A metal-sensitive diaphragm fiber optic pressure sensor with temperature compensation is developed for pressure monitoring in high-temperature environments,such as engine fuel systems,oil and gas wells,and aviation hy...A metal-sensitive diaphragm fiber optic pressure sensor with temperature compensation is developed for pressure monitoring in high-temperature environments,such as engine fuel systems,oil and gas wells,and aviation hydraulic systems.The sensor combines a metal-sensitive diaphragm and a sapphire wafer to form a temperature-pressure dual Fabry-Perot(FP)interference cavity.A cross-correlation signal demodulation algorithm and a temperature decoupling method are utilized to reduce the influence of temperature crosstalk on pressure measurement.Experimental results show that the maximum nonlinear error of the sensor pressure measurement is 0.75%full scale(FS)and 0.99%FS at room temperature and 300°C,respectively,in a pressure range of 0−10 MPa and 0−1.5 MPa.The sensor’s pressure measurement accuracy is 1.7%FS when using the temperature decoupling method.The sensor exhibits good static pressure characteristics,stability,and reliability,providing an effective solution for high-temperature pressure monitoring applications.展开更多
Based on the parametric resonance magnetometer(PRM)theory,this paper establishes an experimen-tal system of PRM.The experimental results are consistent with the theoretical predictions.A PRM has been developed with se...Based on the parametric resonance magnetometer(PRM)theory,this paper establishes an experimen-tal system of PRM.The experimental results are consistent with the theoretical predictions.A PRM has been developed with sensitivity of 0.5 pT/Hz^(1/2),which can detect the magnitude of residual magnetic field;furthermore,a proportion-integration-differentiation(PID)closed-loop magnetic compensation system of the residual magnetic field also has been realized.Compared with open-loop compensation,the PID closed-loop compensation reduces the average value of the residual magnetic field in the z-axis direction from 0.0244nT to-0.0023nT,and the mean-square error from 0.2083 nT to 0.0691 nT.In the same way,the average value of the residual magnetic field in the y-axis direction is reduced from 0.0816nT to-0.0042nT,and the mean-square error from 0.1316nT to 0.0461 nT.The magnitude of residual magnetic fields in both directions is decreased to the order of picotesla(pT).In addition,based on the signal waveforms of the magnetometer,a method of verifying the effect of magnetic compensation is proposed.展开更多
文摘A metal-sensitive diaphragm fiber optic pressure sensor with temperature compensation is developed for pressure monitoring in high-temperature environments,such as engine fuel systems,oil and gas wells,and aviation hydraulic systems.The sensor combines a metal-sensitive diaphragm and a sapphire wafer to form a temperature-pressure dual Fabry-Perot(FP)interference cavity.A cross-correlation signal demodulation algorithm and a temperature decoupling method are utilized to reduce the influence of temperature crosstalk on pressure measurement.Experimental results show that the maximum nonlinear error of the sensor pressure measurement is 0.75%full scale(FS)and 0.99%FS at room temperature and 300°C,respectively,in a pressure range of 0−10 MPa and 0−1.5 MPa.The sensor’s pressure measurement accuracy is 1.7%FS when using the temperature decoupling method.The sensor exhibits good static pressure characteristics,stability,and reliability,providing an effective solution for high-temperature pressure monitoring applications.
基金the Shanghai Aerospace Advanced Technology Joint Research Fund(No.USCAST2019-23)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(No.SL2021ZD202)。
文摘Based on the parametric resonance magnetometer(PRM)theory,this paper establishes an experimen-tal system of PRM.The experimental results are consistent with the theoretical predictions.A PRM has been developed with sensitivity of 0.5 pT/Hz^(1/2),which can detect the magnitude of residual magnetic field;furthermore,a proportion-integration-differentiation(PID)closed-loop magnetic compensation system of the residual magnetic field also has been realized.Compared with open-loop compensation,the PID closed-loop compensation reduces the average value of the residual magnetic field in the z-axis direction from 0.0244nT to-0.0023nT,and the mean-square error from 0.2083 nT to 0.0691 nT.In the same way,the average value of the residual magnetic field in the y-axis direction is reduced from 0.0816nT to-0.0042nT,and the mean-square error from 0.1316nT to 0.0461 nT.The magnitude of residual magnetic fields in both directions is decreased to the order of picotesla(pT).In addition,based on the signal waveforms of the magnetometer,a method of verifying the effect of magnetic compensation is proposed.