Purpose-The indoor vibration compaction test(IVCT)was a key step in controlling the compaction quality for high-speed railway graded aggregate(HRGA),which currently had a research gap on the assessment indicators and ...Purpose-The indoor vibration compaction test(IVCT)was a key step in controlling the compaction quality for high-speed railway graded aggregate(HRGA),which currently had a research gap on the assessment indicators and compaction parameters.Design/methodology/approach-To address these issues,a novel multi-indicator IVCT method was proposed,including physical indicator dry density(ρd)and mechanical indicators dynamic stiffness(Krb)and bearing capacity coefficient(K20).Then,a series of IVCTs on HRGA under different compaction parameters were conducted with an improved vibration compactor,which could monitor the physical-mechanical indicators in real-time.Finally,the optimal vibration compaction parameters,including the moisture content(ω),the diameter-to-maximum particle size ratio(Rd),the thickness-to-maximum particle size ratio(Rh),the vibration frequency(f),the vibration mass(Mc)and the eccentric distance(re),were determined based on the evolution characteristics for the physical-mechanical indicators during compaction.Findings-All results indicated that theρd gradually increased and then stabilized,and the Krb initially increased and then decreased.Moreover,the inflection time of the Krb was present as the optimal compaction time(Tlp)during compaction.Additionally,optimal compaction was achieved whenωwas the water-holding content after mud pumping,Rd was 3.4,Rh was 3.5,f was the resonance frequency,and the ratio between the excitation force and the Mc was 1.8.Originality/value-The findings of this paper were significant for the quality control of HRGA compaction.展开更多
Compaction grouting is primarily applied based on empiricism,and it is challenging to quantify its densification effect.To address this issue,five sets of laboratory model tests on ideal compaction grouting were condu...Compaction grouting is primarily applied based on empiricism,and it is challenging to quantify its densification effect.To address this issue,five sets of laboratory model tests on ideal compaction grouting were conducted,with varying pressures from 400 kPa to 800 kPa,to quantitatively evaluate the densification effect in unsaturated soils.The response of surrounding soil during compaction grouting was monitored.The changes in dry density and void ratio induced by compaction grouting were obtained by monitoring volumetric water content to determine compaction efficiency.In addition,a model was developed and validated to predict the effective compaction range.The results show that soil dry density increased rapidly during compaction grouting before being stabilized at a consistent level.As expected,it is positively correlated with grouting pressures(GPs)and negatively correlated with the distance from the injection point.At higher GPs,the difference in densification effect around the injection point after compaction grouting was significant.Interestingly,variations in ultimate dry density and peak earth pressures perpendicular to the injection direction exhibited axisymmetric behavior around the injection point when comparing the dry density and earth pressure results.Furthermore,soil densification resulted in a decrease in suction.However,no significant effect of GP on suction at different soil positions was observed.Moreover,compaction efficiency decreased with increasing distance from the injection point,showing a strong linear relationship.In addition,the model results for the effective compaction range were basically consistent with the extrapolated values from the experimental results.展开更多
Real-time assessment of subgrade compaction quality poses a significant challenge in the implementation of intelligent compaction(IC).Current compaction evaluation models are confined to specific scenarios and lack ro...Real-time assessment of subgrade compaction quality poses a significant challenge in the implementation of intelligent compaction(IC).Current compaction evaluation models are confined to specific scenarios and lack robustness.This study proposes a subgrade compaction strategy that utilizes a heterogeneous dataset to estimate compaction quality across diverse scenarios while maintaining model accuracy.Field compaction tests are conducted in four distinct scenarios,considering various construction parameters.Compaction models are developed using several machine learning algorithms.The datasets are thoroughly assessed in terms of quality,diversity and similarity.The proposed model exhibits good performance in new scenarios by incorporating an additional 5%e8%of new data for retraining.The model's generalization capability is enhanced by conducting a limited number of field tests,which are labor-saving and time-efficient.The model's accuracy consistently improves across diverse scenarios and optimal algorithms.The proposed compaction strategy adopts a physics-and-data dual-driven approach,aimed at practical engineering applications and guiding the compaction procedure.展开更多
The study of the mechanical property and damage state of coal materials under compression is a fundamental area of research in underground mining engineering.Drawing upon the compaction effect and linear energy dissip...The study of the mechanical property and damage state of coal materials under compression is a fundamental area of research in underground mining engineering.Drawing upon the compaction effect and linear energy dissipation(LED)law,a novel compressive damage constitutive model for brittle coal is proposed.Utilizing the energy-defined damage method for mate-rials,the LED law is innovatively introduced to accurately characterize the energy dissipation during the loading process,and a novel formula for characterizing the damage variable of brittle coal is proposed.On this basis,considering that the constitutive model based on the hypothesis of strain equivalence is incapable of accurately describing the compaction effect exhibited by coal material during the compression process,a correction coefficient is proposed and apply it in the novel damage constitutive model.The established conventional monotone loading and single-cyclic loading-unloading uniaxial compression damage constitutive models have been validated using experimental data from cylindrical and cuboid coal specimens.In addition,compared with the constitutive model obtained via the traditional energy calculation method based on the hypothesis that the unloading curve is a straight line,the constitutive model employing LED law can describe the stress-strain state of brittle coal more precisely.This approach introduces a new perspective and enhances the convenience for constructing the constitutive model based on energy theory.展开更多
Myelin formation is considered the last true“invention”in the evolution of vertebrate nervous system cell structure.The rapid jumping pulse propagation achieved by myelin enables the high conduction speed that is th...Myelin formation is considered the last true“invention”in the evolution of vertebrate nervous system cell structure.The rapid jumping pulse propagation achieved by myelin enables the high conduction speed that is the basis of human movement,sensation,and cognitive function.As a key structure in the brain,white matter is the gathering place of myelin.However,with age,white matter-associated functions become abnormal and a large number of myelin sheaths undergo degenerative changes,causing serious neurological and cognitive disorders.Despite the extensive time and effort invested in exploring myelination and its functions,numerous unresolved issues and challenges persist.In-depth exploration of the functional role of myelin may bring new inspiration for the treatment of central nervous system(CNS)diseases and even mental illnesses.In this study,we conducted a comprehensive examination of the structure and key molecules of the myelin in the CNS,delving into its formation process.Specifically,we propose a new hypothesis regarding the source of power for myelin expansion in which membrane compaction may serve as a driving force for myelin extension.The implications of this hypothesis could provide valuable insights into the pathophysiology of diseases involving myelin malfunction and open new avenues for therapeutic intervention in myelin-related disorders.展开更多
In this study,compacted loess samples with varying compaction water content but identical dry density were prepared to investigate the evolution of their hydraulic conductivity and compression behavior.Additionally,en...In this study,compacted loess samples with varying compaction water content but identical dry density were prepared to investigate the evolution of their hydraulic conductivity and compression behavior.Additionally,environmental scanning electron microscopy(ESEM)and nuclear magnetic resonance(NMR)analyses were conducted to gain microstructural insights into loess behavior at the laboratory scale.The results indicate that the maximum saturated hydraulic conductivity is observed at the lowest compaction water content,particularly in the early stage of permeability tests.In particular,for loess compacted at water contents below the optimum(as determined by the modified Proctor compaction test),the hydraulic conductivity decreases throughout the permeability tests.Conversely,when the water content exceeds the optimum level,the hydraulic conductivity shows an increasing trend.In terms of compression behavior,when the as-compacted samples are loaded in oedometer conditions,an increase in material compressibility is observed with increasing compaction water content.Again,a different phenomenological behavior was observed when the compaction water content exceeded the optimum,i.e.an abrupt increase in loess compressibility.ESEM tests provide microstructural confirmation of this evidence,as the surface morphology of the compacted loess changes significantly with increasing compaction water content.The microstructural evolution was also quantified in terms of area ratio using image processing software.Finally,NMR was used to quantify the intra-and inter-aggregate water at different compaction water contents,once again highlighting a threshold for the presence or absence of inter-aggregate water similar to the optimum water content.展开更多
Three Ti-6Al-4V alloy powders with median diameters of 103, 66 and 44 pm, respectively, were pressed by high-velocity compaction (HVC) technology and then sintered in vacuum. The effects of particle sizes on forming...Three Ti-6Al-4V alloy powders with median diameters of 103, 66 and 44 pm, respectively, were pressed by high-velocity compaction (HVC) technology and then sintered in vacuum. The effects of particle sizes on forming as well as properties of sintered samples were investigated. The results show that fine powders are more difficult to press than coarse powders and its compact density is lower too. But the sintered density of fine powders is obviously higher than that of coarse powders. Compared with the powders with 103 and 66 ~un in diameter, the green density with 44 ~rn diameter powders is lower, which is 85.1% of theoretical density (TD) at an impact energy of 913 J. After sintering at 1300 ~C for 2,5 h, the sintered density of the compacts with 44 pm diameter powders is the highest, and reaches 98.2% of TD. Moreover, the sintered sample with 44 pan in diameter has the highest hardness and compressive strength, which are HV 354 and 1265 MPa, respectively.展开更多
As agricultural mechanization is becoming more and more popular, soil compaction, on basis of agricultural machinery, has become a serious problem that can not be ignored. Soil compaction, which is caused by frequent ...As agricultural mechanization is becoming more and more popular, soil compaction, on basis of agricultural machinery, has become a serious problem that can not be ignored. Soil compaction, which is caused by frequent til age and large load in the field, may have different effects on various properties of soil. Soil com-paction may result in different conditions, such as increased soil density and the mechanical resistance, and decreased soil ventilation and the capacity of water holding and storage, but uptaking capacity of chemical elements is restricted. There-fore, soil compaction has some negative impacts on soil properties, physical y, chemical y, or biological y, as wel as plant growth. This research analyzed the cause and the harm of soil compaction in recent years, and some effective mea-sures were proposed to improve soil compaction, in order to reduce the extent of soil compaction caused by agricultural machinery.展开更多
The paper takes a new campus project site of Shanxi university town for example, tests the influence of dynamic com- paction vibration and vibration isolation effect of isolation trench on this ground, and compares th...The paper takes a new campus project site of Shanxi university town for example, tests the influence of dynamic com- paction vibration and vibration isolation effect of isolation trench on this ground, and compares the influences of the dynamic compaction vibration on surrounding buildings with isolation trench and without it. Furthermore, the attenuation law of dy- namic compaction vibration in fill foundation of the loess area under different tamping energy and how to determine safe distance of dynamic compaction construction are studied. And then the quantitative relationship between acceleration and vibration source in new campus project site is presented. We derive the evaluation method that dynamic compaction construction affects adjacent buildings by contrasting with the existing standards and norms. The monitoring results show that isolation trench makes the amplitude attenuation of the horizontal velocity of dynamic compaction vibration reach above 75%, and the safe dis- tance be 30 m under the tamping energy of 6 000 kN · m. Therefore, isolation trench is better for vibration reduction under dynamic compaction construction.展开更多
In this paper, a study of sandy soil compaction with different granulometry and moisture content has been performed, and soil mechanical property variations in moisture and granulometry have been investigated. Investi...In this paper, a study of sandy soil compaction with different granulometry and moisture content has been performed, and soil mechanical property variations in moisture and granulometry have been investigated. Investigations were performed to compare hydrostatic compression test (HCT) responses and evaluate the compression index, Cc, which is an indicator of the soil's susceptibility to compaction-induced damage. The experiments have been performed on 24 soil samples typologies. Each sample has been obtained by combining three types of soil granulometry (types A, B and C) with a relative content varying from 0% to 100% in 20% increments. Soil type A had a granulometry ranging between 0.5 mm and 1 mm, type B between 0.25 mm and 0.5 mm, and type C less than 0.25 mm. These samples were representative of a sandy soil, chemically inactive and had various granulometries and initial moisture contents. A cell for HCT has been set up to allow the initial volume measurement of the test pieces and the subsequent changes during HCT with an estimated error less than 0.1 cm3. All samples were pre-compacted and prepared in agreement with the actual standards. The experimental data are reported in diagrams, the data allowed comparison of the mechanical behaviors between the considered unsaturated soils and underlined how soil moisture and granulometry affect soil response during HCT. Furthermore, because of the methodology used, the equipment was very economical.展开更多
The collapsibility of loess, which can be effectively eliminated by the dynamic compaction, does great harm to the safety of constructions. The effect of the dynamic compaction is evaluated through the contrast and an...The collapsibility of loess, which can be effectively eliminated by the dynamic compaction, does great harm to the safety of constructions. The effect of the dynamic compaction is evaluated through the contrast and analysis of the physical and mechanical properties of the collapsible loess before and after dynamic compacting. The compacting effect can be divided into three phases along the depth, and the most effective improved depth is from 3 to 8 m.展开更多
To investigate migration and evolution rules of coarse aggregates in the static compaction process, an algorithm of generating digital coarse aggregates that can reflect real morphology( such as shape, size and fract...To investigate migration and evolution rules of coarse aggregates in the static compaction process, an algorithm of generating digital coarse aggregates that can reflect real morphology( such as shape, size and fracture surface) of aggregate particles, is represented by polyhedral particles based on the discrete element method( DEM). A digital specimen comprised of aggregates and air voids is developed. In addition,a static compaction model consisting of a digital specimen and three plates is constructed and a series of evaluation indices such as mean contact force σMCF, wall stress in direction of zcoordinate σWSZZ, porosity and coordination numbers are presented to investigate the motion rules of coarse aggregates at different compaction displacements of 7. 5, 15 and 30 mm. The three-dimensional static compaction model is also verified with laboratory measurements. The results indicate that the compaction displacements are positively related to σMCF and σWSZZ, which increase gradually with the increase in iterative steps. When the compaction proceeds, the digital specimen porosity decreases, but the coordination number increases. The variation ranges of these four indices are different at different compaction displacements. This study provides a method to analyze the compaction mechanism of particle materials such as asphalt mixture and graded broken stone.展开更多
Based on the compaction characteristic test and the nonlinear compaction deformation characteristics of backfill material, this paper applies the theory of nonlinear elastic foundation of thin plate to establish a mec...Based on the compaction characteristic test and the nonlinear compaction deformation characteristics of backfill material, this paper applies the theory of nonlinear elastic foundation of thin plate to establish a mechanical model of backfill body and roof in solid dense backfill coal mining. This study critically analyses the deflection equation of the roof by the energy method, derives the conditions of roof breakage and combined with concrete engineering practice analyses, determines roof movement regularity and stability in solid dense backfill mining. Analysis of the engineering practice of the 13,120 backfill panel of Pingmei 12# mine shows the theoretical maximum of roof convergence in backfill mining to be415 mm which is in significant agreement with the measured value. During the advancing process of solid backfill mining at the panel, the maximum tensile stress on the roof is less than its tensile strength which does not satisfy the conditions for roof breakage. Drilling results on the roof and ground pressure monitoring show that the integrity of roof is strong, which is consistent with the theoretical calculations described in this study. The results presented in the study provide a basis for further investigation into strata movement theory in solid dense backfill mining.展开更多
Characterisation and understanding of the stressestrainepermeability behaviour of a clay host rock during damage and recompaction are essential for prediction of excavation damaged zone and for assessment of its impac...Characterisation and understanding of the stressestrainepermeability behaviour of a clay host rock during damage and recompaction are essential for prediction of excavation damaged zone and for assessment of its impact on the repository safety. This important issue has been experimentally studied in triaxial compression tests on the Callovo-Oxfordian clay rock in this study. The samples were sequentially loaded by(1) hydrostatic precompaction to close up sampling-induced microcracks,(2)applying deviatoric stresses to determine damage and permeability changes, and(3) recompression along different loading paths to examine reversibility of the damage. The critical stress conditions at the onset of dilatancy, permeability percolation, failure strength, and residual strength are determined. An empirical model is established for fracturing-induced permeability by considering the effects of connectivity and conductivity of microcracks. The cubic law is validated for the variation of permeability of connected fractures with closure. The experiments and results are also presented and discussed.展开更多
A new method was proposed to predict the limited compaction grouting pressure for the soft soils. Theoretical basis of the method considered the conical shear failure above the grout bulb. Using the Mohr-Coulomb yield...A new method was proposed to predict the limited compaction grouting pressure for the soft soils. Theoretical basis of the method considered the conical shear failure above the grout bulb. Using the Mohr-Coulomb yield criterion as the initial yield function, the limited compaction grouting pressure was determined, according to the softening elastic-plastic model based on the conventional triaxial compression tests to simulate the strain softening soils. The small strain in the elastic zone and large stain in the plastic zone and the rational yield function for the strain softening phase stage, the analytical solutions to the compaction grouting pressure were presented. The results indicate reasonable agreement and show a good potential of the proposed method for rationally optimizing the design of compaction grouting operations.展开更多
Die wall lubrication was applied on warm compaction powder metallurgy in hope to reduce the concentration level of the admixed lubricant since lubricant is harmful to the mechanical property of the sintered materials....Die wall lubrication was applied on warm compaction powder metallurgy in hope to reduce the concentration level of the admixed lubricant since lubricant is harmful to the mechanical property of the sintered materials. Iron-based samples were prepared by die wall lubricated warm compaction at 135 ℃ and 175 ℃, using polytetrafluoroethylene (PTFE) emulsion as die wall lubricant. A compacting pressure of 700 MPa and 550 MPa were used. The admixed lubricant concentration ranging from 0 to 0.6 wt.% was used in this study. Compared with non-die wall lubricated samples, the die wall lubricated samples have higher green densities. Results show that in addition to the decrease in ejection forces, green density of the compacts increased linearly with the decrease in admixed lubricant content. Mechanical property of the sintered compacts increase sharply when the admixed lubricant concentration reduced to 0.125 wt.% or less. Ejection force data indicated that samples with die wall lubrication show lower ejection forces when compared with samples without die wall lubrication. No scoring was observed in all experiments even for samples contain no admixed lubricant. Our results indicated that under experimental condition used in this study, no matter at which compaction pressure, compaction temperature, graphite and lubricant contents in the powder the die wall lubricated warm compaction would give the highest green density and lowest ejection force. It can be concluded that combination of die wall lubrication and warm compaction can provide P/M products with higher density and better quality. It is a feasible way to produce high performance P/M parts if suitable die wall lubrication system was applied.展开更多
In this paper,the cyclic constitutive equations were proposed to describe the constitutive behavior of cyclic loading and unloading.Firstly,a coupled damage variable was derived,which contains two parts,i.e.,the compa...In this paper,the cyclic constitutive equations were proposed to describe the constitutive behavior of cyclic loading and unloading.Firstly,a coupled damage variable was derived,which contains two parts,i.e.,the compaction-induced damage and the cracking-induced damage.The compaction-induced damage variable was derived from a nonlinear stress–strain relation of the initial compaction stage,and the cracking-induced damage variable was established based on the statistical damage theory.Secondly,based on the total damage variable,a damage constitutive equation was proposed to describe the constitutive relation of rock under the monotonic uniaxial compression conditions,whereafter,the application of this model is extended to cyclic loading and unloading conditions.To validate the proposed monotonic and cyclic constitutive equations,a series of mechanical tests for marble specimens were carried out,which contained the monotonic uniaxial compression(MUC)experiment,cyclic uniaxial compression experiments under the variable amplitude(CUC-VA)and constant amplitude(CUC-CA)conditions.The results show that the proposed total damage variable comprehensively reflects the damage evolution characteristic,i.e.,the damage variable firstly decreases,then increases no matter under the conditions of MUC,CUC-VA or CUC-CA.Then a reasonable consistency is observed between the experimental and theoretical curves.The proposed cyclic constitutive equations can simulate the whole cyclic loading and unloading behaviors,such as the initial compaction,the strain hardening and the strain softening.Furthermore,the shapes of the theoretical curves are controlled by the modified coefficient,compaction sensitivity coefficient and two Weibull distributed parameters.展开更多
By phenomenological analysis of warm compaction, it is found that, compared with the contribution of particle plastical deformation to densification of powder compact,the particle rearrangement is a dominant densifica...By phenomenological analysis of warm compaction, it is found that, compared with the contribution of particle plastical deformation to densification of powder compact,the particle rearrangement is a dominant densification mechanism for powder warm compaction, and the plastical deformation of particles plays an important role in offering accommodating deformation for particle rearrangement and densifying powder compact at the final stage of pressing.In order to attain density gain as high as possible during warm compaction, six rules for designing warm compacting powder mixtures were proposed in detail.展开更多
During the compaction of a road subgrade, the mechanical parameters of the soil mass change in real time, but current research assumes that these parameters remain unchanged. In order to address this discrepancy, this...During the compaction of a road subgrade, the mechanical parameters of the soil mass change in real time, but current research assumes that these parameters remain unchanged. In order to address this discrepancy, this paper establishes a relationship between the degree of compaction K and strain ε. The relationship between the compaction degree K and the shear strength of soil(cohesion c and frictional angle φ) was clearly established through indoor experiments. The subroutine UMAT in ABAQUS finite element numerical software was developed to realize an accurate calculation of the subgrade soil compaction quality. This value was compared and analyzed against the assumed compaction value of the model, thereby verifying the accuracy of the intelligent compaction calculation results for subgrade soil. On this basis, orthogonal tests of the influential factors(frequency, amplitude, and quality) for the degree of compaction and sensitivity analysis were carried out. Finally, the ‘acceleration intelligent compaction value’, which is based on the acceleration signal, is proposed for a compaction meter value that indicates poor accuracy. The research results can provide guidance and basis for further research into the accurate control of compaction quality for roadbeds and pavements.展开更多
基金funded by the National Key R&D Program“Transportation Infrastructure”project(No.2022YFB2603400)the Technology Research and Development Plan Program of China State Railway Group Co.,Ltd.(No.Q2024T001)the National project pre research project of Suzhou City University(No.2023SGY019).
文摘Purpose-The indoor vibration compaction test(IVCT)was a key step in controlling the compaction quality for high-speed railway graded aggregate(HRGA),which currently had a research gap on the assessment indicators and compaction parameters.Design/methodology/approach-To address these issues,a novel multi-indicator IVCT method was proposed,including physical indicator dry density(ρd)and mechanical indicators dynamic stiffness(Krb)and bearing capacity coefficient(K20).Then,a series of IVCTs on HRGA under different compaction parameters were conducted with an improved vibration compactor,which could monitor the physical-mechanical indicators in real-time.Finally,the optimal vibration compaction parameters,including the moisture content(ω),the diameter-to-maximum particle size ratio(Rd),the thickness-to-maximum particle size ratio(Rh),the vibration frequency(f),the vibration mass(Mc)and the eccentric distance(re),were determined based on the evolution characteristics for the physical-mechanical indicators during compaction.Findings-All results indicated that theρd gradually increased and then stabilized,and the Krb initially increased and then decreased.Moreover,the inflection time of the Krb was present as the optimal compaction time(Tlp)during compaction.Additionally,optimal compaction was achieved whenωwas the water-holding content after mud pumping,Rd was 3.4,Rh was 3.5,f was the resonance frequency,and the ratio between the excitation force and the Mc was 1.8.Originality/value-The findings of this paper were significant for the quality control of HRGA compaction.
基金the National Natural Science Foundation of China(Grant Nos.42172298,42002289)the Shanghai Geological Star Program for their financial support.
文摘Compaction grouting is primarily applied based on empiricism,and it is challenging to quantify its densification effect.To address this issue,five sets of laboratory model tests on ideal compaction grouting were conducted,with varying pressures from 400 kPa to 800 kPa,to quantitatively evaluate the densification effect in unsaturated soils.The response of surrounding soil during compaction grouting was monitored.The changes in dry density and void ratio induced by compaction grouting were obtained by monitoring volumetric water content to determine compaction efficiency.In addition,a model was developed and validated to predict the effective compaction range.The results show that soil dry density increased rapidly during compaction grouting before being stabilized at a consistent level.As expected,it is positively correlated with grouting pressures(GPs)and negatively correlated with the distance from the injection point.At higher GPs,the difference in densification effect around the injection point after compaction grouting was significant.Interestingly,variations in ultimate dry density and peak earth pressures perpendicular to the injection direction exhibited axisymmetric behavior around the injection point when comparing the dry density and earth pressure results.Furthermore,soil densification resulted in a decrease in suction.However,no significant effect of GP on suction at different soil positions was observed.Moreover,compaction efficiency decreased with increasing distance from the injection point,showing a strong linear relationship.In addition,the model results for the effective compaction range were basically consistent with the extrapolated values from the experimental results.
基金supported by the National Natural Science Foundation of China(Grant Nos.52038005 and 52278342)the Natural Science Foundation of Tianjin Municipal(Grant No.23JCJQJC00160).
文摘Real-time assessment of subgrade compaction quality poses a significant challenge in the implementation of intelligent compaction(IC).Current compaction evaluation models are confined to specific scenarios and lack robustness.This study proposes a subgrade compaction strategy that utilizes a heterogeneous dataset to estimate compaction quality across diverse scenarios while maintaining model accuracy.Field compaction tests are conducted in four distinct scenarios,considering various construction parameters.Compaction models are developed using several machine learning algorithms.The datasets are thoroughly assessed in terms of quality,diversity and similarity.The proposed model exhibits good performance in new scenarios by incorporating an additional 5%e8%of new data for retraining.The model's generalization capability is enhanced by conducting a limited number of field tests,which are labor-saving and time-efficient.The model's accuracy consistently improves across diverse scenarios and optimal algorithms.The proposed compaction strategy adopts a physics-and-data dual-driven approach,aimed at practical engineering applications and guiding the compaction procedure.
基金supported by the National Science Fund for Distinguished Young Scholars(52225403)the National Natural Science Foundation of China(42077244).
文摘The study of the mechanical property and damage state of coal materials under compression is a fundamental area of research in underground mining engineering.Drawing upon the compaction effect and linear energy dissipation(LED)law,a novel compressive damage constitutive model for brittle coal is proposed.Utilizing the energy-defined damage method for mate-rials,the LED law is innovatively introduced to accurately characterize the energy dissipation during the loading process,and a novel formula for characterizing the damage variable of brittle coal is proposed.On this basis,considering that the constitutive model based on the hypothesis of strain equivalence is incapable of accurately describing the compaction effect exhibited by coal material during the compression process,a correction coefficient is proposed and apply it in the novel damage constitutive model.The established conventional monotone loading and single-cyclic loading-unloading uniaxial compression damage constitutive models have been validated using experimental data from cylindrical and cuboid coal specimens.In addition,compared with the constitutive model obtained via the traditional energy calculation method based on the hypothesis that the unloading curve is a straight line,the constitutive model employing LED law can describe the stress-strain state of brittle coal more precisely.This approach introduces a new perspective and enhances the convenience for constructing the constitutive model based on energy theory.
基金supported by the National Natural Science Foundation of China(No.U21A20400)the Natural Science Foundation of Beijing(No.8217153264)the Key Project of Beijing University of Chinese Medicine(No.2022-JYB-JBZR-004),China.
文摘Myelin formation is considered the last true“invention”in the evolution of vertebrate nervous system cell structure.The rapid jumping pulse propagation achieved by myelin enables the high conduction speed that is the basis of human movement,sensation,and cognitive function.As a key structure in the brain,white matter is the gathering place of myelin.However,with age,white matter-associated functions become abnormal and a large number of myelin sheaths undergo degenerative changes,causing serious neurological and cognitive disorders.Despite the extensive time and effort invested in exploring myelination and its functions,numerous unresolved issues and challenges persist.In-depth exploration of the functional role of myelin may bring new inspiration for the treatment of central nervous system(CNS)diseases and even mental illnesses.In this study,we conducted a comprehensive examination of the structure and key molecules of the myelin in the CNS,delving into its formation process.Specifically,we propose a new hypothesis regarding the source of power for myelin expansion in which membrane compaction may serve as a driving force for myelin extension.The implications of this hypothesis could provide valuable insights into the pathophysiology of diseases involving myelin malfunction and open new avenues for therapeutic intervention in myelin-related disorders.
基金the China Postdoctoral Science Foundation(Grant No.2024MD753992)Shaanxi Geotechnical Mechanics and Engineering Young Talent Support Program Project(Grant No.YESS2024005)the National Natural Science Foundation of China(Grant No.41931285).
文摘In this study,compacted loess samples with varying compaction water content but identical dry density were prepared to investigate the evolution of their hydraulic conductivity and compression behavior.Additionally,environmental scanning electron microscopy(ESEM)and nuclear magnetic resonance(NMR)analyses were conducted to gain microstructural insights into loess behavior at the laboratory scale.The results indicate that the maximum saturated hydraulic conductivity is observed at the lowest compaction water content,particularly in the early stage of permeability tests.In particular,for loess compacted at water contents below the optimum(as determined by the modified Proctor compaction test),the hydraulic conductivity decreases throughout the permeability tests.Conversely,when the water content exceeds the optimum level,the hydraulic conductivity shows an increasing trend.In terms of compression behavior,when the as-compacted samples are loaded in oedometer conditions,an increase in material compressibility is observed with increasing compaction water content.Again,a different phenomenological behavior was observed when the compaction water content exceeded the optimum,i.e.an abrupt increase in loess compressibility.ESEM tests provide microstructural confirmation of this evidence,as the surface morphology of the compacted loess changes significantly with increasing compaction water content.The microstructural evolution was also quantified in terms of area ratio using image processing software.Finally,NMR was used to quantify the intra-and inter-aggregate water at different compaction water contents,once again highlighting a threshold for the presence or absence of inter-aggregate water similar to the optimum water content.
基金Project (51004040) supported by the National Natural Science Foundation of ChinaProject (20110952K) supported by Open Research Fund of State Key Laboratory of Powder Metallurgy of Central South University, China
文摘Three Ti-6Al-4V alloy powders with median diameters of 103, 66 and 44 pm, respectively, were pressed by high-velocity compaction (HVC) technology and then sintered in vacuum. The effects of particle sizes on forming as well as properties of sintered samples were investigated. The results show that fine powders are more difficult to press than coarse powders and its compact density is lower too. But the sintered density of fine powders is obviously higher than that of coarse powders. Compared with the powders with 103 and 66 ~un in diameter, the green density with 44 ~rn diameter powders is lower, which is 85.1% of theoretical density (TD) at an impact energy of 913 J. After sintering at 1300 ~C for 2,5 h, the sintered density of the compacts with 44 pm diameter powders is the highest, and reaches 98.2% of TD. Moreover, the sintered sample with 44 pan in diameter has the highest hardness and compressive strength, which are HV 354 and 1265 MPa, respectively.
文摘As agricultural mechanization is becoming more and more popular, soil compaction, on basis of agricultural machinery, has become a serious problem that can not be ignored. Soil compaction, which is caused by frequent til age and large load in the field, may have different effects on various properties of soil. Soil com-paction may result in different conditions, such as increased soil density and the mechanical resistance, and decreased soil ventilation and the capacity of water holding and storage, but uptaking capacity of chemical elements is restricted. There-fore, soil compaction has some negative impacts on soil properties, physical y, chemical y, or biological y, as wel as plant growth. This research analyzed the cause and the harm of soil compaction in recent years, and some effective mea-sures were proposed to improve soil compaction, in order to reduce the extent of soil compaction caused by agricultural machinery.
基金Project of National Natural Science Fund for the Youth,China(No.51208473)The Key Project for Science and Technology of Shanxi,China(No.20130313010-3)
文摘The paper takes a new campus project site of Shanxi university town for example, tests the influence of dynamic com- paction vibration and vibration isolation effect of isolation trench on this ground, and compares the influences of the dynamic compaction vibration on surrounding buildings with isolation trench and without it. Furthermore, the attenuation law of dy- namic compaction vibration in fill foundation of the loess area under different tamping energy and how to determine safe distance of dynamic compaction construction are studied. And then the quantitative relationship between acceleration and vibration source in new campus project site is presented. We derive the evaluation method that dynamic compaction construction affects adjacent buildings by contrasting with the existing standards and norms. The monitoring results show that isolation trench makes the amplitude attenuation of the horizontal velocity of dynamic compaction vibration reach above 75%, and the safe dis- tance be 30 m under the tamping energy of 6 000 kN · m. Therefore, isolation trench is better for vibration reduction under dynamic compaction construction.
文摘In this paper, a study of sandy soil compaction with different granulometry and moisture content has been performed, and soil mechanical property variations in moisture and granulometry have been investigated. Investigations were performed to compare hydrostatic compression test (HCT) responses and evaluate the compression index, Cc, which is an indicator of the soil's susceptibility to compaction-induced damage. The experiments have been performed on 24 soil samples typologies. Each sample has been obtained by combining three types of soil granulometry (types A, B and C) with a relative content varying from 0% to 100% in 20% increments. Soil type A had a granulometry ranging between 0.5 mm and 1 mm, type B between 0.25 mm and 0.5 mm, and type C less than 0.25 mm. These samples were representative of a sandy soil, chemically inactive and had various granulometries and initial moisture contents. A cell for HCT has been set up to allow the initial volume measurement of the test pieces and the subsequent changes during HCT with an estimated error less than 0.1 cm3. All samples were pre-compacted and prepared in agreement with the actual standards. The experimental data are reported in diagrams, the data allowed comparison of the mechanical behaviors between the considered unsaturated soils and underlined how soil moisture and granulometry affect soil response during HCT. Furthermore, because of the methodology used, the equipment was very economical.
基金Acknowledgement The authors of this paper thank the financial support from National Natural Science Foundation of China through project No.50478096.
文摘The collapsibility of loess, which can be effectively eliminated by the dynamic compaction, does great harm to the safety of constructions. The effect of the dynamic compaction is evaluated through the contrast and analysis of the physical and mechanical properties of the collapsible loess before and after dynamic compacting. The compacting effect can be divided into three phases along the depth, and the most effective improved depth is from 3 to 8 m.
基金The National Natural Science Foundation of China(No.51108081)
文摘To investigate migration and evolution rules of coarse aggregates in the static compaction process, an algorithm of generating digital coarse aggregates that can reflect real morphology( such as shape, size and fracture surface) of aggregate particles, is represented by polyhedral particles based on the discrete element method( DEM). A digital specimen comprised of aggregates and air voids is developed. In addition,a static compaction model consisting of a digital specimen and three plates is constructed and a series of evaluation indices such as mean contact force σMCF, wall stress in direction of zcoordinate σWSZZ, porosity and coordination numbers are presented to investigate the motion rules of coarse aggregates at different compaction displacements of 7. 5, 15 and 30 mm. The three-dimensional static compaction model is also verified with laboratory measurements. The results indicate that the compaction displacements are positively related to σMCF and σWSZZ, which increase gradually with the increase in iterative steps. When the compaction proceeds, the digital specimen porosity decreases, but the coordination number increases. The variation ranges of these four indices are different at different compaction displacements. This study provides a method to analyze the compaction mechanism of particle materials such as asphalt mixture and graded broken stone.
基金supported by the Project Funded by the National Basic Research Program of China (No. 2013CB227905)the Fundamental Research Funds for the Central Universities of China University of Mining and Technology of China (No. 2014YC02)
文摘Based on the compaction characteristic test and the nonlinear compaction deformation characteristics of backfill material, this paper applies the theory of nonlinear elastic foundation of thin plate to establish a mechanical model of backfill body and roof in solid dense backfill coal mining. This study critically analyses the deflection equation of the roof by the energy method, derives the conditions of roof breakage and combined with concrete engineering practice analyses, determines roof movement regularity and stability in solid dense backfill mining. Analysis of the engineering practice of the 13,120 backfill panel of Pingmei 12# mine shows the theoretical maximum of roof convergence in backfill mining to be415 mm which is in significant agreement with the measured value. During the advancing process of solid backfill mining at the panel, the maximum tensile stress on the roof is less than its tensile strength which does not satisfy the conditions for roof breakage. Drilling results on the roof and ground pressure monitoring show that the integrity of roof is strong, which is consistent with the theoretical calculations described in this study. The results presented in the study provide a basis for further investigation into strata movement theory in solid dense backfill mining.
基金co-funded by the German Federal Ministry of Economics and Technology(BMWi)under contract number 02E10377by the European Commission(EC)as the part of the Euratom’s Seventh Framework Programme FP7/2007-2013 under grant agreement No.323273 for the DOPAS project
文摘Characterisation and understanding of the stressestrainepermeability behaviour of a clay host rock during damage and recompaction are essential for prediction of excavation damaged zone and for assessment of its impact on the repository safety. This important issue has been experimentally studied in triaxial compression tests on the Callovo-Oxfordian clay rock in this study. The samples were sequentially loaded by(1) hydrostatic precompaction to close up sampling-induced microcracks,(2)applying deviatoric stresses to determine damage and permeability changes, and(3) recompression along different loading paths to examine reversibility of the damage. The critical stress conditions at the onset of dilatancy, permeability percolation, failure strength, and residual strength are determined. An empirical model is established for fracturing-induced permeability by considering the effects of connectivity and conductivity of microcracks. The cubic law is validated for the variation of permeability of connected fractures with closure. The experiments and results are also presented and discussed.
基金Project (200550) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of ChinaProject (09JJ1008) supported by Hunan Provincial Natural Science Foundation of China
文摘A new method was proposed to predict the limited compaction grouting pressure for the soft soils. Theoretical basis of the method considered the conical shear failure above the grout bulb. Using the Mohr-Coulomb yield criterion as the initial yield function, the limited compaction grouting pressure was determined, according to the softening elastic-plastic model based on the conventional triaxial compression tests to simulate the strain softening soils. The small strain in the elastic zone and large stain in the plastic zone and the rational yield function for the strain softening phase stage, the analytical solutions to the compaction grouting pressure were presented. The results indicate reasonable agreement and show a good potential of the proposed method for rationally optimizing the design of compaction grouting operations.
文摘Die wall lubrication was applied on warm compaction powder metallurgy in hope to reduce the concentration level of the admixed lubricant since lubricant is harmful to the mechanical property of the sintered materials. Iron-based samples were prepared by die wall lubricated warm compaction at 135 ℃ and 175 ℃, using polytetrafluoroethylene (PTFE) emulsion as die wall lubricant. A compacting pressure of 700 MPa and 550 MPa were used. The admixed lubricant concentration ranging from 0 to 0.6 wt.% was used in this study. Compared with non-die wall lubricated samples, the die wall lubricated samples have higher green densities. Results show that in addition to the decrease in ejection forces, green density of the compacts increased linearly with the decrease in admixed lubricant content. Mechanical property of the sintered compacts increase sharply when the admixed lubricant concentration reduced to 0.125 wt.% or less. Ejection force data indicated that samples with die wall lubrication show lower ejection forces when compared with samples without die wall lubrication. No scoring was observed in all experiments even for samples contain no admixed lubricant. Our results indicated that under experimental condition used in this study, no matter at which compaction pressure, compaction temperature, graphite and lubricant contents in the powder the die wall lubricated warm compaction would give the highest green density and lowest ejection force. It can be concluded that combination of die wall lubrication and warm compaction can provide P/M products with higher density and better quality. It is a feasible way to produce high performance P/M parts if suitable die wall lubrication system was applied.
基金This study was financially supported by the National Natural Science Foundation of China(Nos.51978292,42077254 and 51874144).
文摘In this paper,the cyclic constitutive equations were proposed to describe the constitutive behavior of cyclic loading and unloading.Firstly,a coupled damage variable was derived,which contains two parts,i.e.,the compaction-induced damage and the cracking-induced damage.The compaction-induced damage variable was derived from a nonlinear stress–strain relation of the initial compaction stage,and the cracking-induced damage variable was established based on the statistical damage theory.Secondly,based on the total damage variable,a damage constitutive equation was proposed to describe the constitutive relation of rock under the monotonic uniaxial compression conditions,whereafter,the application of this model is extended to cyclic loading and unloading conditions.To validate the proposed monotonic and cyclic constitutive equations,a series of mechanical tests for marble specimens were carried out,which contained the monotonic uniaxial compression(MUC)experiment,cyclic uniaxial compression experiments under the variable amplitude(CUC-VA)and constant amplitude(CUC-CA)conditions.The results show that the proposed total damage variable comprehensively reflects the damage evolution characteristic,i.e.,the damage variable firstly decreases,then increases no matter under the conditions of MUC,CUC-VA or CUC-CA.Then a reasonable consistency is observed between the experimental and theoretical curves.The proposed cyclic constitutive equations can simulate the whole cyclic loading and unloading behaviors,such as the initial compaction,the strain hardening and the strain softening.Furthermore,the shapes of the theoretical curves are controlled by the modified coefficient,compaction sensitivity coefficient and two Weibull distributed parameters.
文摘By phenomenological analysis of warm compaction, it is found that, compared with the contribution of particle plastical deformation to densification of powder compact,the particle rearrangement is a dominant densification mechanism for powder warm compaction, and the plastical deformation of particles plays an important role in offering accommodating deformation for particle rearrangement and densifying powder compact at the final stage of pressing.In order to attain density gain as high as possible during warm compaction, six rules for designing warm compacting powder mixtures were proposed in detail.
基金Project(51878164) supported by the National Natural Science Foundation of ChinaProjects(BK20161421, BK20140109) supported by the Natural Science Foundation of Jiangsu Province, China+4 种基金Project(141076) supported by the Huoyingdong Foundation of the Ministry of Education of ChinaProject(BZ2017011) supported by the Science and Technology Support Project of Jiangsu Province, ChinaProject(2242015R30027) supported by the Fundamental Research Funds for the Central Universities, ChinaProject(grant number KFJ170106) supported by the Changsha University of Science & Technology via Open Fund of National Engineering Laboratory of Highway Maintenance Technology, ChinaProject(2018B51) supported by the Science and Technology Support Project of Qilu Transportation Development Group, China。
文摘During the compaction of a road subgrade, the mechanical parameters of the soil mass change in real time, but current research assumes that these parameters remain unchanged. In order to address this discrepancy, this paper establishes a relationship between the degree of compaction K and strain ε. The relationship between the compaction degree K and the shear strength of soil(cohesion c and frictional angle φ) was clearly established through indoor experiments. The subroutine UMAT in ABAQUS finite element numerical software was developed to realize an accurate calculation of the subgrade soil compaction quality. This value was compared and analyzed against the assumed compaction value of the model, thereby verifying the accuracy of the intelligent compaction calculation results for subgrade soil. On this basis, orthogonal tests of the influential factors(frequency, amplitude, and quality) for the degree of compaction and sensitivity analysis were carried out. Finally, the ‘acceleration intelligent compaction value’, which is based on the acceleration signal, is proposed for a compaction meter value that indicates poor accuracy. The research results can provide guidance and basis for further research into the accurate control of compaction quality for roadbeds and pavements.