Let R be an arbitrary commutative ring with identity, and let Nn(R) be the set consisting of all n × n strictly upper triangular matrices over R. In this paper, we give an explicit description of the maps(with...Let R be an arbitrary commutative ring with identity, and let Nn(R) be the set consisting of all n × n strictly upper triangular matrices over R. In this paper, we give an explicit description of the maps(without linearity or additivity assumption) φ : Nn(R) → Nn(R)satisfying φ(xy) = φ(x)y + xφ(y). As a consequence, additive derivations and derivations of Nn(R) are also described.展开更多
This is a lecture note of my joint work with Chi-Kwong Li concerning various results on the norm structure of n 2 n matrices (as Hilbert-space operators). The main result says that the triangle inequality serves as th...This is a lecture note of my joint work with Chi-Kwong Li concerning various results on the norm structure of n 2 n matrices (as Hilbert-space operators). The main result says that the triangle inequality serves as the ultimate norm estimate for the upper bounds of summation of two matrices. In the case of summation of two normal matrices, the result turns out to be a norm estimate in terms of the spectral variation for normal matrices.展开更多
基金Supported by the National Natural Science Foundation of China(Grant Nos.1117134311426121)+1 种基金the Science Foundation of Jiangxi University of Science and Technology(Grant Nos.NSFJ2014–K12NSFJ2015–G24)
文摘Let R be an arbitrary commutative ring with identity, and let Nn(R) be the set consisting of all n × n strictly upper triangular matrices over R. In this paper, we give an explicit description of the maps(without linearity or additivity assumption) φ : Nn(R) → Nn(R)satisfying φ(xy) = φ(x)y + xφ(y). As a consequence, additive derivations and derivations of Nn(R) are also described.
文摘This is a lecture note of my joint work with Chi-Kwong Li concerning various results on the norm structure of n 2 n matrices (as Hilbert-space operators). The main result says that the triangle inequality serves as the ultimate norm estimate for the upper bounds of summation of two matrices. In the case of summation of two normal matrices, the result turns out to be a norm estimate in terms of the spectral variation for normal matrices.