An asymptotic method has been developed for investigation of kinetics of formation of compact objects with strong internal bonds. The method is based on the uncertainty relation for a coordinate and a momentum in spac...An asymptotic method has been developed for investigation of kinetics of formation of compact objects with strong internal bonds. The method is based on the uncertainty relation for a coordinate and a momentum in space of sizes of objects (clusters) with strongly pronounced collective quantum properties resulted from exchange interactions of various physical nature determined by spatial scales of the processes under consideration. The proposed phenomenological approach has been developed by analogy with the all-known ideas about coherent states of quantum mechanical oscillator systems for which a product of coordinate and momentum uncertainties (dispersions) accepts the value, which is minimally possible within uncertainty relations. With such an approach the leading processes are oscillations of components that make up objects, mainly: collective nucleon oscillations in a nucleus and phonon excitations in a mesostructure crystal lattice. This allows us to consider formation and growth of subatomic and mesoscopic objects in the context of a single formalism. The proposed models adequately describe characteristics of formation processes of nuclear matter clusters as well as mesoscopic crystals having covalent and quasi-covalent bonds between atoms.展开更多
The tight sandstones in the Permian Lower Shihezi Formation of Shilijiahan area in the Ordos Basin was taken as study object in this research to quantitatively determine the effects of burial depth, burial time and co...The tight sandstones in the Permian Lower Shihezi Formation of Shilijiahan area in the Ordos Basin was taken as study object in this research to quantitatively determine the effects of burial depth, burial time and compaction strength on porosity during densification of reservoir. Firstly, sandstone compaction profiles were analyzed in detail. Secondly, the theoretical study was performed based on visco-elasto-plastic stress–strain model. Thirdly, multiple regression and iterative algorithm were used respectively to ascertain the variation trends of Young's modulus and equivalent viscosity coefficient with burial depth and burial time. Accordingly, the ternary analytic porosity-reduction model of sandstone compaction trend was established. Eventually, the reasonability of improved model was tested by comparing with thin-section statistics under microscope and the models in common use. The study shows that the new model can divide the porosity reduction into three parts, namely, elastic porosity loss, visco-plastic porosity loss and porosity loss from cementation. And the results calculated by the new model of litharenite in He 2 Member are close to the average value from the thin-section statistics on Houseknecht chart, which approximately reveals the relative magnitudes of compaction and cementation in the normal evolution trend of sandstone porosity. Furthermore, the model can more exactly depict the compaction trend of sandstone affected little by dissolution than previous compaction models, and evaluate sandstone compaction degree and its contribution to reservoir densification during different burial and uplift processes.展开更多
It is important to know the rate of intra-molecular contact formation in proteins in order to understand how proteins fold clearly. Here we investigate the rate of intra-molecular contact formation in short two-dimens...It is important to know the rate of intra-molecular contact formation in proteins in order to understand how proteins fold clearly. Here we investigate the rate of intra-molecular contact formation in short two-dimensional compact polymer chains by calculating the probability distribution p(r) of end-to-end distance r using the enumeration calculation method and HP model on two-dimensional square lattice. The probability distribution of end-to-end distance p(r) of short two-dimensional compact polymers chains may consist of two parts, i.e. p(r) = p1(r) + p2(r), where p1(r) and p2(r) are different for small r. The rate of contact formation decreases monotonically with the number of bonds N, and the rate approximately conforms to the scaling relation of k(N)∝ N^-α. Here the value of α increases with the contact radius a and it also depends on the percentage of H (hydrophobic) residues in the sequences of compact chains and the energy parameters of ^εНН、 ^εНН and ^εpp. Some comparisons of theoretical predictions with experimental results are also made. This investigation may help us to understand the protein folding.展开更多
在轨道交通网络控制系统中,为保证故障时刻传输的数据能够被准确、实时且可靠地记录,数据记录单元(Event Record Machine,ERM)采用嵌入式实时操作系统VxWorks。该ERM实时接收网络上所有数据并按照预设格式把数据写入内存队列,之后通知...在轨道交通网络控制系统中,为保证故障时刻传输的数据能够被准确、实时且可靠地记录,数据记录单元(Event Record Machine,ERM)采用嵌入式实时操作系统VxWorks。该ERM实时接收网络上所有数据并按照预设格式把数据写入内存队列,之后通知记录任务把该数据写入硬盘中。随着对运行数据记录量要求的增加,该方式已经不能满足要求,且强行增加会造成网络通信故障。设计一种“紧格式”数据记录方式,在不更改系统硬件的情况下,压榨系统硬件性能,可增加运行数据记录量10倍以上,而且还能避免网络通信故障。该方案已经应用在数个项目中,效果良好。展开更多
文摘An asymptotic method has been developed for investigation of kinetics of formation of compact objects with strong internal bonds. The method is based on the uncertainty relation for a coordinate and a momentum in space of sizes of objects (clusters) with strongly pronounced collective quantum properties resulted from exchange interactions of various physical nature determined by spatial scales of the processes under consideration. The proposed phenomenological approach has been developed by analogy with the all-known ideas about coherent states of quantum mechanical oscillator systems for which a product of coordinate and momentum uncertainties (dispersions) accepts the value, which is minimally possible within uncertainty relations. With such an approach the leading processes are oscillations of components that make up objects, mainly: collective nucleon oscillations in a nucleus and phonon excitations in a mesostructure crystal lattice. This allows us to consider formation and growth of subatomic and mesoscopic objects in the context of a single formalism. The proposed models adequately describe characteristics of formation processes of nuclear matter clusters as well as mesoscopic crystals having covalent and quasi-covalent bonds between atoms.
基金Supported by the National Natural Science Foundation of China(4167212441502147)PetroChina Science and Technology Major Project(2016ZX05047001-002)
文摘The tight sandstones in the Permian Lower Shihezi Formation of Shilijiahan area in the Ordos Basin was taken as study object in this research to quantitatively determine the effects of burial depth, burial time and compaction strength on porosity during densification of reservoir. Firstly, sandstone compaction profiles were analyzed in detail. Secondly, the theoretical study was performed based on visco-elasto-plastic stress–strain model. Thirdly, multiple regression and iterative algorithm were used respectively to ascertain the variation trends of Young's modulus and equivalent viscosity coefficient with burial depth and burial time. Accordingly, the ternary analytic porosity-reduction model of sandstone compaction trend was established. Eventually, the reasonability of improved model was tested by comparing with thin-section statistics under microscope and the models in common use. The study shows that the new model can divide the porosity reduction into three parts, namely, elastic porosity loss, visco-plastic porosity loss and porosity loss from cementation. And the results calculated by the new model of litharenite in He 2 Member are close to the average value from the thin-section statistics on Houseknecht chart, which approximately reveals the relative magnitudes of compaction and cementation in the normal evolution trend of sandstone porosity. Furthermore, the model can more exactly depict the compaction trend of sandstone affected little by dissolution than previous compaction models, and evaluate sandstone compaction degree and its contribution to reservoir densification during different burial and uplift processes.
基金This research was financially supported by the National Natural Science Foundation of China(Nos.20174036,20274074,20574052)the Natural Science Foundation of Zhejiang Province(No.R404047).
文摘It is important to know the rate of intra-molecular contact formation in proteins in order to understand how proteins fold clearly. Here we investigate the rate of intra-molecular contact formation in short two-dimensional compact polymer chains by calculating the probability distribution p(r) of end-to-end distance r using the enumeration calculation method and HP model on two-dimensional square lattice. The probability distribution of end-to-end distance p(r) of short two-dimensional compact polymers chains may consist of two parts, i.e. p(r) = p1(r) + p2(r), where p1(r) and p2(r) are different for small r. The rate of contact formation decreases monotonically with the number of bonds N, and the rate approximately conforms to the scaling relation of k(N)∝ N^-α. Here the value of α increases with the contact radius a and it also depends on the percentage of H (hydrophobic) residues in the sequences of compact chains and the energy parameters of ^εНН、 ^εНН and ^εpp. Some comparisons of theoretical predictions with experimental results are also made. This investigation may help us to understand the protein folding.
文摘在轨道交通网络控制系统中,为保证故障时刻传输的数据能够被准确、实时且可靠地记录,数据记录单元(Event Record Machine,ERM)采用嵌入式实时操作系统VxWorks。该ERM实时接收网络上所有数据并按照预设格式把数据写入内存队列,之后通知记录任务把该数据写入硬盘中。随着对运行数据记录量要求的增加,该方式已经不能满足要求,且强行增加会造成网络通信故障。设计一种“紧格式”数据记录方式,在不更改系统硬件的情况下,压榨系统硬件性能,可增加运行数据记录量10倍以上,而且还能避免网络通信故障。该方案已经应用在数个项目中,效果良好。