Myelin formation is considered the last true“invention”in the evolution of vertebrate nervous system cell structure.The rapid jumping pulse propagation achieved by myelin enables the high conduction speed that is th...Myelin formation is considered the last true“invention”in the evolution of vertebrate nervous system cell structure.The rapid jumping pulse propagation achieved by myelin enables the high conduction speed that is the basis of human movement,sensation,and cognitive function.As a key structure in the brain,white matter is the gathering place of myelin.However,with age,white matter-associated functions become abnormal and a large number of myelin sheaths undergo degenerative changes,causing serious neurological and cognitive disorders.Despite the extensive time and effort invested in exploring myelination and its functions,numerous unresolved issues and challenges persist.In-depth exploration of the functional role of myelin may bring new inspiration for the treatment of central nervous system(CNS)diseases and even mental illnesses.In this study,we conducted a comprehensive examination of the structure and key molecules of the myelin in the CNS,delving into its formation process.Specifically,we propose a new hypothesis regarding the source of power for myelin expansion in which membrane compaction may serve as a driving force for myelin extension.The implications of this hypothesis could provide valuable insights into the pathophysiology of diseases involving myelin malfunction and open new avenues for therapeutic intervention in myelin-related disorders.展开更多
Optimization and simplification of optical systems represent a milestone in advancing the development of handheld and portable laser-induced breakdown spectroscopy(LIBS)systems towards smaller,more integrated forms.Th...Optimization and simplification of optical systems represent a milestone in advancing the development of handheld and portable laser-induced breakdown spectroscopy(LIBS)systems towards smaller,more integrated forms.This research,for the first time,conducted a comprehensive optimization design and comparative analysis of three compact LIBS system optical paths:the paraxial optical path(OP),the off-axis OP,and the reflective OP.The differences in spectral intensity and stability among these paths were revealed,providing a scientific basis for selecting the optimal OP for LIBS systems.The research found that the paraxial OP excels in spectral performance and quantitative analysis accuracy,making it the preferred choice for compact LIBS systems.Specifically,the paraxial OP significantly enhances spectral intensity,achieving a 6 times improvement over the off-axis OP and an even more remarkable 150 times increase compared to the reflective OP,greatly enhancing detection sensitivity.Additionally,the relative standard deviation,spectral stability index,maintains a consistently low level,ranging from 10.9%to 13.4%,significantly outperforming the other two OPs and ensuring the reliability of analytical results.In the field of quantitative analysis,the paraxial OP also demonstrates higher accuracy,precision,and sensitivity,comparing to other OPs.The quantitative analysis models for Si,Cu,and Ti elements exhibit excellent fitting,providing users with high-quality quantitative analysis results that are of great significance for applications in material science,environmental monitoring,industrial inspection,and other fields.In summary,this study not only confirms the enormous application potential of the paraxial OP in compact LIBS systems but also provides valuable practical experience and theoretical support for the miniaturization and integration of LIBS systems.Looking ahead,with continuous technological advancements,the design of the paraxial OP is expected to further propel the widespread adoption of LIBS technology in portable,on-site detection applications.展开更多
This research presents a compact,high-gain millimeter-wave antenna tailored for reliable 5 G communication in high-speed railway environments.The proposed antenna supports dual-band operation at 28 GHz(n257/n258)and 3...This research presents a compact,high-gain millimeter-wave antenna tailored for reliable 5 G communication in high-speed railway environments.The proposed antenna supports dual-band operation at 28 GHz(n257/n258)and 38 GHz(n260),enabling robust Vehicle-to-Infrastructure(V2I)links required for next-generation railway systems.The radiator occupies only 12 mm×8mm on a Rogers 6010LM substrate(ε_(r)=10.2,h=0.64 mm).A Metallic Ground-Backing(MGB)reflector,positioned 9mm behind the patch—λ/4 at 28 GHz—enhances forward radiation,suppresses back-lobes,and ensures highly directional coverage along railway tracks.The antenna achieves measured peak gains of 7.96 dBi at 28 GHz and 8.20 dBi at 38 GHz,with excellent impedance matching and stable radiation patterns under mobility scenarios.Its unique combination of compact footprint,reflectoraided gain enhancement,and stable dual-band performance under dynamic conditions distinguishes it from conventional millimeter-wave solutions,making it a strong candidate for 5G-based high-speed railway communication modules and arrays.展开更多
A compact torus injection system,KTX-CTI,has been developed for the planned injection experiments on the Keda Torus e Xperiment(KTX)reversed field pinch(RFP)device to investigate the physics and engineering issues ass...A compact torus injection system,KTX-CTI,has been developed for the planned injection experiments on the Keda Torus e Xperiment(KTX)reversed field pinch(RFP)device to investigate the physics and engineering issues associated with interaction between a compact torus(CT)and RFP.The key interests include fueling directly into the reactor center,confinement improvement,and the injection of momentum and helicity into the RFP discharges.The CT velocity and mass have been measured using a multichannel optical fiber interferometer,and for the first time the time evolution of the CT density profile during CT propagation is obtained.The effects of discharge parameters on the number of injected particles,CT velocity and CT density have been characterized:the maximum hydrogen CT plasma mass,m,CTis 50μg,corresponding to 30%of the mass in a typical KTX plasma;the CT velocity exceeds 120 km s-1.It is observed for the first time that multiple CTs can be produced and emitted during a very short period(<100μs)in one discharge,which is significant for the future study of repetitive CT injection,even with an ultra-high frequency.展开更多
Based on the flow simulation in the condensing zone of compact spinning with lattice apron and a bead-elastic rod dynamic model of the flexible fiber,trajectories of fibers with different negative pressure are simulat...Based on the flow simulation in the condensing zone of compact spinning with lattice apron and a bead-elastic rod dynamic model of the flexible fiber,trajectories of fibers with different negative pressure are simulated by specially designed Matlab procedure.Then displacement components of fibers at YZ profile under different negative pressure conditions are extracted and compared.The results show that the fibers of different initial positions gradually converge,and are interlaced for position change in yarn cross-section,caused by the airflow in the condensing zone.Finally,compact-spun yarn with different negative pressure and conventional ring spun yarn are produced and their twists are tested.Both the results of simulation and experiments illustrate the existence of additional twists.Also the relationship between additional twists and negative pressure is verified.展开更多
Negative pressure plays a very important role in compact spinning system.To know airflow field and its distribution is helpful to look into the condensing principle of fiber bundle.Therefore,computational fluid dynami...Negative pressure plays a very important role in compact spinning system.To know airflow field and its distribution is helpful to look into the condensing principle of fiber bundle.Therefore,computational fluid dynamics(CFD)software was used to simulate airflow field in this paper.Airflow velocity distributions both in different fiber layers and under different negative pressures were discussed.The results indicate that airflow velocity in upper layer of the fiber bundle is greater than that in lower layer.Airflow velocities in both X and Y axis directions have a positive correlation with negative pressure.It can provide a theoretical base to make high quality compact yarns in productive practice.展开更多
An angle trajectory tracking of a 3-DOF (Degree Of Freedom) pneumatic motion platform by the NI Compact RIO control system was investigated. In this study, the positions of moving platform are changed by extension o...An angle trajectory tracking of a 3-DOF (Degree Of Freedom) pneumatic motion platform by the NI Compact RIO control system was investigated. In this study, the positions of moving platform are changed by extension or shortening of the three pneumatic cylinders. The response of pneumatic cylinder is relatively slow for motor actuator and can get a good single-axis trajectory control by traditional P controller, but the trajectory tracking of platform has a delay phenomenon for angle instantly larger change. To improve this situation in this study, Fuzzy system is used in the trajectory pre-compensation. By the angle changes and the angle rates of change in Fuzzy systems, the value of a pre-compensation output and each axis value are calculated using the Jacobian matrix after compensation in each axis. Through experiments, this Fuzzy pre-compensation method is proved to be able to improve the delay situation of angle trajectory tracking.展开更多
In large fusion experiments, such as tokamak devices, there is a common trendfor slow control systems. Because of complexity of the plants, the so-called 'Standard Model' (SM)in slow control has been adopted o...In large fusion experiments, such as tokamak devices, there is a common trendfor slow control systems. Because of complexity of the plants, the so-called 'Standard Model' (SM)in slow control has been adopted on several tokamak machines. This model is based on a three-levelhierarchical control: 1) High-Level Control (HLC) with a supervisory function; 2) Medium-LevelControl (MLC) to interface and concentrate I/O field equipments; 3) Low-Level Control (LLC) withhard real-time I/O function, often managed by PLCs. FTU control system designed with SM concepts hasunderwent several stages of developments in its fifteen years duration of runs. The latestevolution was inevitable, due to the obsolescence of the MLC CPUs, based on VME-MOTOROLA 68030 withOS9 operating system. A large amount of C code was developed for that platform to route the dataflow from LLC, which is constituted by 24 Westinghouse Numalogic PC-700 PLCs with about 8000field-points, to HLC, based on a commercial Object-Oriented Real-Time database on Alpha/CompaqTru64platform. Therefore, we have to look for cost-effective solutions and finally a CompactPCI—Intelx86 platform with Linux operating system was chosen. A software porting has been done, taking intoaccount the differences between OS9 and Linux operating system in terms of Inter/Network ProcessesCommunications and I/O multi-ports serial driver. This paper describes the hardware/softwarearchitecture of the new MLC system, emphasizing the reliability and the low costs of the open sourcesolutions. Moreover, a huge amount of software packages available in open source environment willassure a less painful maintenance, and will open the way to further improvements of the systemitself.展开更多
The compact ortho-mode transducer (OMT) and compact conical corrugated horn(CCCH) are used as feeding system of the deployable dual polarizing antenna in this paper.A new stricture of double-septum in main wave guide ...The compact ortho-mode transducer (OMT) and compact conical corrugated horn(CCCH) are used as feeding system of the deployable dual polarizing antenna in this paper.A new stricture of double-septum in main wave guide OMT is proposed. The finite difference method in time domain (FDTD) in combination with genetic algorithms(GAs) is used to analysis and optimize this new OMT. The experiment results show that the voltage standing wave ratio (VSWR) of this OMT and feeding system is less than 1.17 in bandwidth; the isolation between the ortho-mode ports is less than -40dB; the cross-polar level of the feed can reach -35dB and the length of the main waveguide can be reduced 50% at least.展开更多
This paper presents the fundamental technique of phase generated carrier (PGC) and its realization on compact reconfigurable input and output (RIO) which adopts real-time and field programmable grate array (FPGA...This paper presents the fundamental technique of phase generated carrier (PGC) and its realization on compact reconfigurable input and output (RIO) which adopts real-time and field programmable grate array (FPGA) techniques. Improvement of the PGC technique is also introduced by using peak-to-peak value detection method to reduce the influence of variation of the light intensity. A four-element fibre Bragg gratings (FBG) laser sensor system is conducted in the experiment and the demodulated results demonstrate correlation coefficient as high as 0.995 with the reference signal and the dynamic range to be 120dB@63Hz.展开更多
A compact self-isolated Multi Input Multi Output (MIMO) antennaarray is presented for 5G mobile phone devices. The proposed antenna systemis operating at the 3.5 GHz band (3400–3600 MHz) and consists of eight antenna...A compact self-isolated Multi Input Multi Output (MIMO) antennaarray is presented for 5G mobile phone devices. The proposed antenna systemis operating at the 3.5 GHz band (3400–3600 MHz) and consists of eight antennaelements placed along two side edges of a mobile device, which meets the currenttrend requirements of full-screen smartphone devices. Each antenna element isdivided into two parts, a front part and back part. The front part consists of anI-shaped feeding line and a modified Hilbert fractal monopole antenna, whereasthe back part is an L-shaped element shorted to the system ground by a0.5 mm short stub. A desirable compactness can be obtained by utilizing the Hilbert space-filling property where the antenna element’s overall planar size printedon the side-edge frame is just (9.57 mm × 5.99 mm). The proposed MIMO antenna system has been simulated, analyzed, fabricated and tested. Based on the selfisolated property, good isolation (better than 15 dB) is attained without employingadditional decoupling elements and/or isolation techniques, which increases system complexity and reduces the antenna efficiency. The scattering parameters,antenna efficiencies, antenna gains, and antenna radiation characteristics areinvestigated to assess the proposed antenna performance. For evaluating the proposed antenna array system performance, the Envelope Correlation Coefficients(ECCs), Mean Effective Gains (MEGs) and channel capacity are calculated.Desirable antenna and MIMO performances are evaluated to confirm the suitability of the proposed MIMO antenna system for 5G mobile terminals.展开更多
In this paper, an upper bound of fractal dimension of the compact kernel sections for the dissipative non-autonomous Klein-Gordon-Schr<span style="white-space:nowrap;">ö</span>dinger lat...In this paper, an upper bound of fractal dimension of the compact kernel sections for the dissipative non-autonomous Klein-Gordon-Schr<span style="white-space:nowrap;">ö</span>dinger lattice system is obtained, by applying a criterion for estimating fractal dimension of a family of compact subsets of a separable Hilbert space.展开更多
The 7 MeV/u compact heavy ion cyclotron has been developed for HIMM injector at Institute of Modern Physics.The cyclotron was designed to operate at 31.02 MHz, with a final extraction energy of 7 MeV and beam current ...The 7 MeV/u compact heavy ion cyclotron has been developed for HIMM injector at Institute of Modern Physics.The cyclotron was designed to operate at 31.02 MHz, with a final extraction energy of 7 MeV and beam current of10 A. The cyclotron RF system is an important part, which is required to provide cavity voltage up to 70 kV andcavity field control within 1% amplitude & 0:5? phase.展开更多
We present the scheme of the structure of grading a resistor-heated system ofwarm compaction in powder metallurgy. The structure has the first heater and the second heater thatare heated by electrical tubes. Powder is...We present the scheme of the structure of grading a resistor-heated system ofwarm compaction in powder metallurgy. The structure has the first heater and the second heater thatare heated by electrical tubes. Powder is heated in turn in the first heater and the second heater,where there is the mass fluidity of powder under gravity. The dimensions of the first heater andthe second heater were calculated from the Fourier equation of heat conduction, and the boundarycondition was constant temperature. The drawings of the first heater, the second heater and thepowder-delivering device were given. The structure of the heat equipment is simple and easy tomanufacture. Finally, an exact warm compaction press system HGWY- II was developed for the heatingsystem.展开更多
In this paper,the authors study the fractional Calderon type commutator T_(Ω,α)^(A)and its maximal operator M_(Ω,α)^(A)with kernels having some kinds of Log-type Dini-condition and obtain the compactness on Morrey...In this paper,the authors study the fractional Calderon type commutator T_(Ω,α)^(A)and its maximal operator M_(Ω,α)^(A)with kernels having some kinds of Log-type Dini-condition and obtain the compactness on Morrey spaces L^(p,λ)(R^(n)).展开更多
Purpose-The indoor vibration compaction test(IVCT)was a key step in controlling the compaction quality for high-speed railway graded aggregate(HRGA),which currently had a research gap on the assessment indicators and ...Purpose-The indoor vibration compaction test(IVCT)was a key step in controlling the compaction quality for high-speed railway graded aggregate(HRGA),which currently had a research gap on the assessment indicators and compaction parameters.Design/methodology/approach-To address these issues,a novel multi-indicator IVCT method was proposed,including physical indicator dry density(ρd)and mechanical indicators dynamic stiffness(Krb)and bearing capacity coefficient(K20).Then,a series of IVCTs on HRGA under different compaction parameters were conducted with an improved vibration compactor,which could monitor the physical-mechanical indicators in real-time.Finally,the optimal vibration compaction parameters,including the moisture content(ω),the diameter-to-maximum particle size ratio(Rd),the thickness-to-maximum particle size ratio(Rh),the vibration frequency(f),the vibration mass(Mc)and the eccentric distance(re),were determined based on the evolution characteristics for the physical-mechanical indicators during compaction.Findings-All results indicated that theρd gradually increased and then stabilized,and the Krb initially increased and then decreased.Moreover,the inflection time of the Krb was present as the optimal compaction time(Tlp)during compaction.Additionally,optimal compaction was achieved whenωwas the water-holding content after mud pumping,Rd was 3.4,Rh was 3.5,f was the resonance frequency,and the ratio between the excitation force and the Mc was 1.8.Originality/value-The findings of this paper were significant for the quality control of HRGA compaction.展开更多
We present a compact cold atom platform where an optical grating chip and planar coil chip are placed inside a compact vacuum chamber to create a magneto-optical trap.This approach significantly reduces the system vol...We present a compact cold atom platform where an optical grating chip and planar coil chip are placed inside a compact vacuum chamber to create a magneto-optical trap.This approach significantly reduces the system volume to about 20×20×20 cm^(3) compared to conventional vacuum systems and offers greater flexibility in accessing the trapped atoms.We demonstrate the trapping of 3×10^(5) cold rubidium atoms at a temperature of 100μK in a vacuum pressure below 10^(−7) mbar.The simplified optical geometry,low power consumption,and high degree of integration make this a promising platform for portable and versatile cold-atom devices in quantum sensing,timing,and information processing.展开更多
基金supported by the National Natural Science Foundation of China(No.U21A20400)the Natural Science Foundation of Beijing(No.8217153264)the Key Project of Beijing University of Chinese Medicine(No.2022-JYB-JBZR-004),China.
文摘Myelin formation is considered the last true“invention”in the evolution of vertebrate nervous system cell structure.The rapid jumping pulse propagation achieved by myelin enables the high conduction speed that is the basis of human movement,sensation,and cognitive function.As a key structure in the brain,white matter is the gathering place of myelin.However,with age,white matter-associated functions become abnormal and a large number of myelin sheaths undergo degenerative changes,causing serious neurological and cognitive disorders.Despite the extensive time and effort invested in exploring myelination and its functions,numerous unresolved issues and challenges persist.In-depth exploration of the functional role of myelin may bring new inspiration for the treatment of central nervous system(CNS)diseases and even mental illnesses.In this study,we conducted a comprehensive examination of the structure and key molecules of the myelin in the CNS,delving into its formation process.Specifically,we propose a new hypothesis regarding the source of power for myelin expansion in which membrane compaction may serve as a driving force for myelin extension.The implications of this hypothesis could provide valuable insights into the pathophysiology of diseases involving myelin malfunction and open new avenues for therapeutic intervention in myelin-related disorders.
基金financially supported by National Natural Science Foundation of China (Nos.62305392 and 62305123)Independent Research and Development Project of Naval Engineering University (No.2023504050)the Nursery Plan Project of Navel University of Engineering (2022)。
文摘Optimization and simplification of optical systems represent a milestone in advancing the development of handheld and portable laser-induced breakdown spectroscopy(LIBS)systems towards smaller,more integrated forms.This research,for the first time,conducted a comprehensive optimization design and comparative analysis of three compact LIBS system optical paths:the paraxial optical path(OP),the off-axis OP,and the reflective OP.The differences in spectral intensity and stability among these paths were revealed,providing a scientific basis for selecting the optimal OP for LIBS systems.The research found that the paraxial OP excels in spectral performance and quantitative analysis accuracy,making it the preferred choice for compact LIBS systems.Specifically,the paraxial OP significantly enhances spectral intensity,achieving a 6 times improvement over the off-axis OP and an even more remarkable 150 times increase compared to the reflective OP,greatly enhancing detection sensitivity.Additionally,the relative standard deviation,spectral stability index,maintains a consistently low level,ranging from 10.9%to 13.4%,significantly outperforming the other two OPs and ensuring the reliability of analytical results.In the field of quantitative analysis,the paraxial OP also demonstrates higher accuracy,precision,and sensitivity,comparing to other OPs.The quantitative analysis models for Si,Cu,and Ti elements exhibit excellent fitting,providing users with high-quality quantitative analysis results that are of great significance for applications in material science,environmental monitoring,industrial inspection,and other fields.In summary,this study not only confirms the enormous application potential of the paraxial OP in compact LIBS systems but also provides valuable practical experience and theoretical support for the miniaturization and integration of LIBS systems.Looking ahead,with continuous technological advancements,the design of the paraxial OP is expected to further propel the widespread adoption of LIBS technology in portable,on-site detection applications.
文摘This research presents a compact,high-gain millimeter-wave antenna tailored for reliable 5 G communication in high-speed railway environments.The proposed antenna supports dual-band operation at 28 GHz(n257/n258)and 38 GHz(n260),enabling robust Vehicle-to-Infrastructure(V2I)links required for next-generation railway systems.The radiator occupies only 12 mm×8mm on a Rogers 6010LM substrate(ε_(r)=10.2,h=0.64 mm).A Metallic Ground-Backing(MGB)reflector,positioned 9mm behind the patch—λ/4 at 28 GHz—enhances forward radiation,suppresses back-lobes,and ensures highly directional coverage along railway tracks.The antenna achieves measured peak gains of 7.96 dBi at 28 GHz and 8.20 dBi at 38 GHz,with excellent impedance matching and stable radiation patterns under mobility scenarios.Its unique combination of compact footprint,reflectoraided gain enhancement,and stable dual-band performance under dynamic conditions distinguishes it from conventional millimeter-wave solutions,making it a strong candidate for 5G-based high-speed railway communication modules and arrays.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2017YFE0301700 and 2017YFE0301701)National Natural Science Foundation of China(Nos.11875255,11635008,11375188 and 11975231)。
文摘A compact torus injection system,KTX-CTI,has been developed for the planned injection experiments on the Keda Torus e Xperiment(KTX)reversed field pinch(RFP)device to investigate the physics and engineering issues associated with interaction between a compact torus(CT)and RFP.The key interests include fueling directly into the reactor center,confinement improvement,and the injection of momentum and helicity into the RFP discharges.The CT velocity and mass have been measured using a multichannel optical fiber interferometer,and for the first time the time evolution of the CT density profile during CT propagation is obtained.The effects of discharge parameters on the number of injected particles,CT velocity and CT density have been characterized:the maximum hydrogen CT plasma mass,m,CTis 50μg,corresponding to 30%of the mass in a typical KTX plasma;the CT velocity exceeds 120 km s-1.It is observed for the first time that multiple CTs can be produced and emitted during a very short period(<100μs)in one discharge,which is significant for the future study of repetitive CT injection,even with an ultra-high frequency.
文摘Based on the flow simulation in the condensing zone of compact spinning with lattice apron and a bead-elastic rod dynamic model of the flexible fiber,trajectories of fibers with different negative pressure are simulated by specially designed Matlab procedure.Then displacement components of fibers at YZ profile under different negative pressure conditions are extracted and compared.The results show that the fibers of different initial positions gradually converge,and are interlaced for position change in yarn cross-section,caused by the airflow in the condensing zone.Finally,compact-spun yarn with different negative pressure and conventional ring spun yarn are produced and their twists are tested.Both the results of simulation and experiments illustrate the existence of additional twists.Also the relationship between additional twists and negative pressure is verified.
基金Key Project in National Science & Technology Pillar Program,China(No.2007BAE41B04)
文摘Negative pressure plays a very important role in compact spinning system.To know airflow field and its distribution is helpful to look into the condensing principle of fiber bundle.Therefore,computational fluid dynamics(CFD)software was used to simulate airflow field in this paper.Airflow velocity distributions both in different fiber layers and under different negative pressures were discussed.The results indicate that airflow velocity in upper layer of the fiber bundle is greater than that in lower layer.Airflow velocities in both X and Y axis directions have a positive correlation with negative pressure.It can provide a theoretical base to make high quality compact yarns in productive practice.
文摘An angle trajectory tracking of a 3-DOF (Degree Of Freedom) pneumatic motion platform by the NI Compact RIO control system was investigated. In this study, the positions of moving platform are changed by extension or shortening of the three pneumatic cylinders. The response of pneumatic cylinder is relatively slow for motor actuator and can get a good single-axis trajectory control by traditional P controller, but the trajectory tracking of platform has a delay phenomenon for angle instantly larger change. To improve this situation in this study, Fuzzy system is used in the trajectory pre-compensation. By the angle changes and the angle rates of change in Fuzzy systems, the value of a pre-compensation output and each axis value are calculated using the Jacobian matrix after compensation in each axis. Through experiments, this Fuzzy pre-compensation method is proved to be able to improve the delay situation of angle trajectory tracking.
文摘In large fusion experiments, such as tokamak devices, there is a common trendfor slow control systems. Because of complexity of the plants, the so-called 'Standard Model' (SM)in slow control has been adopted on several tokamak machines. This model is based on a three-levelhierarchical control: 1) High-Level Control (HLC) with a supervisory function; 2) Medium-LevelControl (MLC) to interface and concentrate I/O field equipments; 3) Low-Level Control (LLC) withhard real-time I/O function, often managed by PLCs. FTU control system designed with SM concepts hasunderwent several stages of developments in its fifteen years duration of runs. The latestevolution was inevitable, due to the obsolescence of the MLC CPUs, based on VME-MOTOROLA 68030 withOS9 operating system. A large amount of C code was developed for that platform to route the dataflow from LLC, which is constituted by 24 Westinghouse Numalogic PC-700 PLCs with about 8000field-points, to HLC, based on a commercial Object-Oriented Real-Time database on Alpha/CompaqTru64platform. Therefore, we have to look for cost-effective solutions and finally a CompactPCI—Intelx86 platform with Linux operating system was chosen. A software porting has been done, taking intoaccount the differences between OS9 and Linux operating system in terms of Inter/Network ProcessesCommunications and I/O multi-ports serial driver. This paper describes the hardware/softwarearchitecture of the new MLC system, emphasizing the reliability and the low costs of the open sourcesolutions. Moreover, a huge amount of software packages available in open source environment willassure a less painful maintenance, and will open the way to further improvements of the systemitself.
基金Sponsored by the 873 Plan by Ministry of Science and Technology of China ( 2006AA12Z1137)CSSAR Innovation Project ( 2007)
文摘The compact ortho-mode transducer (OMT) and compact conical corrugated horn(CCCH) are used as feeding system of the deployable dual polarizing antenna in this paper.A new stricture of double-septum in main wave guide OMT is proposed. The finite difference method in time domain (FDTD) in combination with genetic algorithms(GAs) is used to analysis and optimize this new OMT. The experiment results show that the voltage standing wave ratio (VSWR) of this OMT and feeding system is less than 1.17 in bandwidth; the isolation between the ortho-mode ports is less than -40dB; the cross-polar level of the feed can reach -35dB and the length of the main waveguide can be reduced 50% at least.
基金supported by the National 863 Program under Grant No 2007AA03Z415.
文摘This paper presents the fundamental technique of phase generated carrier (PGC) and its realization on compact reconfigurable input and output (RIO) which adopts real-time and field programmable grate array (FPGA) techniques. Improvement of the PGC technique is also introduced by using peak-to-peak value detection method to reduce the influence of variation of the light intensity. A four-element fibre Bragg gratings (FBG) laser sensor system is conducted in the experiment and the demodulated results demonstrate correlation coefficient as high as 0.995 with the reference signal and the dynamic range to be 120dB@63Hz.
文摘A compact self-isolated Multi Input Multi Output (MIMO) antennaarray is presented for 5G mobile phone devices. The proposed antenna systemis operating at the 3.5 GHz band (3400–3600 MHz) and consists of eight antennaelements placed along two side edges of a mobile device, which meets the currenttrend requirements of full-screen smartphone devices. Each antenna element isdivided into two parts, a front part and back part. The front part consists of anI-shaped feeding line and a modified Hilbert fractal monopole antenna, whereasthe back part is an L-shaped element shorted to the system ground by a0.5 mm short stub. A desirable compactness can be obtained by utilizing the Hilbert space-filling property where the antenna element’s overall planar size printedon the side-edge frame is just (9.57 mm × 5.99 mm). The proposed MIMO antenna system has been simulated, analyzed, fabricated and tested. Based on the selfisolated property, good isolation (better than 15 dB) is attained without employingadditional decoupling elements and/or isolation techniques, which increases system complexity and reduces the antenna efficiency. The scattering parameters,antenna efficiencies, antenna gains, and antenna radiation characteristics areinvestigated to assess the proposed antenna performance. For evaluating the proposed antenna array system performance, the Envelope Correlation Coefficients(ECCs), Mean Effective Gains (MEGs) and channel capacity are calculated.Desirable antenna and MIMO performances are evaluated to confirm the suitability of the proposed MIMO antenna system for 5G mobile terminals.
文摘In this paper, an upper bound of fractal dimension of the compact kernel sections for the dissipative non-autonomous Klein-Gordon-Schr<span style="white-space:nowrap;">ö</span>dinger lattice system is obtained, by applying a criterion for estimating fractal dimension of a family of compact subsets of a separable Hilbert space.
文摘The 7 MeV/u compact heavy ion cyclotron has been developed for HIMM injector at Institute of Modern Physics.The cyclotron was designed to operate at 31.02 MHz, with a final extraction energy of 7 MeV and beam current of10 A. The cyclotron RF system is an important part, which is required to provide cavity voltage up to 70 kV andcavity field control within 1% amplitude & 0:5? phase.
文摘We present the scheme of the structure of grading a resistor-heated system ofwarm compaction in powder metallurgy. The structure has the first heater and the second heater thatare heated by electrical tubes. Powder is heated in turn in the first heater and the second heater,where there is the mass fluidity of powder under gravity. The dimensions of the first heater andthe second heater were calculated from the Fourier equation of heat conduction, and the boundarycondition was constant temperature. The drawings of the first heater, the second heater and thepowder-delivering device were given. The structure of the heat equipment is simple and easy tomanufacture. Finally, an exact warm compaction press system HGWY- II was developed for the heatingsystem.
文摘A survey of recent progress on the multiplicity and stability problems for closed characteristics on compact convex hypersurfaces in R^(2n) is given.
文摘In this paper,the authors study the fractional Calderon type commutator T_(Ω,α)^(A)and its maximal operator M_(Ω,α)^(A)with kernels having some kinds of Log-type Dini-condition and obtain the compactness on Morrey spaces L^(p,λ)(R^(n)).
基金funded by the National Key R&D Program“Transportation Infrastructure”project(No.2022YFB2603400)the Technology Research and Development Plan Program of China State Railway Group Co.,Ltd.(No.Q2024T001)the National project pre research project of Suzhou City University(No.2023SGY019).
文摘Purpose-The indoor vibration compaction test(IVCT)was a key step in controlling the compaction quality for high-speed railway graded aggregate(HRGA),which currently had a research gap on the assessment indicators and compaction parameters.Design/methodology/approach-To address these issues,a novel multi-indicator IVCT method was proposed,including physical indicator dry density(ρd)and mechanical indicators dynamic stiffness(Krb)and bearing capacity coefficient(K20).Then,a series of IVCTs on HRGA under different compaction parameters were conducted with an improved vibration compactor,which could monitor the physical-mechanical indicators in real-time.Finally,the optimal vibration compaction parameters,including the moisture content(ω),the diameter-to-maximum particle size ratio(Rd),the thickness-to-maximum particle size ratio(Rh),the vibration frequency(f),the vibration mass(Mc)and the eccentric distance(re),were determined based on the evolution characteristics for the physical-mechanical indicators during compaction.Findings-All results indicated that theρd gradually increased and then stabilized,and the Krb initially increased and then decreased.Moreover,the inflection time of the Krb was present as the optimal compaction time(Tlp)during compaction.Additionally,optimal compaction was achieved whenωwas the water-holding content after mud pumping,Rd was 3.4,Rh was 3.5,f was the resonance frequency,and the ratio between the excitation force and the Mc was 1.8.Originality/value-The findings of this paper were significant for the quality control of HRGA compaction.
基金supported by the National Key R&D Program(Grant Nos.2021YFA1402004 and 2021YFF0603701)the National Natural Science Foundation of China(Grant Nos.12134014,U21A20433,U21A6006,and 92265108)+1 种基金the Fundamental Research Funds for the Central Universitiesthe University of Science and Technology of China(USTC)Research Funds of the Double First-Class Initiative。
文摘We present a compact cold atom platform where an optical grating chip and planar coil chip are placed inside a compact vacuum chamber to create a magneto-optical trap.This approach significantly reduces the system volume to about 20×20×20 cm^(3) compared to conventional vacuum systems and offers greater flexibility in accessing the trapped atoms.We demonstrate the trapping of 3×10^(5) cold rubidium atoms at a temperature of 100μK in a vacuum pressure below 10^(−7) mbar.The simplified optical geometry,low power consumption,and high degree of integration make this a promising platform for portable and versatile cold-atom devices in quantum sensing,timing,and information processing.