期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
半定规划的齐次不可行内点算法
1
作者 吴岳 刘红卫 谢迪 《中国科学院大学学报(中英文)》 CSCD 北大核心 2016年第3期317-328,共12页
为降低半定规划(SDP)问题的迭代复杂度,并且有更好的数值实验结果,提出一种新的宽邻域上的齐次不可行内点算法.半定规划的KKT条件是单调互补问题(MCP),通过构造齐次模型(HMCP)以及提出新的宽邻域来解这个齐次模型,得到半定规划问题的最... 为降低半定规划(SDP)问题的迭代复杂度,并且有更好的数值实验结果,提出一种新的宽邻域上的齐次不可行内点算法.半定规划的KKT条件是单调互补问题(MCP),通过构造齐次模型(HMCP)以及提出新的宽邻域来解这个齐次模型,得到半定规划问题的最优解.这种算法容易判定原问题是否可行.在NT方向,证明迭代点在新的宽邻域内是收敛的,且迭代复杂度为O(n^(1/2)log L),其中n是SDP问题的维数,L=Tr(X^0S^0)/ε,其中ε是需要的精度,(X^0,S^0)是迭代起始点.这个复杂度比一般的半定规划不可行算法的迭代复杂度低.提供了数值实验,证明此算法比其他不可行算法具有更好的数值实验结果. 展开更多
关键词 齐次不可行内点算法 单调互补问题 半定规划
在线阅读 下载PDF
A Fixed Point Method for the Linear Complementarity Problem Arising from American Option Pricing
2
作者 Xian-Jun SHI Lei YANG Zheng-Hai HUANG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2016年第4期921-932,共12页
For American option pricing, the Black-Scholes-Merton model can be discretized as a linear comple- mentarity problem (LCP) by using some finite difference schemes. It is well known that the Projected Successive Over... For American option pricing, the Black-Scholes-Merton model can be discretized as a linear comple- mentarity problem (LCP) by using some finite difference schemes. It is well known that the Projected Successive Over Relaxation (PSOR) has been widely applied to solve the resulted LCP. In this paper, we propose a fixed point iterative method to solve this type of LCPs, where the splitting technique of the matrix is used. We show that the proposed method is globally convergent under mild assumptions. The preliminary numerical results are reported, which demonstrate that the proposed method is more accurate than the PSOR for the problems we tested. 展开更多
关键词 American option pricing finite difference method fixed point method linear complementarityproblem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部