期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The Approach of Compensation of Air Refractive Index in Thermal Expansion Coefficients Measurement Based on Laser Feedback Interferometry 被引量:2
1
作者 郑发松 丁迎春 +2 位作者 谈宜东 林静 张书练 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第7期17-20,共4页
We present the thermal expansion coefficient (TEC) measurement technology of compensating for the effect of variations in the refractive index based on a Nd: YA G laser feedback system, the beam frequency is shifte... We present the thermal expansion coefficient (TEC) measurement technology of compensating for the effect of variations in the refractive index based on a Nd: YA G laser feedback system, the beam frequency is shifted by a pair of aeousto-optic modulators and then the heterodyne phase measurement technique is used. The sample measured is placed in a muffle furnace with two coaxial holes opened on the opposite furnace walls. The measurement beams hit perpendicularly and coaxially on each surface of the sample. The reference beams hit on the reference mirror and the high-refiectivity mirror, respectively. By the heterodyne configuration and computing, the influences of the vibration, distortion of the sample supporter and the effect of variations in the refractive index are measured and largely minimized. For validation, the TECs of aluminum samples are determined in the temperature range of 29-748K, confirming not only the precision within 5 × 10-7 K-1 and the accuracy within 0.4% from 298K to 448K but also the high sensitivity non-contact measurement of the lower reflectivity surface induced by the sample oxidization from 448 K to 748 K. 展开更多
关键词 In TEC The Approach of compensation of Air Refractive Index in Thermal Expansion coefficients Measurement Based on Laser Feedback Interferometry
原文传递
Configuration Design and Size Optimization of a High-Precision Novel Parallel Pointing Mechanism Based on Interference Separation
2
作者 Sen Wang Shihua Li +3 位作者 Xueyan Han Jiahao Wei Xueyuan Gao Hongyu Xu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第5期365-386,共22页
Pointing mechanism is widely used in aerospace field,and its pointing accuracy and stability have high requirements.The pointing mechanism will be affected by external interference when it works.In order to eliminate ... Pointing mechanism is widely used in aerospace field,and its pointing accuracy and stability have high requirements.The pointing mechanism will be affected by external interference when it works.In order to eliminate the impact of interference forces on the output accuracy of the mechanism,firstly,this paper proposes a design method for highprecision pointing mechanisms based on interference separation,aiming at the high-precision pointing requirements of pointing mechanisms.Based on the screw theory,a synthesis method for inner compensation mechanisms has been proposed.And a new type of double-layer parallel mechanism has been designed to compensate for interference forces.Then,the kinematics and dynamics of the mechanism are carried out.An evaluation index for compensating external interference forces is proposed.The interference compensation analysis is conducted for the pointing mechanism.The correctness of the proposed interference force compensation coefficient is verified.Finally,in order to find the optimal solution for the workspace and interference force compensation coefficient of the pointing mechanism,multi-objective optimization design of the structural parameters of the mechanism was carried out based on the particle swarm optimization algorithm.This provides a theoretical basis for the prototype design of the subsequent double-layer parallel mechanism.This double-layer parallel mechanism combines the advantages of large load-bearing capacity,large workspace,and high output accuracy.It can be better applied in the aerospace field where high-precision pointing and force interference compensation are integrated. 展开更多
关键词 Pointing mechanism Interference separation Double-layer parallel mechanism Force compensation coefficient Multi-objective optimization
在线阅读 下载PDF
Curvature Compensated CMOS Bandgap Reference with Novel Process Variation Calibration Technique 被引量:1
3
作者 Jiancheng Zhang Mao Ye +1 位作者 Yiqiang Zhao Gongyuan Zhao 《Journal of Beijing Institute of Technology》 EI CAS 2018年第2期182-188,共7页
A lowtemperature coefficient( TC) bandgap reference( BGR) with novel process variation calibration technique is proposed in this paper. This proposed calibration technique compensating both TC and output value of ... A lowtemperature coefficient( TC) bandgap reference( BGR) with novel process variation calibration technique is proposed in this paper. This proposed calibration technique compensating both TC and output value of BGR achieves fine adjustment step towards the reference voltage,while keeping optimal TC by utilizing large resistance to help layout match. The high-order curvature compensation realized by poly and p-diffusion resistors is introduced into the design to guarantee the temperature characteristic. Implemented in 180 nm technology,the proposed BGR has been simulated to have a power supply rejection ratio( PSRR) of 91 dB@100 Hz. The calibration technique covers output voltage scope of 0. 49 V-0. 56 Vwith TC of 9. 45 × 10^(-6)/℃-9. 56 × 10^(-6)/℃ over the temperature range of-40 ℃-120 ℃. The designed BGR provides a reference voltage of 500 mV,with measured TC of 10. 1 × 10^(-6)/℃. 展开更多
关键词 bandgap reference voltage process variation resistance-trimming current-calibration curvature compensation temperature coefficient
在线阅读 下载PDF
Temperature characteristics research of SOI pressure sensor based on asymmetric base region transistor 被引量:5
4
作者 Xiaofeng Zhao Dandan Li +1 位作者 Yang Yu Dianzhong Wen 《Journal of Semiconductors》 EI CAS CSCD 2017年第7期89-92,共4页
Based on the asymmetric base region transistor, a pressure sensor with temperature compensation circuit is proposed in this paper. The pressure sensitive structure of the proposed sensor is constructed by a C-type sil... Based on the asymmetric base region transistor, a pressure sensor with temperature compensation circuit is proposed in this paper. The pressure sensitive structure of the proposed sensor is constructed by a C-type silicon cup and a Wheatstone bridge with four piezoresistors(R_1, R_2, R_3 and R_4/locating on the edge of a square silicon membrane. The chip was designed and fabricated on a silicon on insulator(SOI) wafer by micro electromechanical system(MEMS) technology and bipolar transistor process. When the supply voltage is 5.0 V, the corresponding temperature coefficient of the sensitivity(TCS) for the sensor before and after temperature compensation are -1862 and -1067 ppm/℃, respectively. Through varying the ratio of the base region resistances r_1 and r_2, the TCS for the sensor with the compensation circuit is -127 ppm/℃. It is possible to use this compensation circuit to improve the temperature characteristics of the pressure sensor. 展开更多
关键词 SOI pressure sensor asymmetric base region transistor temperature compensation temperature coefficient of the sensitivity MEMS technology
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部