A new technique, powder compact foaming process for the production of aluminumfoams has been studied in this article. According to this method, the aluminum pow-der is mixed with a powder foaming agent (TiH_2). Subseq...A new technique, powder compact foaming process for the production of aluminumfoams has been studied in this article. According to this method, the aluminum pow-der is mixed with a powder foaming agent (TiH_2). Subsequent to mixing, the powderblend is hot compacted to obtain a dense semi--finished product. Upon heating to tem-peratures within the range of the melting point, the foaming agent decomposes to evolvegas and the semi--finished product expands into a porous cellular aluminum. Foamingprocess is the key in this method. Based on experiments, the foaming characteris-tics were mainly analyzed and discussed. Experiments show that the aluminum--foamwith closed pores and a uniform cell structure of high porosity can be obtained usingthis method by adjusting the foaming parameters: the content of foaming agent andfoaming temperature.展开更多
Anisotropic NdFeB/SmCoCuFeZr composite bonded magnets were prepared by warm compaction process. The effects of adding SmCoCuFeZr magnetic powder on the properties of anisotropic bonded NdFeB magnet were investigated i...Anisotropic NdFeB/SmCoCuFeZr composite bonded magnets were prepared by warm compaction process. The effects of adding SmCoCuFeZr magnetic powder on the properties of anisotropic bonded NdFeB magnet were investigated in this work. The results show that, both magnetic properties and temperature stability of the bonded magnet can be improved by adding fine SmCoCuFeZr magnetic powder. In the present study, the optimal content of SmCoCuFeZr magnetic powder was about 20 wt.%, in this case, the Br, Hcj, and(BH)maxof the NdFeB/SmCoCuFeZr composite magnet achieved 0.943 T, 1250 kA/m, and168 kJ/m^3, respectively.展开更多
Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted expl...Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted explosively By burying the explosive compaction body into a stoichiometric Al/TiO2 mixture and igniting the combustion of the stoichiometric Al/TiO2 mixture, the SHS reaction of the explosive compaction body was initiated by the heat released from the combustion of the stoichiometric Al/TiO2 mixture. In this way, Ti/Al2O3 FGM was synthesized. The adiabatic temperatures of each gradient layer were calculated when the preheating temperatures were 298 K and 1173 K, respectively The microstructure, composition and properties of Ti/Al2O3 FGM and the reaction mechanism of each gradient layer were studied. It was found that Ti/Al2O3 FGM prepared by the explosive compaction/SHS process had a high density and a high microhardness. Its structure, composition and properties showed apparent gradient distribution. The structure of the standard stoichiometric ratio gradient layer of FGM was a network structure. Its reaction mode could be described as follows: Al powder melted first, then the molten Al penetrated into the TiO2 zone and reacted with TiO2, and big pores were left in the original positions of Al powder. The reaction of gradient layers with the addition of Al3O3 as diluents was similar to that of the standard stoichiometric ratio gradient layer, so were their structure and composition. However, the reaction of gradient layers with the addition of Ti as diluents was more complex and the composition deviated slightly from the designed one展开更多
Compacting process of fine powder is greatly affected by the aggregate structure of particles. According to the experiment in which several kinds of silicon nitrides in different partical shape and size were compacted...Compacting process of fine powder is greatly affected by the aggregate structure of particles. According to the experiment in which several kinds of silicon nitrides in different partical shape and size were compacted in uniaxialorientation, it is found that the volume compacting rate offorming body differs with the pressure. The aggregatestructure of each sample A, B or C was estimated by applying Cooper's equation to the analysis of the compacting process of each sample展开更多
Compaction processes are one the most important par ts of powder forming technology. The main applications are focused on pieces for a utomotive, aeronautic, electric and electronic industries. The main goals of the c...Compaction processes are one the most important par ts of powder forming technology. The main applications are focused on pieces for a utomotive, aeronautic, electric and electronic industries. The main goals of the compaction processes are to obtain a compact with the geometrical requirements, without cracks, and with a uniform distribution of density. Design of such proc esses consist, essentially, in determine the sequence and relative displacements of die and punches in order to achieve such goals. A.B. Khoei presented a gener al framework for the finite element simulation of powder forming processes based on the following aspects; a large displacement formulation, centred on a total and updated Lagrangian formulation; an adaptive finite element strategy based on error estimates and automatic remeshing techniques; a cap model based on a hard ening rule in modelling of the highly non-linear behaviour of material; and the use of an efficient contact algorithm in the context of an interface element fo rmulation. In these references, the non-linear behaviour of powder was adequately desc ribed by the cap plasticity model. However, it suffers from a serious deficiency when the stress-point reaches a yield surface. In the flow theory of plasticit y, the transition from an elastic state to an elasto-plastic state appears more or less abruptly. For powder material it is very difficult to define the locati on of yield surface, because there is no distinct transition from elastic to ela stic-plastic behaviour. Results of experimental test on some hard met al powder show that the plastic effects were begun immediately upon loading. In such mater ials the domain of the yield surface would collapse to a point, so making the di rection of plastic increment indeterminate, because all directions are normal to a point. Thus, the classical plasticity theory cannot deal with such materials and an advanced constitutive theory is necessary. In the present paper, the constitutive equations of powder materials will be discussed via an endochronic theory of plasticity. This theory provides a unifi ed point of view to describe the elastic-plastic behaviour of material since it places no requirement for a yield surface and a ’loading function’ to disting uish between loading an unloading. Endochronic theory of plasticity has been app lied to a number of metallic materials, concrete and sand, but to the knowledge of authors, no numerical scheme of the model has been applied to powder material . In the present paper, a new approach is developed based on an endochronic rate independent, density-dependent plasticity model for describing the isothermal deformation behavior of metal powder at low homologous temperature. Although the concept of yield surface has not been explicitly assumed in endochronic theory, it is shown that the cone-cap plasticity yield surface (Fig.1), which is the m ost commonly used plasticity models for describing the behavior of powder materi al can be easily derived as a special case of the proposed endochronic theory. Fig.1 Trace of cone-cap yield function on the meridian pl ane for different relative density As large deformation is observed in powder compaction process, a hypoelastic-pl astic formulation is developed in the context of finite deformation plasticity. Constitutive equations are stated in unrotated frame of reference that greatly s implifies endochronic constitutive relation in finite plasticity. Constitutive e quations of the endochronic theory and their numerical integration are establish ed and procedures for determining material parameters of the model are demonstra ted. Finally, the numerical schemes are examined for efficiency in the model ling of a tip shaped component, as shown in Fig.2. Fig.2 A shaped tip component. a) Geometry, boundary conditio n and finite element mesh; b) density distribution at final stage of展开更多
Deformation of ductile cuttings from sandstone in the mechanical compaction process was designed through the "experimental system of triaxial rock deformation",and the influence on porosity was studied by lo...Deformation of ductile cuttings from sandstone in the mechanical compaction process was designed through the "experimental system of triaxial rock deformation",and the influence on porosity was studied by looking into the deformation characteristics of ductile cuttings. The design indexes are as follows: simulated depth 0- 4 000 m,interval depth 500 m,and pressure range 0- 120 MPa at interval of 1. 5 MPa. The experimental results show that the porosity decreases as buried depth increases,indicating a negative relationship between them. The amount of compression was mainly obtained by porosity reduction and cutting deformation. Deformation of ductile cuttings is mainly ductile deformation; and deformation of crystal fragments is mainly expressed as brittle fracture,resulting in decrease of particle size. The research is of certain value for the exploration and development of oil and gas.展开更多
To successfully employ powder injection molding (PIM) as a manufacturing technique, the function of the component, design of the part, material and process should be optimized for overall processing ability of the PIM...To successfully employ powder injection molding (PIM) as a manufacturing technique, the function of the component, design of the part, material and process should be optimized for overall processing ability of the PIM process. A comparison between the requirements of flowability and moldability and the compacts shape retention has been made in this work. There is often a contradiction between the requirements of flowability and the compacts shape retention. Many works have been done to attain good molding conditions. However, they fail to take into account the effect of some factors that satisfies good molding conditions on the compacts shape retention during debinding. This paper studies the effect of the powder-binder mixture characteristics and the molding conditions on the flowability and moldability and the shape retention of PIM compacts during debinding process so as to attain the benefits of each.展开更多
In the process of composite prepreg tape winding,the compaction force could influence the quality of winding products.According to the analysis and experiments,during the winding process of a rocket motor nozzle aft e...In the process of composite prepreg tape winding,the compaction force could influence the quality of winding products.According to the analysis and experiments,during the winding process of a rocket motor nozzle aft exit cone with a winding angle,there would be an error between the deposition speed of tape layers and the feeding speed of the compaction roller,which could influence the compaction force.Both a lack of compaction and overcompaction related to the feeding of the compaction roller could result in defects of winding nozzles.Thus,a flexible winding system has been developed for rocket motor nozzle winding.In the system,feeding of the compaction roller could be adjusted in real time to achieve an invariable compaction force.According to experiments,the force deformation model of the winding tape is a time-varying system.Thus,a forgetting factor recursive least square based parameter estimation proportional-integral-differential(PID)controller has been developed,which could estimate the time-varying parameter and control the compaction force by adjusting the feeding of the compaction roller during the winding process.According to the experimental results,a winding nozzle with fewer voids and a smooth surface could be wounded by the invariable compaction force in the flexible winding system.展开更多
Anisotropic bonded magnets were prepared by warm compaction using anisotropic Nd-Fe-B powder. The forming process, magnetic properties, and temperature stability were studied. The results indicate that the optimal tem...Anisotropic bonded magnets were prepared by warm compaction using anisotropic Nd-Fe-B powder. The forming process, magnetic properties, and temperature stability were studied. The results indicate that the optimal temperature of the process, which was decided by the vis-cosity of the binders, was 110°C. With increasing pressure, the density of the magnets increased. When the pressure was above 700 MPa, the powder particles were destroyed and the magnetic properties decreased. The magnetic properties of the anisotropic bonded magnets were as follows: remanence Br=0.98 T, intrinsic coercivity iHc=1361 kA/m, and maximum energy product BHmax=166 kJ/m3. The magnets had excellent thermal stability because of the high coercivity and good squareness of demagnetization curves. The flux density of the magnets was 35% higher than that of isotropic bonded Nd-Fe-B magnets at 120°C for 1000 h. The flux density of the bonded magnets showed little change with regard to temperature.展开更多
Compact hot extrusion(CHE) process of heavy caliber thick-wall pipe is a new material-saving production process. In order to reveal the optimum hot extrusion parameters in CHE process, the e ects of the extrusion para...Compact hot extrusion(CHE) process of heavy caliber thick-wall pipe is a new material-saving production process. In order to reveal the optimum hot extrusion parameters in CHE process, the e ects of the extrusion parameters on the microstructural evolution are investigated systematically. The metadynamic recrystallization(MDRX) kinetic models and grain size models of as-cast P91 steel are established for the first time according to the hot compression tests performed on the Gleeble-3500 thermal-simulation machine. Then a thermal-mechanical and micro-macro coupled hot extrusion finite element(FE) model is established and further developed in DEFORM software. The results indicated that the grain size of the extruded pipe increases with the increasing of initial temperature and extrusion speed, decreases when extrusion ratio increases. Moreover, the grain size is more sensitive to the initial temperature and the extrusion ratio. The optimum hot extrusion parameters are including that, the initial extrusion temperature of 1250 °C, the extrusion ratio of 9 and the extrusion speed of 50 mm/s. Furthermore, in order to verify the simulation precisions, hot extrusion experiment verification on the heavy caliber thick-wall pipe is carried out on the 500 MN vertical hot extrusion equipment. The load–displacement curve of the extrusion process and the grain sizes of the middle part extruded pipe are in good accuracy with the simulation results, which confirms that the hot extrusion FE models of as-cast P91 steel could estimate the hot extrusion behaviors. The proposed hot extrusion FE model can be used to guide the industrial production research of CHE process.展开更多
The poly(methyl methacrylate)(PMMA) coatings onto surface of iron particles were electrochemically prepared and the effect on both surface structure and internal structure of the resulted material after compaction...The poly(methyl methacrylate)(PMMA) coatings onto surface of iron particles were electrochemically prepared and the effect on both surface structure and internal structure of the resulted material after compaction was carried out.The electrochemical polymerization treatment was performed in a fluidized bed electrolyzer using sulphuric acid solution containing potassium persulphate and methyl methacrylate(MMA).The surface topography and the microstructure of the samples were observed by scanning electron microscopy(SEM) and optical microscopy(OM).It was found that the PMMA layer coated onto iron particles results in improvement of their compressibility compared with uncoated powders,and classical lubricants are not necessary for compacting particles coated.展开更多
During the EPC (expendable pattern casting) process, one of the essential requirements is to prevent pattern distortion duringsand filling and compaction. A new method which vibrates the system in a two-dimensional ci...During the EPC (expendable pattern casting) process, one of the essential requirements is to prevent pattern distortion duringsand filling and compaction. A new method which vibrates the system in a two-dimensional circular mode has been appliedto the EPC process. The molding properties of unbonded sand obtained by this new vibration mode are investigated andcompared with those in the one-dimensional vertical mode. For adequate compaction of sand. the circular vibration mode ismore effective than the vertical mode. Sand became more fluidized by the circular vibration and the particle pressure coefficientwas close to unity The particle pressure coefficient, which is defined as the ratio of horizontal to vertical sand pressure, isresponsible for the effectiveness of sand filling.展开更多
A new concept of an equi-attractor is introduced, and defined by the minimal compact set that attracts bounded sets uniformly in the past, for a non-autonomous dynam- ical system. It is shown that the compact equi-att...A new concept of an equi-attractor is introduced, and defined by the minimal compact set that attracts bounded sets uniformly in the past, for a non-autonomous dynam- ical system. It is shown that the compact equi-attraction implies the backward compactness of a pullback attractor. Also, an eventually equi-continuous and strongly bounded process has an equi-attractor if and only if it is strongly point dissipative and strongly asymptotically compact. Those results primely strengthen the known existence result of a backward bounded pullback attractor in the literature. Finally, the theoretical criteria are applied to prove the existence of both equi-attractor and backward compact attractor for a Ginzburg-Landau equation with some varying coefficients and a backward tempered external force.展开更多
目的优化半夏桃红颗粒湿法制粒成型工艺。方法以半夏桃红颗粒的成型率、吸湿率和休止角的综合评分为指标,采用AHP-CRITIC混合加权法结合Box-Behnken设计-响应面法建立半夏桃红颗粒成型的关键工艺参数(critical process parameter,CPP)...目的优化半夏桃红颗粒湿法制粒成型工艺。方法以半夏桃红颗粒的成型率、吸湿率和休止角的综合评分为指标,采用AHP-CRITIC混合加权法结合Box-Behnken设计-响应面法建立半夏桃红颗粒成型的关键工艺参数(critical process parameter,CPP)和关键质量属性(critical quality attribute,CQA)的数学模型,构建工艺设计空间并验证。结果半夏桃红颗粒成型工艺参数为:以可溶性淀粉作为辅料,辅药质量比为0.30:1~0.47:1,以95%乙醇为润湿剂,乙醇用量为35.0%~38.5%,于60℃干燥2 h。在此范围内工艺参数均可满足目标要求。结论通过AHP-CRITIC混合加权法结合Box-Behnken设计优选的半夏桃红颗粒成型工艺稳定性好,可为该复方制剂的工业化生产提供支持。展开更多
文摘A new technique, powder compact foaming process for the production of aluminumfoams has been studied in this article. According to this method, the aluminum pow-der is mixed with a powder foaming agent (TiH_2). Subsequent to mixing, the powderblend is hot compacted to obtain a dense semi--finished product. Upon heating to tem-peratures within the range of the melting point, the foaming agent decomposes to evolvegas and the semi--finished product expands into a porous cellular aluminum. Foamingprocess is the key in this method. Based on experiments, the foaming characteris-tics were mainly analyzed and discussed. Experiments show that the aluminum--foamwith closed pores and a uniform cell structure of high porosity can be obtained usingthis method by adjusting the foaming parameters: the content of foaming agent andfoaming temperature.
基金Project supported by the Natural Science Foundation of Jiangsu Province,China(BK20171408)the Graduate Student Innovation Foundation of Jiangsu Province(201711276005Z)Scientific Foundation of Nanjing Institute of Technology(CKJB201402,and YKJ201506)
文摘Anisotropic NdFeB/SmCoCuFeZr composite bonded magnets were prepared by warm compaction process. The effects of adding SmCoCuFeZr magnetic powder on the properties of anisotropic bonded NdFeB magnet were investigated in this work. The results show that, both magnetic properties and temperature stability of the bonded magnet can be improved by adding fine SmCoCuFeZr magnetic powder. In the present study, the optimal content of SmCoCuFeZr magnetic powder was about 20 wt.%, in this case, the Br, Hcj, and(BH)maxof the NdFeB/SmCoCuFeZr composite magnet achieved 0.943 T, 1250 kA/m, and168 kJ/m^3, respectively.
文摘Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted explosively By burying the explosive compaction body into a stoichiometric Al/TiO2 mixture and igniting the combustion of the stoichiometric Al/TiO2 mixture, the SHS reaction of the explosive compaction body was initiated by the heat released from the combustion of the stoichiometric Al/TiO2 mixture. In this way, Ti/Al2O3 FGM was synthesized. The adiabatic temperatures of each gradient layer were calculated when the preheating temperatures were 298 K and 1173 K, respectively The microstructure, composition and properties of Ti/Al2O3 FGM and the reaction mechanism of each gradient layer were studied. It was found that Ti/Al2O3 FGM prepared by the explosive compaction/SHS process had a high density and a high microhardness. Its structure, composition and properties showed apparent gradient distribution. The structure of the standard stoichiometric ratio gradient layer of FGM was a network structure. Its reaction mode could be described as follows: Al powder melted first, then the molten Al penetrated into the TiO2 zone and reacted with TiO2, and big pores were left in the original positions of Al powder. The reaction of gradient layers with the addition of Al3O3 as diluents was similar to that of the standard stoichiometric ratio gradient layer, so were their structure and composition. However, the reaction of gradient layers with the addition of Ti as diluents was more complex and the composition deviated slightly from the designed one
文摘Compacting process of fine powder is greatly affected by the aggregate structure of particles. According to the experiment in which several kinds of silicon nitrides in different partical shape and size were compacted in uniaxialorientation, it is found that the volume compacting rate offorming body differs with the pressure. The aggregatestructure of each sample A, B or C was estimated by applying Cooper's equation to the analysis of the compacting process of each sample
文摘Compaction processes are one the most important par ts of powder forming technology. The main applications are focused on pieces for a utomotive, aeronautic, electric and electronic industries. The main goals of the compaction processes are to obtain a compact with the geometrical requirements, without cracks, and with a uniform distribution of density. Design of such proc esses consist, essentially, in determine the sequence and relative displacements of die and punches in order to achieve such goals. A.B. Khoei presented a gener al framework for the finite element simulation of powder forming processes based on the following aspects; a large displacement formulation, centred on a total and updated Lagrangian formulation; an adaptive finite element strategy based on error estimates and automatic remeshing techniques; a cap model based on a hard ening rule in modelling of the highly non-linear behaviour of material; and the use of an efficient contact algorithm in the context of an interface element fo rmulation. In these references, the non-linear behaviour of powder was adequately desc ribed by the cap plasticity model. However, it suffers from a serious deficiency when the stress-point reaches a yield surface. In the flow theory of plasticit y, the transition from an elastic state to an elasto-plastic state appears more or less abruptly. For powder material it is very difficult to define the locati on of yield surface, because there is no distinct transition from elastic to ela stic-plastic behaviour. Results of experimental test on some hard met al powder show that the plastic effects were begun immediately upon loading. In such mater ials the domain of the yield surface would collapse to a point, so making the di rection of plastic increment indeterminate, because all directions are normal to a point. Thus, the classical plasticity theory cannot deal with such materials and an advanced constitutive theory is necessary. In the present paper, the constitutive equations of powder materials will be discussed via an endochronic theory of plasticity. This theory provides a unifi ed point of view to describe the elastic-plastic behaviour of material since it places no requirement for a yield surface and a ’loading function’ to disting uish between loading an unloading. Endochronic theory of plasticity has been app lied to a number of metallic materials, concrete and sand, but to the knowledge of authors, no numerical scheme of the model has been applied to powder material . In the present paper, a new approach is developed based on an endochronic rate independent, density-dependent plasticity model for describing the isothermal deformation behavior of metal powder at low homologous temperature. Although the concept of yield surface has not been explicitly assumed in endochronic theory, it is shown that the cone-cap plasticity yield surface (Fig.1), which is the m ost commonly used plasticity models for describing the behavior of powder materi al can be easily derived as a special case of the proposed endochronic theory. Fig.1 Trace of cone-cap yield function on the meridian pl ane for different relative density As large deformation is observed in powder compaction process, a hypoelastic-pl astic formulation is developed in the context of finite deformation plasticity. Constitutive equations are stated in unrotated frame of reference that greatly s implifies endochronic constitutive relation in finite plasticity. Constitutive e quations of the endochronic theory and their numerical integration are establish ed and procedures for determining material parameters of the model are demonstra ted. Finally, the numerical schemes are examined for efficiency in the model ling of a tip shaped component, as shown in Fig.2. Fig.2 A shaped tip component. a) Geometry, boundary conditio n and finite element mesh; b) density distribution at final stage of
基金Supported by joint project of CNOOC with Jilin University(No.CCL2012TJXSBS0282)
文摘Deformation of ductile cuttings from sandstone in the mechanical compaction process was designed through the "experimental system of triaxial rock deformation",and the influence on porosity was studied by looking into the deformation characteristics of ductile cuttings. The design indexes are as follows: simulated depth 0- 4 000 m,interval depth 500 m,and pressure range 0- 120 MPa at interval of 1. 5 MPa. The experimental results show that the porosity decreases as buried depth increases,indicating a negative relationship between them. The amount of compression was mainly obtained by porosity reduction and cutting deformation. Deformation of ductile cuttings is mainly ductile deformation; and deformation of crystal fragments is mainly expressed as brittle fracture,resulting in decrease of particle size. The research is of certain value for the exploration and development of oil and gas.
基金This work was supported by the National Natural Science Foundation of Chira(project No.50044012)the Natural Science Foundation of Hunan Provience(project No.99JJYY20048).
文摘To successfully employ powder injection molding (PIM) as a manufacturing technique, the function of the component, design of the part, material and process should be optimized for overall processing ability of the PIM process. A comparison between the requirements of flowability and moldability and the compacts shape retention has been made in this work. There is often a contradiction between the requirements of flowability and the compacts shape retention. Many works have been done to attain good molding conditions. However, they fail to take into account the effect of some factors that satisfies good molding conditions on the compacts shape retention during debinding. This paper studies the effect of the powder-binder mixture characteristics and the molding conditions on the flowability and moldability and the shape retention of PIM compacts during debinding process so as to attain the benefits of each.
基金supported by the National Natural Science Foundation of China(No.51375394)
文摘In the process of composite prepreg tape winding,the compaction force could influence the quality of winding products.According to the analysis and experiments,during the winding process of a rocket motor nozzle aft exit cone with a winding angle,there would be an error between the deposition speed of tape layers and the feeding speed of the compaction roller,which could influence the compaction force.Both a lack of compaction and overcompaction related to the feeding of the compaction roller could result in defects of winding nozzles.Thus,a flexible winding system has been developed for rocket motor nozzle winding.In the system,feeding of the compaction roller could be adjusted in real time to achieve an invariable compaction force.According to experiments,the force deformation model of the winding tape is a time-varying system.Thus,a forgetting factor recursive least square based parameter estimation proportional-integral-differential(PID)controller has been developed,which could estimate the time-varying parameter and control the compaction force by adjusting the feeding of the compaction roller during the winding process.According to the experimental results,a winding nozzle with fewer voids and a smooth surface could be wounded by the invariable compaction force in the flexible winding system.
文摘Anisotropic bonded magnets were prepared by warm compaction using anisotropic Nd-Fe-B powder. The forming process, magnetic properties, and temperature stability were studied. The results indicate that the optimal temperature of the process, which was decided by the vis-cosity of the binders, was 110°C. With increasing pressure, the density of the magnets increased. When the pressure was above 700 MPa, the powder particles were destroyed and the magnetic properties decreased. The magnetic properties of the anisotropic bonded magnets were as follows: remanence Br=0.98 T, intrinsic coercivity iHc=1361 kA/m, and maximum energy product BHmax=166 kJ/m3. The magnets had excellent thermal stability because of the high coercivity and good squareness of demagnetization curves. The flux density of the magnets was 35% higher than that of isotropic bonded Nd-Fe-B magnets at 120°C for 1000 h. The flux density of the bonded magnets showed little change with regard to temperature.
基金Supported by National Natural Science Foundation of China(Grant Nos.51675361,51135007)Shanxi Scholarship Council of China(Grant Nos.2015-086,2016-096)Shanxi Provincial Key Research and Development Program of China(Grant No.03012015004)
文摘Compact hot extrusion(CHE) process of heavy caliber thick-wall pipe is a new material-saving production process. In order to reveal the optimum hot extrusion parameters in CHE process, the e ects of the extrusion parameters on the microstructural evolution are investigated systematically. The metadynamic recrystallization(MDRX) kinetic models and grain size models of as-cast P91 steel are established for the first time according to the hot compression tests performed on the Gleeble-3500 thermal-simulation machine. Then a thermal-mechanical and micro-macro coupled hot extrusion finite element(FE) model is established and further developed in DEFORM software. The results indicated that the grain size of the extruded pipe increases with the increasing of initial temperature and extrusion speed, decreases when extrusion ratio increases. Moreover, the grain size is more sensitive to the initial temperature and the extrusion ratio. The optimum hot extrusion parameters are including that, the initial extrusion temperature of 1250 °C, the extrusion ratio of 9 and the extrusion speed of 50 mm/s. Furthermore, in order to verify the simulation precisions, hot extrusion experiment verification on the heavy caliber thick-wall pipe is carried out on the 500 MN vertical hot extrusion equipment. The load–displacement curve of the extrusion process and the grain sizes of the middle part extruded pipe are in good accuracy with the simulation results, which confirms that the hot extrusion FE models of as-cast P91 steel could estimate the hot extrusion behaviors. The proposed hot extrusion FE model can be used to guide the industrial production research of CHE process.
基金supported by the Slovak Grant Agency (Grant VEGA 1/0043/08 and 2/0129/09)the Slovak Research and Development Agency (Project APVV-0490-07)
文摘The poly(methyl methacrylate)(PMMA) coatings onto surface of iron particles were electrochemically prepared and the effect on both surface structure and internal structure of the resulted material after compaction was carried out.The electrochemical polymerization treatment was performed in a fluidized bed electrolyzer using sulphuric acid solution containing potassium persulphate and methyl methacrylate(MMA).The surface topography and the microstructure of the samples were observed by scanning electron microscopy(SEM) and optical microscopy(OM).It was found that the PMMA layer coated onto iron particles results in improvement of their compressibility compared with uncoated powders,and classical lubricants are not necessary for compacting particles coated.
文摘During the EPC (expendable pattern casting) process, one of the essential requirements is to prevent pattern distortion duringsand filling and compaction. A new method which vibrates the system in a two-dimensional circular mode has been appliedto the EPC process. The molding properties of unbonded sand obtained by this new vibration mode are investigated andcompared with those in the one-dimensional vertical mode. For adequate compaction of sand. the circular vibration mode ismore effective than the vertical mode. Sand became more fluidized by the circular vibration and the particle pressure coefficientwas close to unity The particle pressure coefficient, which is defined as the ratio of horizontal to vertical sand pressure, isresponsible for the effectiveness of sand filling.
基金supported by the National Natural Science Foundation of China(11571283)supported by Natural Science Foundation of Guizhou Province
文摘A new concept of an equi-attractor is introduced, and defined by the minimal compact set that attracts bounded sets uniformly in the past, for a non-autonomous dynam- ical system. It is shown that the compact equi-attraction implies the backward compactness of a pullback attractor. Also, an eventually equi-continuous and strongly bounded process has an equi-attractor if and only if it is strongly point dissipative and strongly asymptotically compact. Those results primely strengthen the known existence result of a backward bounded pullback attractor in the literature. Finally, the theoretical criteria are applied to prove the existence of both equi-attractor and backward compact attractor for a Ginzburg-Landau equation with some varying coefficients and a backward tempered external force.