位作者 孟凡利 王浩 唐坤 《沈阳理工大学学报》 2026年第1期36-43,共8页
针对经验模态分解(empirical mode decomposition,EMD)处理非平稳信号时因端点效应造成分解结果失真的问题,提出一种基于麻雀搜索算法(sparrow search algorithm,SSA)与长短时记忆(long short-term memory,LSTM)网络的耦合模型,突破传... 针对经验模态分解(empirical mode decomposition,EMD)处理非平稳信号时因端点效应造成分解结果失真的问题,提出一种基于麻雀搜索算法(sparrow search algorithm,SSA)与长短时记忆(long short-term memory,LSTM)网络的耦合模型,突破传统梯度下降算法易陷入局部最优的局限,显著提升时序预测精度。首先将气体响应信号预处理为周期特征变量;然后采用双向周期延拓策略,通过LSTM-SSA深度训练,生成首尾各延伸一个周期的预测序列;最后利用双向性预测序列构建复合信号,并对其进行EMD分解。以丙酮和甲苯信号为例的实验结果表明,经LSTM-SSA预测后再进行EMD分解时端点效应引起的能量误差分别降低了74.966%和23.368%、正交性系数分别提升了51.444%和34.990%,有效抑制了端点处模态分量的幅值失真,提升了EMD的可靠性,为气体传感信号的特征提取与工业安全监测提供了新思路。 展开更多
关键词 经验模态分解 端点效应 麻雀搜索算法 长短时记忆网络 周期延拓
在线阅读 下载PDF
基于优化VMD二次分解的短期电力负荷预测
14
作者 蒋建东 韩文轩 +3 位作者 赵云飞 燕跃豪 鲍薇 刘晓辉 《郑州大学学报(工学版)》 北大核心 2026年第1期124-130,共7页
针对台区配变负荷数据复杂度高、波动性强的特点,提出了一种基于二次分解和时间卷积网络的短期电力负荷预测模型。首先,使用最大互信息系数法对高维特征的负荷数据集进行特征提取;其次,采用完全自适应噪声集合经验模态分解和优化变分模... 针对台区配变负荷数据复杂度高、波动性强的特点,提出了一种基于二次分解和时间卷积网络的短期电力负荷预测模型。首先,使用最大互信息系数法对高维特征的负荷数据集进行特征提取;其次,采用完全自适应噪声集合经验模态分解和优化变分模态分解对配变负荷数据进行二次分解;再次,将两次分解得到的子序列输入时间卷积网络模型中进行预测;最后,将各子序列的预测结果叠加,得到最终的负荷预测结果。在郑州市某台区配变负荷数据上进行仿真分析,与传统时间卷积网络模型相比,所提模型MAE、MAPE和RMSE分别减少了64.29%,9.66百分点和59.00%。实验结果表明,所提组合预测模型具有更好的预测效果和更高的预测精度。 展开更多
关键词 二次分解 负荷预测 完全自适应噪声集合经验模态分解 变分模态分解 时间卷积网络
在线阅读 下载PDF
基于EEMD-PCC与DenseNet的齿轮箱故障诊断
15
作者 尚腾龙 郝如江 +2 位作者 冯鹏帆 王天池 姚勃羽 《机床与液压》 北大核心 2026年第1期21-26,34,共7页
针对齿轮箱在复杂工况下故障特征提取困难、诊断准确率低的问题,提出一种集成经验模态分解-皮尔逊相关系数(EEMD-PCC)与密集卷积网络(DenseNet)相结合的智能诊断模型。采用EEMD-PCC对原始振动信号进行预处理,通过计算本征模态分量与原... 针对齿轮箱在复杂工况下故障特征提取困难、诊断准确率低的问题,提出一种集成经验模态分解-皮尔逊相关系数(EEMD-PCC)与密集卷积网络(DenseNet)相结合的智能诊断模型。采用EEMD-PCC对原始振动信号进行预处理,通过计算本征模态分量与原始信号的皮尔逊相关系数,筛选有效分量进行信号重构,保留关键故障特征。将CBAM注意力机制加入DenseNet网络模型,以增强特征表达能力,采用自适配归一化代替批归一化以提高网络泛化能力。最后,使用动力传动故障诊断综合实验台对该模型性能进行验证。结果表明:在8类齿轮箱状态诊断中,该模型准确率达98.5%,混淆矩阵显示仅少数样本误分类;在添加-6~-2 dB高斯白噪声的条件下,准确率仍保持在94%以上,显著优于对比模型;特征可视化证实模型能有效分离不同故障状态。EEMD-PCC与改进DenseNet相结合的故障诊断方法能够有效提取齿轮箱故障特征,在不同工况和噪声干扰下均保持高诊断精度,为齿轮箱智能故障诊断提供了可靠解决方案。 展开更多
关键词 齿轮箱 故障诊断 密集卷积网络(DenseNet) 经验模态分解-皮尔逊相关系数(EEMD-PCC)
在线阅读 下载PDF
Detection of time varying pitch in tonal languages: an approach based on ensemble empirical mode decomposition 被引量:5
16
作者 Hong HONG Xiao-hua ZHU +2 位作者 Wei-min SU Run-tong GENG Xin-long WANG 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2012年第2期139-145,共7页
A method based on ensemble empirical mode decomposition (EEMD) is proposed for accurately detecting the time varying pitch of speech in tonal languages. Unlike frame-, event-, or subspace-based pitch detectors, the ti... A method based on ensemble empirical mode decomposition (EEMD) is proposed for accurately detecting the time varying pitch of speech in tonal languages. Unlike frame-, event-, or subspace-based pitch detectors, the time varying information of pitch within the short duration, which is of crucial importance in speech processing of tonal languages, can be accurately extracted. The Chinese Linguistic Data Consortium (CLDC) database for Mandarin Chinese was employed as standard speech data for the evaluation of the effectiveness of the method. It is shown that the proposed method provides more accurate and reliable results, particularly in estimating the tones of non-monotonically varying pitches like the third one in Mandarin Chinese. Also, it is shown that the new method has strong resistance to noise disturbance. 展开更多
关键词 ensemble empirical mode decomposition Time varying pitch Tonal language Noise restraint
原文传递
De-noising of radiation pressure signal generated by bubble oscillation based on ensemble empirical mode decomposition 被引量:4
17
作者 Xiang-hao Zheng Yu-ning Zhang 《Journal of Hydrodynamics》 SCIE EI CSCD 2022年第5期849-863,共15页
The radiation pressure signals generated by the bubble oscillation are often utilized to recognize the characteristics of the target objects in many fields.However,these signals are easily contaminated by complex back... The radiation pressure signals generated by the bubble oscillation are often utilized to recognize the characteristics of the target objects in many fields.However,these signals are easily contaminated by complex background noises.In order to accurately extract the effective components of the radiation pressure signal generated by the bubble oscillation,this paper proposes a de-noising procedure for the radiation pressure signal,based on the ensemble empirical mode decomposition(EEMD),the autocorrelation function and the modified wavelet soft-threshold de-noising method.In order to verify the effectiveness of the procedure,the typical radiation pressure signal generated based on the Keller-Miksis model under the acoustic excitation is employed for the subsequent de-noising analysis.The results of the qualitative analysis show that the amplitude and the period of the bubble oscillation can be clearly observed in the time-domain diagram of the de-noised signal based on the EEMD.In the quantitative analysis,the de-noised signal based on the EEMD has better performance with higher signal-to-noise ratio(SNR),smaller root-mean-square error,and larger correlation coefficient than that based on the wavelet transform(WT)and the empirical mode decomposition(EMD).Furthermore,with the increase of the complexity of the radiation pressure signal(e.g.,the increase of the dimensionless pressure amplitude of the acoustic wave and the decrease of the SNR of the input signal),the above three evaluation indexes of the de-noised signal based on the EEMD are all better than those based on the other two methods.When the signal is more complex,the de-noising capabilities of the WT,the EMD are greatly reduced,but the EEMD can still maintain the good de-noising capability,which shows the superiority of the signal de-noising procedure proposed in the present paper. 展开更多
关键词 Radiation pressure cavitation bubble oscillation signal de-noising ensemble empirical mode decomposition(EEMD) autocorrelation function wavelet soft-threshold de-noising
原文传递
A Hybrid BPNN-GARF-SVR Prediction Model Based on EEMD for Ship Motion 被引量:2
18
作者 Hao Han Wei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期1353-1370,共18页
Accurate prediction of shipmotion is very important for ensuringmarine safety,weapon control,and aircraft carrier landing,etc.Ship motion is a complex time-varying nonlinear process which is affected by many factors.T... Accurate prediction of shipmotion is very important for ensuringmarine safety,weapon control,and aircraft carrier landing,etc.Ship motion is a complex time-varying nonlinear process which is affected by many factors.Time series analysis method and many machine learning methods such as neural networks,support vector machines regression(SVR)have been widely used in ship motion predictions.However,these single models have certain limitations,so this paper adopts amulti-model prediction method.First,ensemble empirical mode decomposition(EEMD)is used to remove noise in ship motion data.Then the randomforest(RF)prediction model optimized by genetic algorithm(GA),back propagation neural network(BPNN)prediction model and SVR prediction model are respectively established,and the final prediction results are obtained by results of three models.And the weights coefficients are determined by the correlation coefficients,reducing the risk of prediction and improving the reliability.The experimental results show that the proposed combined model EEMD-GARF-BPNN-SVR is superior to the single predictive model and more reliable.The mean absolute percentage error(MAPE)of the proposed model is 0.84%,but the results of the single models are greater than 1%. 展开更多
关键词 Back propagation neural network ensemble empirical mode decomposition genetic algorithm random forest SVR ship motion prediction
在线阅读 下载PDF
Missing interpolation model for wind power data based on the improved CEEMDAN method and generative adversarial interpolation network 被引量:4
19
作者 Lingyun Zhao Zhuoyu Wang +4 位作者 Tingxi Chen Shuang Lv Chuan Yuan Xiaodong Shen Youbo Liu 《Global Energy Interconnection》 EI CSCD 2023年第5期517-529,共13页
Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors... Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors(such as weather),there are often various anomalies in wind power data,such as missing numerical values and unreasonable data.This significantly affects the accuracy of wind power generation predictions and operational decisions.Therefore,developing and applying reliable wind power interpolation methods is important for promoting the sustainable development of the wind power industry.In this study,the causes of abnormal data in wind power generation were first analyzed from a practical perspective.Second,an improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)method with a generative adversarial interpolation network(GAIN)network was proposed to preprocess wind power generation and interpolate missing wind power generation sub-components.Finally,a complete wind power generation time series was reconstructed.Compared to traditional methods,the proposed ICEEMDAN-GAIN combination interpolation model has a higher interpolation accuracy and can effectively reduce the error impact caused by wind power generation sequence fluctuations. 展开更多
关键词 Wind power data repair Complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN) Generative adversarial interpolation network(GAIN)
在线阅读 下载PDF
Regional features of topographic relief over the Loess Plateau,China:evidence from ensemble empirical mode decomposition 被引量:1
20
作者 Yongjuan Liu Jianjun Cao +2 位作者 Liping Wang Xuan Fang Wolfgang Wagner 《Frontiers of Earth Science》 SCIE CAS CSCD 2020年第4期695-710,共16页
Landforms with similar surface matter compositions,endogenic and exogenic forces,and development histories tend to exhibit significant degrees of self-similarity in morphology and spatial variation.In loess hill-gully... Landforms with similar surface matter compositions,endogenic and exogenic forces,and development histories tend to exhibit significant degrees of self-similarity in morphology and spatial variation.In loess hill-gully areas,ridges and hills have similar topographic relief characteristics and present nearly periodic variations of similar repeating structures at certain spatial scales,which is termed the topographic relief period(TRP).This is a relatively new concept,which is different from the degree of relief,and describes the fluctuations of the terrain from both horizontal and vertical(cross-section)perspectives,which can be used for in-depth analysis of 2-D topographic relief features.This technique provides a new perspective for understanding the macro characteristics and differentiation patterns of loess landforms.We investigate TRP variation features of different landforms on the Loess Plateau,China,by extracting catchment boundary profiles(CBPs)from 5 m resolution digital elevation model(DEM)data.These profiles were subjected to temporal-frequency analysis using the ensemble empirical mode decomposition(EEMD)method.The results showed that loess landforms are characterized by significant regional topographic relief;the CBP of 14 sample areas exhibited an overall pattern of decreasing TRPs and increasing topographic relief spatial frequencies from south to north.According to the TRPs and topographic relief characteristics,the topographic relief of the Loess Plateau was divided into four types that have obvious regional differences.The findings of this study enrich the theories and methods for digital terrain data analysis of the Loess Plateau.Future study should undertake a more in-depth investigation regarding the complexity of the region and to address the limitations of the EEMD method. 展开更多
关键词 catchment boundary profile topographic relief period ensemble empirical mode decomposition Loess Plateau
原文传递
上一页 1 2 108 下一页 到第
使用帮助 返回顶部