Myelin formation is considered the last true“invention”in the evolution of vertebrate nervous system cell structure.The rapid jumping pulse propagation achieved by myelin enables the high conduction speed that is th...Myelin formation is considered the last true“invention”in the evolution of vertebrate nervous system cell structure.The rapid jumping pulse propagation achieved by myelin enables the high conduction speed that is the basis of human movement,sensation,and cognitive function.As a key structure in the brain,white matter is the gathering place of myelin.However,with age,white matter-associated functions become abnormal and a large number of myelin sheaths undergo degenerative changes,causing serious neurological and cognitive disorders.Despite the extensive time and effort invested in exploring myelination and its functions,numerous unresolved issues and challenges persist.In-depth exploration of the functional role of myelin may bring new inspiration for the treatment of central nervous system(CNS)diseases and even mental illnesses.In this study,we conducted a comprehensive examination of the structure and key molecules of the myelin in the CNS,delving into its formation process.Specifically,we propose a new hypothesis regarding the source of power for myelin expansion in which membrane compaction may serve as a driving force for myelin extension.The implications of this hypothesis could provide valuable insights into the pathophysiology of diseases involving myelin malfunction and open new avenues for therapeutic intervention in myelin-related disorders.展开更多
Overpressure in deepwater basins not only causes serious soft sediment deformation, but also significantly affects the safety of drilling operations. Therefore, prediction of overpressure in sediments has become an im...Overpressure in deepwater basins not only causes serious soft sediment deformation, but also significantly affects the safety of drilling operations. Therefore, prediction of overpressure in sediments has become an important task in deepwater oil exploration and development. In this study, we analyze the drilling data from ODP Leg 184 Sites 1144, 1146, and 1148, and IODP Leg 349 Sites U1431, U1432, U1433, and U1435 to study the sediment compaction and controls in the northern South China Sea. Sedimentation rate, sediment content, distribution area, and buried depth are the factors that influence sediment compaction in the deepwater basin of the South China Sea. Among these factors, the sediment content is the most important. The fitted normal compacted coefficients and mudline porosity for an interval of 50 m shows disciplinary variation versus depth. The pore pressure predicted from different fitted results shows varying overpressure situations. The normal compaction trend from Site 1144 reflects the porosity variation trend in stable deposition basins in the northern South China Sea. The predicted pore pressure shows overpressure at Site 1144, which is attributed to compaction disequilibrium. Nevertheless, the mixed lithology column may influence the predicted overpressure at Site 1148, which is responsible for the confusing result. Above all, we find that sediment compaction should serve as a proxy for pore pressure in the deepwater basin of the South China Sea.展开更多
Compaction grouting is primarily applied based on empiricism,and it is challenging to quantify its densification effect.To address this issue,five sets of laboratory model tests on ideal compaction grouting were condu...Compaction grouting is primarily applied based on empiricism,and it is challenging to quantify its densification effect.To address this issue,five sets of laboratory model tests on ideal compaction grouting were conducted,with varying pressures from 400 kPa to 800 kPa,to quantitatively evaluate the densification effect in unsaturated soils.The response of surrounding soil during compaction grouting was monitored.The changes in dry density and void ratio induced by compaction grouting were obtained by monitoring volumetric water content to determine compaction efficiency.In addition,a model was developed and validated to predict the effective compaction range.The results show that soil dry density increased rapidly during compaction grouting before being stabilized at a consistent level.As expected,it is positively correlated with grouting pressures(GPs)and negatively correlated with the distance from the injection point.At higher GPs,the difference in densification effect around the injection point after compaction grouting was significant.Interestingly,variations in ultimate dry density and peak earth pressures perpendicular to the injection direction exhibited axisymmetric behavior around the injection point when comparing the dry density and earth pressure results.Furthermore,soil densification resulted in a decrease in suction.However,no significant effect of GP on suction at different soil positions was observed.Moreover,compaction efficiency decreased with increasing distance from the injection point,showing a strong linear relationship.In addition,the model results for the effective compaction range were basically consistent with the extrapolated values from the experimental results.展开更多
CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed gra...CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed graphite-CeO_(2) interfaces to enhance solar-driven photothermal catalytic DRM.Compared with carbon nanotubes-modified CeO_(2)(CeO_(2)-CNT),graphite-modified CeO_(2)(CeO_(2)-GRA)constructed graphite-CeO_(2) interfaces with distortion in CeO_(2),leading to the formation abundant oxygen vacancies.These graphite-CeO_(2) interfaces with oxygen vacancies enhanced optical absorption and promoted the generation and separation of photogenerated carriers.The high endothermic capacity of graphite elevated the catalyst surface temperature from 592.1−691.3℃,boosting light-to-thermal conversion.The synergy between photogenerated carriers and localized heat enabled Ni/CeO_(2)-GRA to achieve a CO production rate of 9985.6 mmol/(g·h)(vs 7192.4 mmol/(g·h)for Ni/CeO_(2))and a light-to-fuel efficiency of 21.8%(vs 13.8%for Ni/CeO_(2)).This work provides insights for designing graphite-semiconductor interfaces to advance photothermal catalytic efficiency.展开更多
In today's fast-paced modern life, whether for fitness training, outdoor adventures, or daily commutes, we all yearn for quick-dry apparel that can rapidly wick away moisture and keep our bodies dry and comfortabl...In today's fast-paced modern life, whether for fitness training, outdoor adventures, or daily commutes, we all yearn for quick-dry apparel that can rapidly wick away moisture and keep our bodies dry and comfortable. As a standout in functional textiles, quick-dry fabrics are becoming the top choice for more and more people, thanks to their exceptional moisture-wicking performance and rapid drying capabilities.展开更多
Purpose-The indoor vibration compaction test(IVCT)was a key step in controlling the compaction quality for high-speed railway graded aggregate(HRGA),which currently had a research gap on the assessment indicators and ...Purpose-The indoor vibration compaction test(IVCT)was a key step in controlling the compaction quality for high-speed railway graded aggregate(HRGA),which currently had a research gap on the assessment indicators and compaction parameters.Design/methodology/approach-To address these issues,a novel multi-indicator IVCT method was proposed,including physical indicator dry density(ρd)and mechanical indicators dynamic stiffness(Krb)and bearing capacity coefficient(K20).Then,a series of IVCTs on HRGA under different compaction parameters were conducted with an improved vibration compactor,which could monitor the physical-mechanical indicators in real-time.Finally,the optimal vibration compaction parameters,including the moisture content(ω),the diameter-to-maximum particle size ratio(Rd),the thickness-to-maximum particle size ratio(Rh),the vibration frequency(f),the vibration mass(Mc)and the eccentric distance(re),were determined based on the evolution characteristics for the physical-mechanical indicators during compaction.Findings-All results indicated that theρd gradually increased and then stabilized,and the Krb initially increased and then decreased.Moreover,the inflection time of the Krb was present as the optimal compaction time(Tlp)during compaction.Additionally,optimal compaction was achieved whenωwas the water-holding content after mud pumping,Rd was 3.4,Rh was 3.5,f was the resonance frequency,and the ratio between the excitation force and the Mc was 1.8.Originality/value-The findings of this paper were significant for the quality control of HRGA compaction.展开更多
In this study,compacted loess samples with varying compaction water content but identical dry density were prepared to investigate the evolution of their hydraulic conductivity and compression behavior.Additionally,en...In this study,compacted loess samples with varying compaction water content but identical dry density were prepared to investigate the evolution of their hydraulic conductivity and compression behavior.Additionally,environmental scanning electron microscopy(ESEM)and nuclear magnetic resonance(NMR)analyses were conducted to gain microstructural insights into loess behavior at the laboratory scale.The results indicate that the maximum saturated hydraulic conductivity is observed at the lowest compaction water content,particularly in the early stage of permeability tests.In particular,for loess compacted at water contents below the optimum(as determined by the modified Proctor compaction test),the hydraulic conductivity decreases throughout the permeability tests.Conversely,when the water content exceeds the optimum level,the hydraulic conductivity shows an increasing trend.In terms of compression behavior,when the as-compacted samples are loaded in oedometer conditions,an increase in material compressibility is observed with increasing compaction water content.Again,a different phenomenological behavior was observed when the compaction water content exceeded the optimum,i.e.an abrupt increase in loess compressibility.ESEM tests provide microstructural confirmation of this evidence,as the surface morphology of the compacted loess changes significantly with increasing compaction water content.The microstructural evolution was also quantified in terms of area ratio using image processing software.Finally,NMR was used to quantify the intra-and inter-aggregate water at different compaction water contents,once again highlighting a threshold for the presence or absence of inter-aggregate water similar to the optimum water content.展开更多
Ni-based catalysts hold great potential in the light-driven dry reforming of methane(DRM)for syngas production due to their low cost and comparable catalytic performance to conventional noble-metal catalysts.However,t...Ni-based catalysts hold great potential in the light-driven dry reforming of methane(DRM)for syngas production due to their low cost and comparable catalytic performance to conventional noble-metal catalysts.However,the currently available Ni-based catalysts are confronted with low light-driven DRM efficiency and poor stability attributed to the coking.Herein,an atomically dispersed Ni-loaded CeO_(2)(Ni/CeO_(2))for light-drivenDRMis prepared by employing a polyol-mediated doping method to allow the high loading concentration of Ni on the CeO_(2),which overcomes the conventional atomically dispersed metal problem of low loading content.The atomically dispersed nature of the Ni can induce enormous CH4 activation sites for the reaction and photothermal effects for driving the reaction,while the CeO_(2) can facilitateCO_(2) activation.Therefore,the optimized atomically dispersed Ni-loaded CeO_(2) demonstrates an excellent light-drivenDRMperformance forH_(2)(626.5 mmol gcat^(-1) h^(-1))and CO(728.5 mmol gcat^(-1) h^(-1))production.More importantly,the optimized sample sustains its DRM performance after 100 h of continuous test,and such excellent stability of the presence of enormous Ni–O pairs can prevent the rapid conversion of CH_(x) intermediates into coke.This work demonstrates the meticulous design of non-noble metal catalysts for the lightdriven DRM with both high performance and stability.展开更多
AIM:To investigate the association between active corneal epithelial dendritic cells(CEDCs)and ocular pain in patients with dry eye disease(DED).METHODS:This cross-sectional study enrolled 67 DED patients,who were div...AIM:To investigate the association between active corneal epithelial dendritic cells(CEDCs)and ocular pain in patients with dry eye disease(DED).METHODS:This cross-sectional study enrolled 67 DED patients,who were divided into two groups based on numerical rating scale(NRS)scores:the mild pain group(n=44)and the moderate-to-severe pain group(n=23).In vivo confocal microscopy(IVCM)was used to image the subbasal layer of the central cornea.Corneal nerve characteristics were analyzed using ACCMetrics software,while CEDCs were quantified manually with Image J software.Regression and correlation analyses were performed to assess the impact of active CEDCs on ocular pain.Additionally,the Luminex method was employed to compare the concentrations of inflammation-related cytokines in tears between patients with≥2 CEDCs and those with<2 CEDCs.Differences in cytokine levels between the two groups were analyzed using Student’s t-test.RESULTS:The study included 44 eyes of 44 patients with mild ocular pain(12 males and 32 females)and 23 eyes of 23 patients with moderate-to-severe ocular pain(3 males and 20 females).The mean age was 36.2±13.5y in the mild pain group and 39.7±12.4y in the moderate to severe pain group.There were no significant differences in age or sex between the two groups(P=0.30;P=0.19).Multivariable regression analysis showed that older age[odds ratio(OR)=1.05,95%confidence interval(CI)1.00–1.11]and a higher number of CEDCs(OR=1.80,95%CI 1.17–2.76)were associated with ocular pain.Patients with≥2 CEDCs had significantly higher tear concentrations of interleukin(IL)-6(P<0.05),IL-8(P<0.05),and tumor necrosis factor(TNF)-α(P<0.05)compared to those with<2 active CEDCs.CONCLUSION:The findings suggest that infiltrating CEDCs in the corneal subbasal layer are a potential risk factor for ocular pain in DED.展开更多
The study of the mechanical property and damage state of coal materials under compression is a fundamental area of research in underground mining engineering.Drawing upon the compaction effect and linear energy dissip...The study of the mechanical property and damage state of coal materials under compression is a fundamental area of research in underground mining engineering.Drawing upon the compaction effect and linear energy dissipation(LED)law,a novel compressive damage constitutive model for brittle coal is proposed.Utilizing the energy-defined damage method for mate-rials,the LED law is innovatively introduced to accurately characterize the energy dissipation during the loading process,and a novel formula for characterizing the damage variable of brittle coal is proposed.On this basis,considering that the constitutive model based on the hypothesis of strain equivalence is incapable of accurately describing the compaction effect exhibited by coal material during the compression process,a correction coefficient is proposed and apply it in the novel damage constitutive model.The established conventional monotone loading and single-cyclic loading-unloading uniaxial compression damage constitutive models have been validated using experimental data from cylindrical and cuboid coal specimens.In addition,compared with the constitutive model obtained via the traditional energy calculation method based on the hypothesis that the unloading curve is a straight line,the constitutive model employing LED law can describe the stress-strain state of brittle coal more precisely.This approach introduces a new perspective and enhances the convenience for constructing the constitutive model based on energy theory.展开更多
Deep geological repository is typically situated at depths ranging from several hundred to 1000 m below ground,making bentonite engineered barrier potentially vulnerable to high water pressure and even inducing hydrau...Deep geological repository is typically situated at depths ranging from several hundred to 1000 m below ground,making bentonite engineered barrier potentially vulnerable to high water pressure and even inducing hydraulic fracturing.This study conducted injection tests on compacted GMZ(Gaomiaozi)bentonite with a self-developed visualization set-up.The objective was to unveil the roles of dry density,water content,and pressurization rate in hydraulic fracturing from the perspective of fracturing macromorphological dynamics and breakthrough characteristics.Moreover,the relationships between breakthrough characteristics and microstructure were examined by MIP(mercury intrusion porosimetry)analysis.Results showed that the fracturing dynamics were characterized by three stages:hydration,cracking,and fracturing stages.Compared to water content and pressurization rate,dry density exerted more pronounced effects on these stages.Increasing dry density can lead to an expansion of circular hydration zone,a more complex cracking network,and a change in fracturing patterns from long and clear to short and fuzzy.In terms of breakthrough characteristics,the breakthrough pressure was positively correlated with dry density and negatively correlated with water content.Interestingly,there is a good and unique logarithmic correlation between the breakthrough pressure and the ratio eM/em of inter-aggregate void ratio and intra-aggregate void ratio,regardless of dry density and water content.Within a certain range(i.e.200-50 kPa/min),breakthrough pressure showed slight dependency on pressurization rate.Nevertheless,an extremely low pressurization rate of 20 kPa/min caused a transition for the specimen from quasi-brittle to plastic state owning to more water infiltration,thereby hindering fracture initiation and propagation.展开更多
Real-time assessment of subgrade compaction quality poses a significant challenge in the implementation of intelligent compaction(IC).Current compaction evaluation models are confined to specific scenarios and lack ro...Real-time assessment of subgrade compaction quality poses a significant challenge in the implementation of intelligent compaction(IC).Current compaction evaluation models are confined to specific scenarios and lack robustness.This study proposes a subgrade compaction strategy that utilizes a heterogeneous dataset to estimate compaction quality across diverse scenarios while maintaining model accuracy.Field compaction tests are conducted in four distinct scenarios,considering various construction parameters.Compaction models are developed using several machine learning algorithms.The datasets are thoroughly assessed in terms of quality,diversity and similarity.The proposed model exhibits good performance in new scenarios by incorporating an additional 5%e8%of new data for retraining.The model's generalization capability is enhanced by conducting a limited number of field tests,which are labor-saving and time-efficient.The model's accuracy consistently improves across diverse scenarios and optimal algorithms.The proposed compaction strategy adopts a physics-and-data dual-driven approach,aimed at practical engineering applications and guiding the compaction procedure.展开更多
BACKGROUND Dry eye disease(DED)is a multifactorial ocular surface disorder with rising prevalence.It is closely related to systemic health and psychological factors,such as sleep and mood disorders,which significantly...BACKGROUND Dry eye disease(DED)is a multifactorial ocular surface disorder with rising prevalence.It is closely related to systemic health and psychological factors,such as sleep and mood disorders,which significantly impact the quality of life of patients.AIM To explore the correlations between ocular surface function,sleep quality,and anxiety/depression in patients with DED.METHODS This was a cross-sectional investigative study that included 358 patients with DED between January 2022 and January 2025.Ocular surface was assessed using the ocular surface disease index(OSDI),tear film break-up time,fluorescein staining score,and Schirmer I test.The Pittsburgh Sleep Quality Index(PSQI),Self-Rating Anxiety Scale(SAS),and Self-Rating Depression Scale(SDS)were used to evaluate sleep quality and anxiety/depression levels.Correlation and linear regression analyses were used to explore the relationships.RESULTS The mean PSQI score of the patients was 9.94±2.18;the mean SAS score was 47.30±4.90,and the mean SDS score was 50.08±5.52.These suggested a prevalence of sleep and psychological abnormalities.There was a significant correlation between the indicators of ocular surface function(OSDI,tear film break-up time,fluorescein staining,and Schirmer I test)and PSQI,SAS,and SDS scores(P<0.05).Moreover,multiple regression revealed that age≥50 years(β=1.55,P=0.029),PSQI scores(β=0.58,P<0.001),SAS scores(β=0.17,P=0.017),and SDS scores(β=0.15,P=0.019)were independent predictors of the OSDI scores.CONCLUSION Ocular surface function in patients with DED is closely related to sleep quality and anxiety/depression,emphasizing the need for holistic clinical management.展开更多
BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints...BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints,and patient safety concerns have constrained its practicality.Simulation-based training has become a reliable,safe,and cost-efficient alternative.Dry lab techniques,especially virtual and augmented reality,make up 78%of current dry lab research,whereas wet labs still set the standard for anatomical realism.AIM To evaluate the effectiveness,limitations,and future directions of wet and dry lab simulation in orthopaedic training.METHODS A scoping review was carried out across four databases-PubMed,Cochrane Library,Web of Science,and EBSCOhost-up to 2025.Medical Subject Headings included:"Orthopaedic Education","Wet Lab","Dry Lab","Simulation Training","Virtual Reality",and"Surgical Procedure".Eligible studies focused on orthopaedic or spinal surgical education,employed wet or dry lab techniques,and assessed training effectiveness.Exclusion criteria consisted of non-English publications,abstracts only,non-orthopaedic research,and studies unrelated to simulation.Two reviewers independently screened titles,abstracts,and full texts,resolving discrepancies with a third reviewer.RESULTS From 1851 records,101 studies met inclusion:78 on dry labs,7 on wet labs,4 on both.Virtual reality(VR)simulations were most common,with AI increasingly used for feedback and assessment.Cadaveric training remains the gold standard for accuracy and tactile feedback,while dry labs-especially VR-offer scalability,lower cost(40%-60%savings in five studies),and accessibility for novices.Senior residents prefer wet labs for complex tasks;juniors favour dry labs for basics.Challenges include limited transferability data,lack of standard outcome metrics,and ethical concerns about cadaver use and AI assessment.CONCLUSION Wet and dry labs each have unique strengths in orthopaedic training.A hybrid approach combining both,supported by standardised assessments and outcome studies,is most effective.Future efforts should aim for uniform reporting,integrating new technologies,and policy support for hybrid curricula to enhance skills and patient care.展开更多
Compaction due to urbanization and farm operations disrupt natural soil profiles,increase impervious surface areas and decrease vegetative cover.These disruptions increase storm-water runoff at the expense of ground w...Compaction due to urbanization and farm operations disrupt natural soil profiles,increase impervious surface areas and decrease vegetative cover.These disruptions increase storm-water runoff at the expense of ground water recharge,degrading water quality and impairing aquatic habitats.A completely randomized experiment was conducted at the OSU/South Centers,Piketon,OH to assess the effect of Daikon radish(Raphanus sativus L.var.oleiferus)on alleviating compaction.Treatments included long-term tillage,long-term no-till(NT)and a fallow soil compacted with farm equipment with and without Daikon radish.Radish was sown in mid-August and plants were winter-killed at the onset of first frost when the temperature dropped to-2.22°C(28°F).To assess progress in compaction alleviation,a model was developed to extrapolate information on soil porosity as an indicator of hydrological properties of soils.Earthworm population dynamics were also considered as a bio-indicator of compaction alleviation.The adoption of radish used as bio-drilling,alleviated overall compaction by 40%with reductions ranging from 90%at 0-13 cm to 30%at 56-64 cm depth.The fallow compacted soil with radish had the highest population of earthworm with total body mass of 3.6 kg·m-3,followed by NT at 0.8 kg·m^-3,and till at 0.4 kg·m^-3(p<0.05).Mean values of soil porosity were increased by 44%with radish compared to the fields without radish.This increase ranged from 71%in the upper soil depths(0-13 cm depth)to 25%in the lower depths(56-64 cm depths).Use of bio-drilling has potential to synergistically alleviate the effect of compaction,minimize flash-flooding and improve water quality.展开更多
Three Ti-6Al-4V alloy powders with median diameters of 103, 66 and 44 pm, respectively, were pressed by high-velocity compaction (HVC) technology and then sintered in vacuum. The effects of particle sizes on forming...Three Ti-6Al-4V alloy powders with median diameters of 103, 66 and 44 pm, respectively, were pressed by high-velocity compaction (HVC) technology and then sintered in vacuum. The effects of particle sizes on forming as well as properties of sintered samples were investigated. The results show that fine powders are more difficult to press than coarse powders and its compact density is lower too. But the sintered density of fine powders is obviously higher than that of coarse powders. Compared with the powders with 103 and 66 ~un in diameter, the green density with 44 ~rn diameter powders is lower, which is 85.1% of theoretical density (TD) at an impact energy of 913 J. After sintering at 1300 ~C for 2,5 h, the sintered density of the compacts with 44 pm diameter powders is the highest, and reaches 98.2% of TD. Moreover, the sintered sample with 44 pan in diameter has the highest hardness and compressive strength, which are HV 354 and 1265 MPa, respectively.展开更多
As agricultural mechanization is becoming more and more popular, soil compaction, on basis of agricultural machinery, has become a serious problem that can not be ignored. Soil compaction, which is caused by frequent ...As agricultural mechanization is becoming more and more popular, soil compaction, on basis of agricultural machinery, has become a serious problem that can not be ignored. Soil compaction, which is caused by frequent til age and large load in the field, may have different effects on various properties of soil. Soil com-paction may result in different conditions, such as increased soil density and the mechanical resistance, and decreased soil ventilation and the capacity of water holding and storage, but uptaking capacity of chemical elements is restricted. There-fore, soil compaction has some negative impacts on soil properties, physical y, chemical y, or biological y, as wel as plant growth. This research analyzed the cause and the harm of soil compaction in recent years, and some effective mea-sures were proposed to improve soil compaction, in order to reduce the extent of soil compaction caused by agricultural machinery.展开更多
Two new AlTiN coated cemented carbide drills with Al content of 40% and 55% in weight are developed for high efficiency dry drilling of 40Cr. By studying tool durability, machined hole quality, tool wear mechanism, ch...Two new AlTiN coated cemented carbide drills with Al content of 40% and 55% in weight are developed for high efficiency dry drilling of 40Cr. By studying tool durability, machined hole quality, tool wear mechanism, chip deformation, and lubrication, the dry drilling performance of the two kinds of coated drills is analyzed. Experimental results show that the AlTiN coated drills are suitable for high efficiency dry drilling and can obtain higher quality of machined holes. The tool durability of the drill with 55% Al content is 1. 3 times of that of the drill with 40% Al content at the cutting speed of 90 m/min. The wear mechanism of two AlTiN coatings are studied in experiments. During dry drilling process, oxidative wear appears in both two kinds of drills. The oxide film is formed on the top of the coated drill containing Al content of 55%. And the oxide film helps to increase its high temperature resistance and decrease the coating flaking, thus the drill is failed because of coating subsidence. The drill with less Al content is failed due to peeling and breakage. The lubricated condition in dry drilling is improved by the high Al content coating. It helps to reduce the cutting deformation and benefits to improve the quality of machined holes. The AlTiN coating with higher Al content shows longer tool life and higher quality of machined holes in high efficiency dry drilling. Its tool life increases by 30% compared with that of the coating with less Al content.展开更多
The paper takes a new campus project site of Shanxi university town for example, tests the influence of dynamic com- paction vibration and vibration isolation effect of isolation trench on this ground, and compares th...The paper takes a new campus project site of Shanxi university town for example, tests the influence of dynamic com- paction vibration and vibration isolation effect of isolation trench on this ground, and compares the influences of the dynamic compaction vibration on surrounding buildings with isolation trench and without it. Furthermore, the attenuation law of dy- namic compaction vibration in fill foundation of the loess area under different tamping energy and how to determine safe distance of dynamic compaction construction are studied. And then the quantitative relationship between acceleration and vibration source in new campus project site is presented. We derive the evaluation method that dynamic compaction construction affects adjacent buildings by contrasting with the existing standards and norms. The monitoring results show that isolation trench makes the amplitude attenuation of the horizontal velocity of dynamic compaction vibration reach above 75%, and the safe dis- tance be 30 m under the tamping energy of 6 000 kN · m. Therefore, isolation trench is better for vibration reduction under dynamic compaction construction.展开更多
To investigate migration and evolution rules of coarse aggregates in the static compaction process, an algorithm of generating digital coarse aggregates that can reflect real morphology( such as shape, size and fract...To investigate migration and evolution rules of coarse aggregates in the static compaction process, an algorithm of generating digital coarse aggregates that can reflect real morphology( such as shape, size and fracture surface) of aggregate particles, is represented by polyhedral particles based on the discrete element method( DEM). A digital specimen comprised of aggregates and air voids is developed. In addition,a static compaction model consisting of a digital specimen and three plates is constructed and a series of evaluation indices such as mean contact force σMCF, wall stress in direction of zcoordinate σWSZZ, porosity and coordination numbers are presented to investigate the motion rules of coarse aggregates at different compaction displacements of 7. 5, 15 and 30 mm. The three-dimensional static compaction model is also verified with laboratory measurements. The results indicate that the compaction displacements are positively related to σMCF and σWSZZ, which increase gradually with the increase in iterative steps. When the compaction proceeds, the digital specimen porosity decreases, but the coordination number increases. The variation ranges of these four indices are different at different compaction displacements. This study provides a method to analyze the compaction mechanism of particle materials such as asphalt mixture and graded broken stone.展开更多
基金supported by the National Natural Science Foundation of China(No.U21A20400)the Natural Science Foundation of Beijing(No.8217153264)the Key Project of Beijing University of Chinese Medicine(No.2022-JYB-JBZR-004),China.
文摘Myelin formation is considered the last true“invention”in the evolution of vertebrate nervous system cell structure.The rapid jumping pulse propagation achieved by myelin enables the high conduction speed that is the basis of human movement,sensation,and cognitive function.As a key structure in the brain,white matter is the gathering place of myelin.However,with age,white matter-associated functions become abnormal and a large number of myelin sheaths undergo degenerative changes,causing serious neurological and cognitive disorders.Despite the extensive time and effort invested in exploring myelination and its functions,numerous unresolved issues and challenges persist.In-depth exploration of the functional role of myelin may bring new inspiration for the treatment of central nervous system(CNS)diseases and even mental illnesses.In this study,we conducted a comprehensive examination of the structure and key molecules of the myelin in the CNS,delving into its formation process.Specifically,we propose a new hypothesis regarding the source of power for myelin expansion in which membrane compaction may serve as a driving force for myelin extension.The implications of this hypothesis could provide valuable insights into the pathophysiology of diseases involving myelin malfunction and open new avenues for therapeutic intervention in myelin-related disorders.
基金funded by the Fundamental Research Program of MOST (No. 2015CB251201)the Scientific and Technological Innovation Project Financially Supported by Qingdao National Laboratory for Marine Science and Technology (No. 2016ASKJ13)the Natural Science Foundation of Hainan (No. ZDYF2016215)
文摘Overpressure in deepwater basins not only causes serious soft sediment deformation, but also significantly affects the safety of drilling operations. Therefore, prediction of overpressure in sediments has become an important task in deepwater oil exploration and development. In this study, we analyze the drilling data from ODP Leg 184 Sites 1144, 1146, and 1148, and IODP Leg 349 Sites U1431, U1432, U1433, and U1435 to study the sediment compaction and controls in the northern South China Sea. Sedimentation rate, sediment content, distribution area, and buried depth are the factors that influence sediment compaction in the deepwater basin of the South China Sea. Among these factors, the sediment content is the most important. The fitted normal compacted coefficients and mudline porosity for an interval of 50 m shows disciplinary variation versus depth. The pore pressure predicted from different fitted results shows varying overpressure situations. The normal compaction trend from Site 1144 reflects the porosity variation trend in stable deposition basins in the northern South China Sea. The predicted pore pressure shows overpressure at Site 1144, which is attributed to compaction disequilibrium. Nevertheless, the mixed lithology column may influence the predicted overpressure at Site 1148, which is responsible for the confusing result. Above all, we find that sediment compaction should serve as a proxy for pore pressure in the deepwater basin of the South China Sea.
基金the National Natural Science Foundation of China(Grant Nos.42172298,42002289)the Shanghai Geological Star Program for their financial support.
文摘Compaction grouting is primarily applied based on empiricism,and it is challenging to quantify its densification effect.To address this issue,five sets of laboratory model tests on ideal compaction grouting were conducted,with varying pressures from 400 kPa to 800 kPa,to quantitatively evaluate the densification effect in unsaturated soils.The response of surrounding soil during compaction grouting was monitored.The changes in dry density and void ratio induced by compaction grouting were obtained by monitoring volumetric water content to determine compaction efficiency.In addition,a model was developed and validated to predict the effective compaction range.The results show that soil dry density increased rapidly during compaction grouting before being stabilized at a consistent level.As expected,it is positively correlated with grouting pressures(GPs)and negatively correlated with the distance from the injection point.At higher GPs,the difference in densification effect around the injection point after compaction grouting was significant.Interestingly,variations in ultimate dry density and peak earth pressures perpendicular to the injection direction exhibited axisymmetric behavior around the injection point when comparing the dry density and earth pressure results.Furthermore,soil densification resulted in a decrease in suction.However,no significant effect of GP on suction at different soil positions was observed.Moreover,compaction efficiency decreased with increasing distance from the injection point,showing a strong linear relationship.In addition,the model results for the effective compaction range were basically consistent with the extrapolated values from the experimental results.
文摘CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed graphite-CeO_(2) interfaces to enhance solar-driven photothermal catalytic DRM.Compared with carbon nanotubes-modified CeO_(2)(CeO_(2)-CNT),graphite-modified CeO_(2)(CeO_(2)-GRA)constructed graphite-CeO_(2) interfaces with distortion in CeO_(2),leading to the formation abundant oxygen vacancies.These graphite-CeO_(2) interfaces with oxygen vacancies enhanced optical absorption and promoted the generation and separation of photogenerated carriers.The high endothermic capacity of graphite elevated the catalyst surface temperature from 592.1−691.3℃,boosting light-to-thermal conversion.The synergy between photogenerated carriers and localized heat enabled Ni/CeO_(2)-GRA to achieve a CO production rate of 9985.6 mmol/(g·h)(vs 7192.4 mmol/(g·h)for Ni/CeO_(2))and a light-to-fuel efficiency of 21.8%(vs 13.8%for Ni/CeO_(2)).This work provides insights for designing graphite-semiconductor interfaces to advance photothermal catalytic efficiency.
文摘In today's fast-paced modern life, whether for fitness training, outdoor adventures, or daily commutes, we all yearn for quick-dry apparel that can rapidly wick away moisture and keep our bodies dry and comfortable. As a standout in functional textiles, quick-dry fabrics are becoming the top choice for more and more people, thanks to their exceptional moisture-wicking performance and rapid drying capabilities.
基金funded by the National Key R&D Program“Transportation Infrastructure”project(No.2022YFB2603400)the Technology Research and Development Plan Program of China State Railway Group Co.,Ltd.(No.Q2024T001)the National project pre research project of Suzhou City University(No.2023SGY019).
文摘Purpose-The indoor vibration compaction test(IVCT)was a key step in controlling the compaction quality for high-speed railway graded aggregate(HRGA),which currently had a research gap on the assessment indicators and compaction parameters.Design/methodology/approach-To address these issues,a novel multi-indicator IVCT method was proposed,including physical indicator dry density(ρd)and mechanical indicators dynamic stiffness(Krb)and bearing capacity coefficient(K20).Then,a series of IVCTs on HRGA under different compaction parameters were conducted with an improved vibration compactor,which could monitor the physical-mechanical indicators in real-time.Finally,the optimal vibration compaction parameters,including the moisture content(ω),the diameter-to-maximum particle size ratio(Rd),the thickness-to-maximum particle size ratio(Rh),the vibration frequency(f),the vibration mass(Mc)and the eccentric distance(re),were determined based on the evolution characteristics for the physical-mechanical indicators during compaction.Findings-All results indicated that theρd gradually increased and then stabilized,and the Krb initially increased and then decreased.Moreover,the inflection time of the Krb was present as the optimal compaction time(Tlp)during compaction.Additionally,optimal compaction was achieved whenωwas the water-holding content after mud pumping,Rd was 3.4,Rh was 3.5,f was the resonance frequency,and the ratio between the excitation force and the Mc was 1.8.Originality/value-The findings of this paper were significant for the quality control of HRGA compaction.
基金the China Postdoctoral Science Foundation(Grant No.2024MD753992)Shaanxi Geotechnical Mechanics and Engineering Young Talent Support Program Project(Grant No.YESS2024005)the National Natural Science Foundation of China(Grant No.41931285).
文摘In this study,compacted loess samples with varying compaction water content but identical dry density were prepared to investigate the evolution of their hydraulic conductivity and compression behavior.Additionally,environmental scanning electron microscopy(ESEM)and nuclear magnetic resonance(NMR)analyses were conducted to gain microstructural insights into loess behavior at the laboratory scale.The results indicate that the maximum saturated hydraulic conductivity is observed at the lowest compaction water content,particularly in the early stage of permeability tests.In particular,for loess compacted at water contents below the optimum(as determined by the modified Proctor compaction test),the hydraulic conductivity decreases throughout the permeability tests.Conversely,when the water content exceeds the optimum level,the hydraulic conductivity shows an increasing trend.In terms of compression behavior,when the as-compacted samples are loaded in oedometer conditions,an increase in material compressibility is observed with increasing compaction water content.Again,a different phenomenological behavior was observed when the compaction water content exceeded the optimum,i.e.an abrupt increase in loess compressibility.ESEM tests provide microstructural confirmation of this evidence,as the surface morphology of the compacted loess changes significantly with increasing compaction water content.The microstructural evolution was also quantified in terms of area ratio using image processing software.Finally,NMR was used to quantify the intra-and inter-aggregate water at different compaction water contents,once again highlighting a threshold for the presence or absence of inter-aggregate water similar to the optimum water content.
基金financial support from the National Key R&D Program of China(2022YFE0126500)the National Natural Science Foundation of China(52261135635.52372165,U23A2091,22150610467)+1 种基金the Natural Science Foundation of Anhui Province(2308085MB32)the Scientific and Technological Research Council of Turkey(TUBITAK,122N434).
文摘Ni-based catalysts hold great potential in the light-driven dry reforming of methane(DRM)for syngas production due to their low cost and comparable catalytic performance to conventional noble-metal catalysts.However,the currently available Ni-based catalysts are confronted with low light-driven DRM efficiency and poor stability attributed to the coking.Herein,an atomically dispersed Ni-loaded CeO_(2)(Ni/CeO_(2))for light-drivenDRMis prepared by employing a polyol-mediated doping method to allow the high loading concentration of Ni on the CeO_(2),which overcomes the conventional atomically dispersed metal problem of low loading content.The atomically dispersed nature of the Ni can induce enormous CH4 activation sites for the reaction and photothermal effects for driving the reaction,while the CeO_(2) can facilitateCO_(2) activation.Therefore,the optimized atomically dispersed Ni-loaded CeO_(2) demonstrates an excellent light-drivenDRMperformance forH_(2)(626.5 mmol gcat^(-1) h^(-1))and CO(728.5 mmol gcat^(-1) h^(-1))production.More importantly,the optimized sample sustains its DRM performance after 100 h of continuous test,and such excellent stability of the presence of enormous Ni–O pairs can prevent the rapid conversion of CH_(x) intermediates into coke.This work demonstrates the meticulous design of non-noble metal catalysts for the lightdriven DRM with both high performance and stability.
基金Supported by the National Natural Science Foundation of China(No.82171022No.81974128).
文摘AIM:To investigate the association between active corneal epithelial dendritic cells(CEDCs)and ocular pain in patients with dry eye disease(DED).METHODS:This cross-sectional study enrolled 67 DED patients,who were divided into two groups based on numerical rating scale(NRS)scores:the mild pain group(n=44)and the moderate-to-severe pain group(n=23).In vivo confocal microscopy(IVCM)was used to image the subbasal layer of the central cornea.Corneal nerve characteristics were analyzed using ACCMetrics software,while CEDCs were quantified manually with Image J software.Regression and correlation analyses were performed to assess the impact of active CEDCs on ocular pain.Additionally,the Luminex method was employed to compare the concentrations of inflammation-related cytokines in tears between patients with≥2 CEDCs and those with<2 CEDCs.Differences in cytokine levels between the two groups were analyzed using Student’s t-test.RESULTS:The study included 44 eyes of 44 patients with mild ocular pain(12 males and 32 females)and 23 eyes of 23 patients with moderate-to-severe ocular pain(3 males and 20 females).The mean age was 36.2±13.5y in the mild pain group and 39.7±12.4y in the moderate to severe pain group.There were no significant differences in age or sex between the two groups(P=0.30;P=0.19).Multivariable regression analysis showed that older age[odds ratio(OR)=1.05,95%confidence interval(CI)1.00–1.11]and a higher number of CEDCs(OR=1.80,95%CI 1.17–2.76)were associated with ocular pain.Patients with≥2 CEDCs had significantly higher tear concentrations of interleukin(IL)-6(P<0.05),IL-8(P<0.05),and tumor necrosis factor(TNF)-α(P<0.05)compared to those with<2 active CEDCs.CONCLUSION:The findings suggest that infiltrating CEDCs in the corneal subbasal layer are a potential risk factor for ocular pain in DED.
基金supported by the National Science Fund for Distinguished Young Scholars(52225403)the National Natural Science Foundation of China(42077244).
文摘The study of the mechanical property and damage state of coal materials under compression is a fundamental area of research in underground mining engineering.Drawing upon the compaction effect and linear energy dissipation(LED)law,a novel compressive damage constitutive model for brittle coal is proposed.Utilizing the energy-defined damage method for mate-rials,the LED law is innovatively introduced to accurately characterize the energy dissipation during the loading process,and a novel formula for characterizing the damage variable of brittle coal is proposed.On this basis,considering that the constitutive model based on the hypothesis of strain equivalence is incapable of accurately describing the compaction effect exhibited by coal material during the compression process,a correction coefficient is proposed and apply it in the novel damage constitutive model.The established conventional monotone loading and single-cyclic loading-unloading uniaxial compression damage constitutive models have been validated using experimental data from cylindrical and cuboid coal specimens.In addition,compared with the constitutive model obtained via the traditional energy calculation method based on the hypothesis that the unloading curve is a straight line,the constitutive model employing LED law can describe the stress-strain state of brittle coal more precisely.This approach introduces a new perspective and enhances the convenience for constructing the constitutive model based on energy theory.
基金supported by the National Natural Science Foundation of China(Grant Nos.42430713 and 42125701)Innovation Program of Shanghai Municipal Education Commission(Grant No.2023ZKZD26)。
文摘Deep geological repository is typically situated at depths ranging from several hundred to 1000 m below ground,making bentonite engineered barrier potentially vulnerable to high water pressure and even inducing hydraulic fracturing.This study conducted injection tests on compacted GMZ(Gaomiaozi)bentonite with a self-developed visualization set-up.The objective was to unveil the roles of dry density,water content,and pressurization rate in hydraulic fracturing from the perspective of fracturing macromorphological dynamics and breakthrough characteristics.Moreover,the relationships between breakthrough characteristics and microstructure were examined by MIP(mercury intrusion porosimetry)analysis.Results showed that the fracturing dynamics were characterized by three stages:hydration,cracking,and fracturing stages.Compared to water content and pressurization rate,dry density exerted more pronounced effects on these stages.Increasing dry density can lead to an expansion of circular hydration zone,a more complex cracking network,and a change in fracturing patterns from long and clear to short and fuzzy.In terms of breakthrough characteristics,the breakthrough pressure was positively correlated with dry density and negatively correlated with water content.Interestingly,there is a good and unique logarithmic correlation between the breakthrough pressure and the ratio eM/em of inter-aggregate void ratio and intra-aggregate void ratio,regardless of dry density and water content.Within a certain range(i.e.200-50 kPa/min),breakthrough pressure showed slight dependency on pressurization rate.Nevertheless,an extremely low pressurization rate of 20 kPa/min caused a transition for the specimen from quasi-brittle to plastic state owning to more water infiltration,thereby hindering fracture initiation and propagation.
基金supported by the National Natural Science Foundation of China(Grant Nos.52038005 and 52278342)the Natural Science Foundation of Tianjin Municipal(Grant No.23JCJQJC00160).
文摘Real-time assessment of subgrade compaction quality poses a significant challenge in the implementation of intelligent compaction(IC).Current compaction evaluation models are confined to specific scenarios and lack robustness.This study proposes a subgrade compaction strategy that utilizes a heterogeneous dataset to estimate compaction quality across diverse scenarios while maintaining model accuracy.Field compaction tests are conducted in four distinct scenarios,considering various construction parameters.Compaction models are developed using several machine learning algorithms.The datasets are thoroughly assessed in terms of quality,diversity and similarity.The proposed model exhibits good performance in new scenarios by incorporating an additional 5%e8%of new data for retraining.The model's generalization capability is enhanced by conducting a limited number of field tests,which are labor-saving and time-efficient.The model's accuracy consistently improves across diverse scenarios and optimal algorithms.The proposed compaction strategy adopts a physics-and-data dual-driven approach,aimed at practical engineering applications and guiding the compaction procedure.
文摘BACKGROUND Dry eye disease(DED)is a multifactorial ocular surface disorder with rising prevalence.It is closely related to systemic health and psychological factors,such as sleep and mood disorders,which significantly impact the quality of life of patients.AIM To explore the correlations between ocular surface function,sleep quality,and anxiety/depression in patients with DED.METHODS This was a cross-sectional investigative study that included 358 patients with DED between January 2022 and January 2025.Ocular surface was assessed using the ocular surface disease index(OSDI),tear film break-up time,fluorescein staining score,and Schirmer I test.The Pittsburgh Sleep Quality Index(PSQI),Self-Rating Anxiety Scale(SAS),and Self-Rating Depression Scale(SDS)were used to evaluate sleep quality and anxiety/depression levels.Correlation and linear regression analyses were used to explore the relationships.RESULTS The mean PSQI score of the patients was 9.94±2.18;the mean SAS score was 47.30±4.90,and the mean SDS score was 50.08±5.52.These suggested a prevalence of sleep and psychological abnormalities.There was a significant correlation between the indicators of ocular surface function(OSDI,tear film break-up time,fluorescein staining,and Schirmer I test)and PSQI,SAS,and SDS scores(P<0.05).Moreover,multiple regression revealed that age≥50 years(β=1.55,P=0.029),PSQI scores(β=0.58,P<0.001),SAS scores(β=0.17,P=0.017),and SDS scores(β=0.15,P=0.019)were independent predictors of the OSDI scores.CONCLUSION Ocular surface function in patients with DED is closely related to sleep quality and anxiety/depression,emphasizing the need for holistic clinical management.
文摘BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints,and patient safety concerns have constrained its practicality.Simulation-based training has become a reliable,safe,and cost-efficient alternative.Dry lab techniques,especially virtual and augmented reality,make up 78%of current dry lab research,whereas wet labs still set the standard for anatomical realism.AIM To evaluate the effectiveness,limitations,and future directions of wet and dry lab simulation in orthopaedic training.METHODS A scoping review was carried out across four databases-PubMed,Cochrane Library,Web of Science,and EBSCOhost-up to 2025.Medical Subject Headings included:"Orthopaedic Education","Wet Lab","Dry Lab","Simulation Training","Virtual Reality",and"Surgical Procedure".Eligible studies focused on orthopaedic or spinal surgical education,employed wet or dry lab techniques,and assessed training effectiveness.Exclusion criteria consisted of non-English publications,abstracts only,non-orthopaedic research,and studies unrelated to simulation.Two reviewers independently screened titles,abstracts,and full texts,resolving discrepancies with a third reviewer.RESULTS From 1851 records,101 studies met inclusion:78 on dry labs,7 on wet labs,4 on both.Virtual reality(VR)simulations were most common,with AI increasingly used for feedback and assessment.Cadaveric training remains the gold standard for accuracy and tactile feedback,while dry labs-especially VR-offer scalability,lower cost(40%-60%savings in five studies),and accessibility for novices.Senior residents prefer wet labs for complex tasks;juniors favour dry labs for basics.Challenges include limited transferability data,lack of standard outcome metrics,and ethical concerns about cadaver use and AI assessment.CONCLUSION Wet and dry labs each have unique strengths in orthopaedic training.A hybrid approach combining both,supported by standardised assessments and outcome studies,is most effective.Future efforts should aim for uniform reporting,integrating new technologies,and policy support for hybrid curricula to enhance skills and patient care.
文摘Compaction due to urbanization and farm operations disrupt natural soil profiles,increase impervious surface areas and decrease vegetative cover.These disruptions increase storm-water runoff at the expense of ground water recharge,degrading water quality and impairing aquatic habitats.A completely randomized experiment was conducted at the OSU/South Centers,Piketon,OH to assess the effect of Daikon radish(Raphanus sativus L.var.oleiferus)on alleviating compaction.Treatments included long-term tillage,long-term no-till(NT)and a fallow soil compacted with farm equipment with and without Daikon radish.Radish was sown in mid-August and plants were winter-killed at the onset of first frost when the temperature dropped to-2.22°C(28°F).To assess progress in compaction alleviation,a model was developed to extrapolate information on soil porosity as an indicator of hydrological properties of soils.Earthworm population dynamics were also considered as a bio-indicator of compaction alleviation.The adoption of radish used as bio-drilling,alleviated overall compaction by 40%with reductions ranging from 90%at 0-13 cm to 30%at 56-64 cm depth.The fallow compacted soil with radish had the highest population of earthworm with total body mass of 3.6 kg·m-3,followed by NT at 0.8 kg·m^-3,and till at 0.4 kg·m^-3(p<0.05).Mean values of soil porosity were increased by 44%with radish compared to the fields without radish.This increase ranged from 71%in the upper soil depths(0-13 cm depth)to 25%in the lower depths(56-64 cm depths).Use of bio-drilling has potential to synergistically alleviate the effect of compaction,minimize flash-flooding and improve water quality.
基金Project (51004040) supported by the National Natural Science Foundation of ChinaProject (20110952K) supported by Open Research Fund of State Key Laboratory of Powder Metallurgy of Central South University, China
文摘Three Ti-6Al-4V alloy powders with median diameters of 103, 66 and 44 pm, respectively, were pressed by high-velocity compaction (HVC) technology and then sintered in vacuum. The effects of particle sizes on forming as well as properties of sintered samples were investigated. The results show that fine powders are more difficult to press than coarse powders and its compact density is lower too. But the sintered density of fine powders is obviously higher than that of coarse powders. Compared with the powders with 103 and 66 ~un in diameter, the green density with 44 ~rn diameter powders is lower, which is 85.1% of theoretical density (TD) at an impact energy of 913 J. After sintering at 1300 ~C for 2,5 h, the sintered density of the compacts with 44 pm diameter powders is the highest, and reaches 98.2% of TD. Moreover, the sintered sample with 44 pan in diameter has the highest hardness and compressive strength, which are HV 354 and 1265 MPa, respectively.
文摘As agricultural mechanization is becoming more and more popular, soil compaction, on basis of agricultural machinery, has become a serious problem that can not be ignored. Soil compaction, which is caused by frequent til age and large load in the field, may have different effects on various properties of soil. Soil com-paction may result in different conditions, such as increased soil density and the mechanical resistance, and decreased soil ventilation and the capacity of water holding and storage, but uptaking capacity of chemical elements is restricted. There-fore, soil compaction has some negative impacts on soil properties, physical y, chemical y, or biological y, as wel as plant growth. This research analyzed the cause and the harm of soil compaction in recent years, and some effective mea-sures were proposed to improve soil compaction, in order to reduce the extent of soil compaction caused by agricultural machinery.
文摘Two new AlTiN coated cemented carbide drills with Al content of 40% and 55% in weight are developed for high efficiency dry drilling of 40Cr. By studying tool durability, machined hole quality, tool wear mechanism, chip deformation, and lubrication, the dry drilling performance of the two kinds of coated drills is analyzed. Experimental results show that the AlTiN coated drills are suitable for high efficiency dry drilling and can obtain higher quality of machined holes. The tool durability of the drill with 55% Al content is 1. 3 times of that of the drill with 40% Al content at the cutting speed of 90 m/min. The wear mechanism of two AlTiN coatings are studied in experiments. During dry drilling process, oxidative wear appears in both two kinds of drills. The oxide film is formed on the top of the coated drill containing Al content of 55%. And the oxide film helps to increase its high temperature resistance and decrease the coating flaking, thus the drill is failed because of coating subsidence. The drill with less Al content is failed due to peeling and breakage. The lubricated condition in dry drilling is improved by the high Al content coating. It helps to reduce the cutting deformation and benefits to improve the quality of machined holes. The AlTiN coating with higher Al content shows longer tool life and higher quality of machined holes in high efficiency dry drilling. Its tool life increases by 30% compared with that of the coating with less Al content.
基金Project of National Natural Science Fund for the Youth,China(No.51208473)The Key Project for Science and Technology of Shanxi,China(No.20130313010-3)
文摘The paper takes a new campus project site of Shanxi university town for example, tests the influence of dynamic com- paction vibration and vibration isolation effect of isolation trench on this ground, and compares the influences of the dynamic compaction vibration on surrounding buildings with isolation trench and without it. Furthermore, the attenuation law of dy- namic compaction vibration in fill foundation of the loess area under different tamping energy and how to determine safe distance of dynamic compaction construction are studied. And then the quantitative relationship between acceleration and vibration source in new campus project site is presented. We derive the evaluation method that dynamic compaction construction affects adjacent buildings by contrasting with the existing standards and norms. The monitoring results show that isolation trench makes the amplitude attenuation of the horizontal velocity of dynamic compaction vibration reach above 75%, and the safe dis- tance be 30 m under the tamping energy of 6 000 kN · m. Therefore, isolation trench is better for vibration reduction under dynamic compaction construction.
基金The National Natural Science Foundation of China(No.51108081)
文摘To investigate migration and evolution rules of coarse aggregates in the static compaction process, an algorithm of generating digital coarse aggregates that can reflect real morphology( such as shape, size and fracture surface) of aggregate particles, is represented by polyhedral particles based on the discrete element method( DEM). A digital specimen comprised of aggregates and air voids is developed. In addition,a static compaction model consisting of a digital specimen and three plates is constructed and a series of evaluation indices such as mean contact force σMCF, wall stress in direction of zcoordinate σWSZZ, porosity and coordination numbers are presented to investigate the motion rules of coarse aggregates at different compaction displacements of 7. 5, 15 and 30 mm. The three-dimensional static compaction model is also verified with laboratory measurements. The results indicate that the compaction displacements are positively related to σMCF and σWSZZ, which increase gradually with the increase in iterative steps. When the compaction proceeds, the digital specimen porosity decreases, but the coordination number increases. The variation ranges of these four indices are different at different compaction displacements. This study provides a method to analyze the compaction mechanism of particle materials such as asphalt mixture and graded broken stone.