Rice seedling blight,caused by various fungi,including Fusarium oxysporum,poses a severe threat to rice production.As awareness grows regarding the environmental and safety hazards associated with the application of f...Rice seedling blight,caused by various fungi,including Fusarium oxysporum,poses a severe threat to rice production.As awareness grows regarding the environmental and safety hazards associated with the application of fungicides for managing rice seedling blight,there has been a shift in focus towards biological control agents.In this study,we isolated biocontrol bacteria from paddy fields that significantly inhibited the growth of F.oxysporum in vitro and identified the strains as Bacillus amyloliquefaciens T40 and Bacillus pumilus T208.Additionally,our findings indicated that the combined application of these Bacillus strains in soil was more effective in reducing the incidence of rice seedling blight than their individual use.Analysis of 16S and internal transcribed spacer rRNA gene sequencing data revealed that the mixture of the T40 and T208 strains exhibited the lowest average clustering coefficients,which were negatively correlated with the biomass of F.oxysporum-inoculated rice seedlings.Furthermore,this mixture led to higher stochastic assembly(average|βNTI|<2)and reduced selection pressures on rice rhizosphere bacteria compared with individual strain applications.The mixture of the T40 and T208 strains also significantly increased the expression of defense-related genes.In conclusion,the mixture of the T40 and T208 strains effectively modulates microbial community structures,enhances microbial network stability,and boosts the resistance against rice seedling blight.Our study supports the development and utilization of biological resources for crop protection.展开更多
To determine if water-sediment regulation has affected macrobenthic community structure in the Huanghe River Estuary,China,macrobenthic samples were collected following regulation events from 2012 to 2016.We identify ...To determine if water-sediment regulation has affected macrobenthic community structure in the Huanghe River Estuary,China,macrobenthic samples were collected following regulation events from 2012 to 2016.We identify seven phyla and 138 macrobenthic species from within samples throughout the survey area,over time.Species richness and abundance in 2012 were significantly higher than in 2016.Biomass did not differ significantly during 2012–2016.Dominant species were mostly small polychaetes,with mollusks,arthropods,and echinoderms all being relatively rare.In 2016,dominant species were small polychaetes.MDS reveals macrobenthic communities at all surveyed distances from the estuary to have become the same community structure over time.Shannon-Wiener diversity and Margalef richness indexes trended down over time.CCA reveals the most dominant sediment-dwelling species to prefer lower dissolved oxygen,sulfides,and pH,and sediments with high D50 and low clay content.We speculate that water-sediment regulation has affected seabed communities,particularly Region A in our survey area.展开更多
Microbial community structures in the Arctic deep-sea sedimentary ecosystem are determined by organic matter input, energy availability, and other environmental factors. However, global warming and earlier ice-cover m...Microbial community structures in the Arctic deep-sea sedimentary ecosystem are determined by organic matter input, energy availability, and other environmental factors. However, global warming and earlier ice-cover melting are affecting the microbial diversity. To characterize the Arctic deep-sea sediment microbial diversity and its relationship with environmental factors, we applied Roche 454 sequencing of 16 S r DNA amplicons from Arctic deep-sea sediment sample. Both bacterial and archaeal communities' richness, compositions and structures as well as taxonomic and phylogenetic affiliations of identified clades were characterized. Phylotypes relating to sulfur reduction and chemoorganotrophic lifestyle are major groups in the bacterial groups; while the archaeal community is dominated by phylotypes most closely related to the ammonia-oxidizing Thaumarchaeota(96.66%) and methanogenic Euryarchaeota(3.21%). This study describes the microbial diversity in the Arctic deep marine sediment(〉3 500 m) near the North Pole and would lay foundation for future functional analysis on microbial metabolic processes and pathways predictions in similar environments.展开更多
Sediment core samples were collected from 17 stations in the middle and eastern Chukchi Sea during the sixth Chinese National Arctic Research Expedition(CHINARE-Arctic)in summer 2014.The samples were analyzed for comp...Sediment core samples were collected from 17 stations in the middle and eastern Chukchi Sea during the sixth Chinese National Arctic Research Expedition(CHINARE-Arctic)in summer 2014.The samples were analyzed for composition,abundance,biomass,vertical distribution,size spectra,and ecological indexes of meiofauna.A total of 14 meiofauna taxa were detected,and the free-living marine nematodes comprised the most dominant taxon,accounting for 97.21%of the average abundance.The abundance and biomass of meiofauna were within ranges of(218.12±85.83)-(7239.38±1557.15)ind./(10 cm^(2))and(130.28±52.17)-(3309.56±1751.80)μg/(10 cm^(2)),with average values of(2391.90±1966.19)ind./(10 cm^(2))and(1549.73±2042.85)μg/(10 cm^(2))(according to dry weight)respectively.Furthermore,91.26%of the individuals were distributed in the top layer of 0-5 cm of surface sediment,and 90.84%had sizes of 32-250μm.Group diversity index of meiofauna in the survey area was low,and the variation of abundance was the main difference in meiofauna communities among all stations.Abundance and biomass of meiofauna were not significantly correlated with environmental factors except concentration of nutrient Si in bottom seawater.Abundance of meiofauna in shallow water of marginal seas in the Pacific sector of the Arctic Ocean is likely at a same level and higher than that in most of China sea areas,suggesting that the shallow water of the summer Chukchi Sea is a continental shelf area with rich resources of meiofauna.The Chukchi Sea is important for studying the ecosystem of the Arctic Ocean and environmental responses.However,studies on meiofauna in the Chukchi Sea are still not enough,and in the future,natural and human disturbances may increase due to global warming,the Arctic channel opening,and other factors.Thus,more studies on meiofauna should be required,in order to know more about how the Arctic benthic community would alter.展开更多
Microbial corrosion of hydraulic concrete structures(HCSs)has received increasing research concerns.However,knowledge on the morphology of attached biofilms,as well as the community structures and functions cultivated...Microbial corrosion of hydraulic concrete structures(HCSs)has received increasing research concerns.However,knowledge on the morphology of attached biofilms,as well as the community structures and functions cultivated under variable nutrient levels is lacking.Here,biofilm colonization patterns and community structures responding to variable levels of ammonia and sulfate were explored.From field sampling,NH_(4)^(+)-N was proven key factor governing community structure in attached biofilms,verifying the reliability of selecting target nutrient species in batch experiments.Biofilms exhibited significant compositional differences in field sampling and incubation experiments.As the nutrient increased in batch experiments,the growth of biofilms gradually slowed down and uneven distribution was detected.The proportions of proteins and β-d-glucose polysaccharides in biofilms experienced a decrease in response to elevated levels of nutrients.With the increased of nutrients,themass losses of concretes exhibited an increase,reaching a highest value of 2.37%in the presence of 20 mg/L of ammonia.Microbial communities underwent a significant transition in structure and metabolic functions to ammonia gradient.The highest activity of nitrification was observed in biofilms colonized in the presence of 20 mg/L of ammonia.While the communities and their functions remained relativelymore stable responding to sulfate gradient.Our research provides novel insights into the structures of biofilms attached on HCSs and the metabolic functions in the presence of high level of nutrients,which is of significance for the operation and maintenance of hydraulic engineering structures.展开更多
The organic matter inmunicipal wastewater can be recovered by anaerobic biological treatment,making further resource utilization of municipal wastewater,which meets the requirements of sustainable development.An upflo...The organic matter inmunicipal wastewater can be recovered by anaerobic biological treatment,making further resource utilization of municipal wastewater,which meets the requirements of sustainable development.An upflow anaerobic biofilter(UAF)treating municipal wastewater was established.The performances of stable operation and recovery operation of UAF after long-term starvation(234 days)and the changes of microbial community structure were researched.By gradually reducing HRT from 10 h to 4 h,the UAF achieved the treatment performance of pre-starvation after only 50 days recovery operation,in which total COD and soluble COD removal efficiencies reached 66%and 69%,respectively,and the CH_(4) production rate was 0.21 L CH_(4)/g CODremoval.The recovery performance of UAF after long term starvation showed that the recovery sequence of three main anaerobic processes was hydrolytic acidification,hydrogen-acetate production and methanogenesis.High-throughput sequencing results indicated that dominant bacteria associated with hydrolytic acidification process changed from Moduliflexaceae and Trichococcus in stable operation stage to Trichococcus and Romboutsia in recovery stage.Besides,the dominant archaea changed from Methanosaeta(hydrotrophic methanogens)to Methanobacterium(acetotrophic methanogens),showing Methanobacterium was more resistant to starvation environment.Therefore,by using UAF for biological treatment of organic matter,even after a long period of starvation,the system would not be completely destroyed.Once it resumed operation,the treatment performance could be restored in a short period of time.展开更多
Various graph representation learning models convert graph nodes into vectors using techniques like matrix factorization,random walk,and deep learning.However,choosing the right method for different tasks can be chall...Various graph representation learning models convert graph nodes into vectors using techniques like matrix factorization,random walk,and deep learning.However,choosing the right method for different tasks can be challenging.Communities within networks help reveal underlying structures and correlations.Investigating how different models preserve community properties is crucial for identifying the best graph representation for data analysis.This paper defines indicators to explore the perceptual quality of community properties in representation learning spaces,including the consistency of community structure,node distribution within and between communities,and central node distribution.A visualization system presents these indicators,allowing users to evaluate models based on community structures.Case studies demonstrate the effectiveness of the indicators for the visual evaluation of graph representation learning models.展开更多
Anaerobic digestion(AD),as an eco-friendly biological process,shows potential for the decomposition of leachate produced by waste incineration power plants.In this study,the effects of Fe oxides nano-modified pumice(F...Anaerobic digestion(AD),as an eco-friendly biological process,shows potential for the decomposition of leachate produced by waste incineration power plants.In this study,the effects of Fe oxides nano-modified pumice(FNP)were investigated on the fresh leachate AD process.Firstly,a simple hydrothermal method was used to prepare FNP,then introduced into the UASB reactor to evaluate its AD efficiency.Results showed that the inclusion of FNP could shorten the lag phase by 10 days compared to the control group.Furthermore,cumulative methane production in the FNP group was enhanced by 20.11%.Mechanistic studies suggested that hydrogenotrophic methanogenesis in the FNP group was more pronounced due to the influence of key enzymes(i.e.,dehydrogenase and coenzyme F420).Microbial community analysis demonstrated that FNP could enhance the abundance of Methanosarcina,Proteobacteria,Sytrophomonas,and Limnobacter,which might elevate enzyme activity involved in methane production.These findings suggest that FNP might mediate interspecies electron transfer among these microorganisms,which is essential for efficient leachate treatment.展开更多
Plate culture counting and strain isolation methods were utilized to assess the species richness and abundance of planktonic and attached bacteria on glass plates in the surface and bottom seawater of Qingdao Middle H...Plate culture counting and strain isolation methods were utilized to assess the species richness and abundance of planktonic and attached bacteria on glass plates in the surface and bottom seawater of Qingdao Middle Harbor over a year,with monthly and quarterly sampling.Both species richness and bacterial numbers exhibited seasonal variations.Specifically,the abundance of attached bacteria and bacterioplankton peaked in June and July,corresponding to higher water temperatures in summer and autumn,while lower abundances were noted in January and December during cooler periods.Throughout the year,the species richness of attached bacteria consistently exceeded that of planktonic bacteria in both shallow and deep waters.Pseudoalteromonas emerged as the most prevalent genus among both planktonic and attached bacteria in surface and bottom seawater samples.Furthermore,the magnitude of changes in species richness and abundance for attached bacteria(0.66×10^(5)-15.85×10^(5)CFU/cm^(2))was greater than that observed for planktonic bacteria(0.58×10^(8)-5.33×10^(8)CFU/L).We propose that the attached bacterial populations,situated in limited microenvironments within the larger seawater ecosystem,exhibit heightened sensitivity to environmental fluctuations,resulting in more rapid shifts in population dynamics and lower ecological stability.The theoretical implications and potential applications of these findings warrant further investigation.展开更多
Ecological stoichiometry plays an important role in revealing the mechanisms underlying biogeochemical cycles and ecosystem functions.Abiotic factors have strong effects on N-P stoichiometry,yet the impact of plant co...Ecological stoichiometry plays an important role in revealing the mechanisms underlying biogeochemical cycles and ecosystem functions.Abiotic factors have strong effects on N-P stoichiometry,yet the impact of plant community structure,especially in forests,has not been fully elucidated.We investigated 68 plots in larch forests in northern China to explore how plant community structure and environmental factors affect the N-P stoichiometry of soil and leaves.The results showed significant differences in soil and leaf N-P stoichiometry among the three larch forests,P concentration and N:P ratio of leaves were significantly related to those of soil.Except for larch forest type,N-P stoichiometry was also regulated by elevation,climatic factors,and community structure.With increasing age(from 25 to 236 years),soil N and N:P ratio significantly increased,especially in the topsoil.With increasing mean DBH,leaf N concentration and N:P ratio also increased,indicating a shift in nutrient limitations with stand growth.These findings provide evidence that plant community structure and environmental factors regulate soil and leaf N-P stoichiometry,which is critically important for understanding biogeochemical cycles and forest management undergoing natural succession.展开更多
Based on the survey data of nine primitive broad-leaved Korean pine forest plots ranging from 1 to 10.4 ha in Heilongjiang Province,this study used the moving window method and GIS technology to analyze the variation ...Based on the survey data of nine primitive broad-leaved Korean pine forest plots ranging from 1 to 10.4 ha in Heilongjiang Province,this study used the moving window method and GIS technology to analyze the variation characteristics of the spatial distribution pattern of forest biomass in each plot.We explored the minimum area that can reflect the structural and functional characteristics of the primitive broad-leaved Korean pine forest,and used computer simulation random sampling method to verify the accuracy of the minimum area.The results showed that:(1)Through the analysis of the spatial distribution raster map of biomass deviation in the plots at various scales of 10−100 m,there is a minimum area(0.64 ha)for the critical range of biomass density variation in the primitive broad-leaved Korean pine forest.This minimum area based on biomass density can indirectly reflect the comprehensive characteristics of productivity level per unit area,structure,function,and environmental quality of the primitive broad-leaved Korean pine forest community.(2)Using computer simulation random sampling,it was found that only by sampling in a specific plot larger than or equal to the minimum area can equivalent or similar results be achieved as random sampling within the plot,indicating that the minimum area determined by the moving window method is accurate.(3)The minimum area determined in this paper is an excellent indicator reflecting the complexity of community structure,which can be used for comparing changes in community structure and function before and after external disturbances,and has a good evaluation effect.This minimum area can also be used as a basis for scientific and reasonable setting of plot size in the investigation and monitoring work of broad-leaved Korean pine forests in this region,thereby achieving the goals of improving work efficiency and saving work costs.展开更多
Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate ...Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate these attacks but are cumbersome, neglect dynamic protection of community structure, and lack precise utility measures. To address these challenges, we present a dynamic social network graph anonymity scheme with community structure protection (DSNGA-CSP), which achieves the dynamic anonymization process by incorporating community detection. First, DSNGA-CSP categorizes communities of the original graph into three types at each timestamp, and only partitions community subgraphs for a specific category at each updated timestamp. Then, DSNGA-CSP achieves intra-community and inter-community anonymization separately to retain more of the community structure of the original graph at each timestamp. It anonymizes community subgraphs by the proposed novel -composition method and anonymizes inter-community edges by edge isomorphism. Finally, a novel information loss metric is introduced in DSNGA-CSP to precisely capture the utility of the anonymized graph through original information preservation and anonymous information changes. Extensive experiments conducted on five real-world datasets demonstrate that DSNGA-CSP consistently outperforms existing methods, providing a more effective balance between privacy and utility. Specifically, DSNGA-CSP shows an average utility improvement of approximately 30% compared to TAKG and CTKGA for three dynamic graph datasets, according to the proposed information loss metric IL.展开更多
Macrobenthos can serve as an indicator of hypoxia in the estuarine ecosystem.This comparative study surveyed macrobenthos from hypoxic and non-hypoxic areas of the Zhujiang(Pearl)River Estuary(PRE),and explores the ef...Macrobenthos can serve as an indicator of hypoxia in the estuarine ecosystem.This comparative study surveyed macrobenthos from hypoxic and non-hypoxic areas of the Zhujiang(Pearl)River Estuary(PRE),and explores the effects of environmental factor on the macrobenthos community structure.In July 2020,49 macrobenthos species were collected from the hypoxic area,contrasting with 91 species found in the non-hypoxic area.July 2021 recorded 51 species in the hypoxic area and 76 in the non-hypoxic area.Analysis of similarities(ANOSIM)and non-metric multidimentional scaling(NMDS)showed no significant difference in the macrobenthos community structure between the two areas.However,Polychaeta displays higher species richness,abundance,and biomass in the hypoxic zone,negatively correlating to dissolved oxygen(DO).Canonical correspondence analysis(CCA)also showed that the abundance of Polychaeta was negatively correlated with that of Crustacea.Interestingly,despite the differences in Polychaeta,macrobenthos community structure remains stable between hypoxic and non-hypoxic samples.This study suggests Polychaeta’s potential adaptation to hypoxic conditions in the PRE’s hypoxic area.Finally,Spearman correlation analysis showed that DO have a significant negative correlation with total phosphorus(TP),total nitrogen(TN)and total organic carbon(TOC)in the PRE,indicating that water eutrophication would exacerbate the occurrence of hypoxia.展开更多
Human activities contribute to elevated nitrogen input in terrestrial ecosystems,influencing the composition of soil nutrients and microbial diversity in forest ecosystems.In this study,we built four addition treatmen...Human activities contribute to elevated nitrogen input in terrestrial ecosystems,influencing the composition of soil nutrients and microbial diversity in forest ecosystems.In this study,we built four addition treatments(0,20,40,and 80 kg ha^(−1)a^(−1)N for 6 a)at a Korean pine plantation of different soil horizons(organic(O)horizon,ranging from 0 to 10 cm,and organomineral(A)horizon,extending from 10 to 20 cm)to evaluate responses of the structure of saprophytic fungal communities.Here,80 kg ha^(−1)a^(−1)N treatment significantly decreased the community richness in soil A horizon with the Chao1 index decreasing by 12.68%.Nitrogen addition induced changes in the composition of saprophytic fungi community between the different soil horizons.The co-occurrence network and its associated topological structure were utilized to identify mycoindicators for specific fungi to both soil horizons and nitrogen addition levels.In soil O horizon,the mycoindicators included Penicillium,Trichoderma,Aspergillus,and Pseudeurotium across control,low,medium,and high nitrogen treatments.In soil A horizon,Geomyces,Cladophialophora,Penicillium,and Pseudeurotium were identified as mycoindicators.Structural equation modeling determined NH_(4)^(+)-N as the key factor driving changes in saprotrophic fungal communities.Our study aimed to screen mycoindicators that can respond to the increasing global nitrogen deposition and to assess the roles of these mycoindicators in the saprophytic fun-gal community structure within Korean pine plantations in northeast China.展开更多
Here,we characterize the temporal and spatial dynamics of forest community structure and species diversity in a subtropical evergreen broad-leaved forest in China.We found that community structure in this forest chang...Here,we characterize the temporal and spatial dynamics of forest community structure and species diversity in a subtropical evergreen broad-leaved forest in China.We found that community structure in this forest changed over a 15-year period.Specifically,renewal and death of common species was large,with the renewal of individuals mainly concentrated within a few populations,especially those of Aidia canthioides and Cryptocarya concinna.The numbers of individual deaths for common species were concentrated in the small and mid-diameter level.The spatial distribution of community species diversity fluctuated in each monitoring period,showing a more dispersed diversity after the 15-year study period,and the coefficient of variation on quadrats increased.In 2010,the death and renewal of the community and the spatial variation of species diversity were different compared to other survey years.Extreme weather may have affected species regeneration and community stability in our subtropical monsoon evergreen broad-leaved forests.Our findings suggest that strengthening the monitoring and management of the forest community will help better understand the long-and short-term causes of dynamic fluctuations of community structure and species diversity,and reveal the factors that drive changes in community structure.展开更多
Straw return is a sustainable soil fertility-building practice,which can affect soil microbial communities.However,how straw return affects arbuscular mycorrhizal fungi(AMF)is not well explored.Here,we studied the imp...Straw return is a sustainable soil fertility-building practice,which can affect soil microbial communities.However,how straw return affects arbuscular mycorrhizal fungi(AMF)is not well explored.Here,we studied the impacts of different straw management treatments over eight years on the structure and functioning of AMF communities in a rice-wheat rotation system.The straw management treatments included no tillage with no straw(NTNS),rotary tillage straw return(RTSR),and ditch-buried straw return(DBSR).The community structure of AMF was characterized using high-throughput sequencing,and the mycorrhizal functioning was quantified using an in situ mycorrhizal-suppression treatment.Different straw management treatments formed unique AMF community structure,which was closely related to changes in soil total organic carbon,available phosphorus,total nitrogen,ammonium,and nitrate.When compared with NTNS,RTSR significantly increased Shannon diversity in 0–10 cm soil layer,while DBSR increased it in 10–20 cm soil layer;DBSR significantly increased hyphal length density in the whole ploughing layer(0–20 cm),but RTSR only increased it in the subsurface soil layer(10–20 cm).The mycorrhizal responses of shoot biomass and nutrient(N and P)uptake were positive under both straw return treatments(RTSR and DBSR),but negative under NTNS.The community composition of AMF was significantly correlated to hyphal length density,and the latter was further a positive predictor for the mycorrhizal responses of plant growth and nutrient uptake.These findings suggest that straw return can affect AMF community structure and functioning,and farmers should manage mycorrhizas to strengthen their beneficial effects on crop production.展开更多
Climate warming profoundly affects plant biodiversity, community productivity, and soil properties in alpine and subalpine grassland ecosystems. However, these effects are poorly understood across elevational gradient...Climate warming profoundly affects plant biodiversity, community productivity, and soil properties in alpine and subalpine grassland ecosystems. However, these effects are poorly understood across elevational gradients in subalpine meadow ecosystems. To reveal the elevational patterns of warming effects on plant biodiversity, community structure, productivity, and soil properties, we conducted a warming experiment using open-top chambers from August 2019 to August 2022 at high(2764 m a. s. l.), medium(2631 m a. s. l.), and low(2544 m a. s. l.) elevational gradients on a subalpine meadow slope of Mount Wutai, Northern China. Our results showed that three years of warming significantly increased topsoil temperature but significantly decreased topsoil moisture at all elevations(P<0.05), and the percentage of increasing temperature and decreasing moisture both gradually raised with elevation lifting. Warming-induced decreasing proportions of soil organic carbon(SOC, by 19.24%), and total nitrogen(TN, by 24.56%) were the greatest at high elevational gradients. Experimental warming did not affect topsoil C: N, p H, NO_(3)^(-)-N, or NH_(4)^(+)-N at the three elevational gradients. Warming significantly increased species richness(P<0.01) and Shannon-Weiner index(P<0.05) at low elevational gradients but significantly decreased belowground biomass(P<0.05) at a depth of 0–10 cm at three elevational gradients. Warming caused significant increases in the aboveground biomass in the three elevational plots. Warming significantly increased the aboveground biomass of graminoids in medium(by 92.47%) and low(by 98.25%) elevational gradients, that of sedges in high(by 72.44%) and medium(by 57.16%) elevational plots, and that of forbs in high(by 75.88%), medium(by 34.38%), and low(by 74.95%) elevational plots. Species richness had significant linear correlations with SOC, TN, and C: N(P<0.05), but significant nonlinear responses to soil temperature and soil moisture in the warmed treatment(P<0.05). The warmed aboveground biomass had a significant nonlinear response to soil temperature and significant linear responses to soil moisture(P<0.05). This study provided evidence that altitude is a factor in sensitivity to climate warming, and these different parameters(e.g., plant species richness, Shannon-Weiner index, soil temperature, soil moisture, SOC, and TN) can be used to measure this sensitivity.展开更多
We construct a dual-layer coupled complex network of communities and residents to represent the interconnected risk transmission network between communities and the disease transmission network among residents. It cha...We construct a dual-layer coupled complex network of communities and residents to represent the interconnected risk transmission network between communities and the disease transmission network among residents. It characterizes the process of infectious disease transmission among residents between communities through the SE2IHR model considering two types of infectors. By depicting a more fine-grained social structure and combining further simulation experiments, the study validates the crucial role of various prevention and control measures implemented by communities as primary executors in controlling the epidemic. Research shows that the geographical boundaries of communities and the social interaction patterns of residents have a significant impact on the spread of the epidemic, where early detection, isolation and treatment strategies at community level are essential for controlling the spread of the epidemic. In addition, the study explores the collaborative governance model and institutional advantages of communities and residents in epidemic prevention and control.展开更多
Five years' (2000-2004) continuous study has been carried out on small mammals such as rodents in seven different sample plots, at three different altitudes and in six different ecological environment types in the ...Five years' (2000-2004) continuous study has been carried out on small mammals such as rodents in seven different sample plots, at three different altitudes and in six different ecological environment types in the eastern part of the Wuling Mountains, south bank of the Three Gorges of Yangtze River in Hubei. A total of 29 297 rat clamps/times were placed and 2271 small mammals such as rodents were captured, and 26 small mammals were captured by other means. All the small mammals captured belonged to 8 families 19 genera and 24 species, of which rodentia accounted for 70.83% and insectivora 29.17%. Through analysis of the data, the results showed that: 1 ) although the species richness had a trend of increasing along different sample plots as altitude increased from south to north, quite a few species showed a wide habitat range in a vertical distribution ( 15 species were dispersed over three zones and two species over two zones) , indicating a strong adaptability of small mammals such as rOdents at lower altitudes in most areas and comparatively less vertical span of entire mountains; 2) whether in seven different sample plots or six different ecological types, Apodemus agrarius and Rattus norvegicus were dominant species below 1200m, and Anourosorex squamipes, Niviventer confucianus and Apodemus draco were dominant above altitudes of 1300m, however, in quantity they were short of identical regularity, meaning they did not increase as the altitude did, or decrease as the ecological areas changed; 3)the density in winter was obviously greater than that in spring, and the distribution showed an increasing trend along with altitude, but the density in different sample plots was short of identical regularity, showing changes in different seasons and altitude grades had an important impact on small mammals such as rodents; 4) in species diversity and evenness index, there were obvious changes between the seven different sample plots, probably caused by frequent human interference in this area. Comparatively speaking, there was less human interference at high altitudes where vegetation was rich and had a high diversity and evenness index, and the boundary effect and community stability were obvious. Most ecological types have been seriously interfered with due to excessive assart at low altitudes with singular vegetation and low diversity and evenness index and poor community stability, showing an ecosystem with poor anti-reversion. If human interference can be reduced in those communities at high altitudes with low diversity and evenness index, the biological diversity in the communities will gradually recover to similar levels of other ecological areas.展开更多
Benthic macroinvertebrate communities in Spartina alterniflora zones in the Yangtze Estuary, in China, were investigated seasonally in 2005, and their structure and biodiversity were analyzed. Twenty-one species were ...Benthic macroinvertebrate communities in Spartina alterniflora zones in the Yangtze Estuary, in China, were investigated seasonally in 2005, and their structure and biodiversity were analyzed. Twenty-one species were identified, across four Classes; 10 species of Crustacea, five species of Polychaeta, five species of Gastropoda, and one species of Lamellibranchia. Dominant species included: Assiminea sp., Notomastus latericeus, Cerithidea largillierl, Gtauconome chinensi and Gammaridae sp. Functional groups were comprised of a phytophagous group and a detritivorous group. The average density of all benthic macroinvertebrates was 650.5 ±719.2 inds/m^2 in the survey area. The high value of the standard deviation of the average density was a result of abundant Assiminea sp. at Beihu tidal flats. The average density of macroinvertebrates from Beihu tidal flat, Chongming Dongtan to Jinshanwei tidal flat decreased gradually. There was significant difference between compositions and abundance of macroinvertebrates along the estuary gradient (P 〈 0.05). The density and biodiversity were highest in summer and lowest in winter. The mean biomass of macroinvertebrates was 20.8 ± 6.1 g/m^2. Biomass changed seasonally in the same way as density, with the change in biomass being: summer (Aug.) 〉autumn (Oct.) 〉spring (Apr.) 〉 winter (Dec.). A BIO-ENV analysis showed that the mean grain size of sediment, height of Spartina and salinity were the ma- jor factors which affected the structure of the macroinvertebrate community. Variations in the community structure were probably caused by the population dynamics of S. alterniflora along with the variation in sampling time and location.展开更多
基金supported by the Zhejiang Provincial Natural Science Foundation,China(Grant No.LQ24C010007)Zhejiang Science and Technology Major Program on Rice New Variety Breeding,China(Grant No.2021C02063)+4 种基金the Agricultural Sciences and Technologies Innovation Program,China(Grant No.CAAS-CSCB-202301)the Key Projects of Zhejiang Provincial Natural Science Foundation,China(Grant No.LZ23C130002)the Youth Innovation Program of Chinese Academy of Agricultural Sciences(Grant No.Y2023QC22)the Joint Open Competitive Project of the Yazhou Bay Seed Laboratory and China National Seed Company Limited(Grant Nos.B23YQ1514 and B23CQ15EP)the External Cooperation Projects of Biotechnology Research Institute,Fujian Academy of Agricultural Sciences,China(Grant No.DWHZ2024-07).
文摘Rice seedling blight,caused by various fungi,including Fusarium oxysporum,poses a severe threat to rice production.As awareness grows regarding the environmental and safety hazards associated with the application of fungicides for managing rice seedling blight,there has been a shift in focus towards biological control agents.In this study,we isolated biocontrol bacteria from paddy fields that significantly inhibited the growth of F.oxysporum in vitro and identified the strains as Bacillus amyloliquefaciens T40 and Bacillus pumilus T208.Additionally,our findings indicated that the combined application of these Bacillus strains in soil was more effective in reducing the incidence of rice seedling blight than their individual use.Analysis of 16S and internal transcribed spacer rRNA gene sequencing data revealed that the mixture of the T40 and T208 strains exhibited the lowest average clustering coefficients,which were negatively correlated with the biomass of F.oxysporum-inoculated rice seedlings.Furthermore,this mixture led to higher stochastic assembly(average|βNTI|<2)and reduced selection pressures on rice rhizosphere bacteria compared with individual strain applications.The mixture of the T40 and T208 strains also significantly increased the expression of defense-related genes.In conclusion,the mixture of the T40 and T208 strains effectively modulates microbial community structures,enhances microbial network stability,and boosts the resistance against rice seedling blight.Our study supports the development and utilization of biological resources for crop protection.
基金Foundation item:The Shandong Provincial Natural Science Foundation under contract No.ZR2018PD011the Science and Technology Innovation Development Program of Yantai under contract No.2020MSGY061the National Key Research and Development Program of China under contract No.2018YFC1407605.
文摘To determine if water-sediment regulation has affected macrobenthic community structure in the Huanghe River Estuary,China,macrobenthic samples were collected following regulation events from 2012 to 2016.We identify seven phyla and 138 macrobenthic species from within samples throughout the survey area,over time.Species richness and abundance in 2012 were significantly higher than in 2016.Biomass did not differ significantly during 2012–2016.Dominant species were mostly small polychaetes,with mollusks,arthropods,and echinoderms all being relatively rare.In 2016,dominant species were small polychaetes.MDS reveals macrobenthic communities at all surveyed distances from the estuary to have become the same community structure over time.Shannon-Wiener diversity and Margalef richness indexes trended down over time.CCA reveals the most dominant sediment-dwelling species to prefer lower dissolved oxygen,sulfides,and pH,and sediments with high D50 and low clay content.We speculate that water-sediment regulation has affected seabed communities,particularly Region A in our survey area.
基金The National Natural Science Foundation of China under contract No.41121064the NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No.U1406403the Science Foundation for Post Doctorate Research from the Chinese Academy of Sciences under contract No.2012M511072
文摘Microbial community structures in the Arctic deep-sea sedimentary ecosystem are determined by organic matter input, energy availability, and other environmental factors. However, global warming and earlier ice-cover melting are affecting the microbial diversity. To characterize the Arctic deep-sea sediment microbial diversity and its relationship with environmental factors, we applied Roche 454 sequencing of 16 S r DNA amplicons from Arctic deep-sea sediment sample. Both bacterial and archaeal communities' richness, compositions and structures as well as taxonomic and phylogenetic affiliations of identified clades were characterized. Phylotypes relating to sulfur reduction and chemoorganotrophic lifestyle are major groups in the bacterial groups; while the archaeal community is dominated by phylotypes most closely related to the ammonia-oxidizing Thaumarchaeota(96.66%) and methanogenic Euryarchaeota(3.21%). This study describes the microbial diversity in the Arctic deep marine sediment(〉3 500 m) near the North Pole and would lay foundation for future functional analysis on microbial metabolic processes and pathways predictions in similar environments.
基金The National Youth Science Fund under contract No.41606207the National Natural Science Foundation of China under contract No.41876176the Chinese Polar Environment Comprehensive Investigation and Assessment Programs under contract No.CHINARE2013-03-05。
文摘Sediment core samples were collected from 17 stations in the middle and eastern Chukchi Sea during the sixth Chinese National Arctic Research Expedition(CHINARE-Arctic)in summer 2014.The samples were analyzed for composition,abundance,biomass,vertical distribution,size spectra,and ecological indexes of meiofauna.A total of 14 meiofauna taxa were detected,and the free-living marine nematodes comprised the most dominant taxon,accounting for 97.21%of the average abundance.The abundance and biomass of meiofauna were within ranges of(218.12±85.83)-(7239.38±1557.15)ind./(10 cm^(2))and(130.28±52.17)-(3309.56±1751.80)μg/(10 cm^(2)),with average values of(2391.90±1966.19)ind./(10 cm^(2))and(1549.73±2042.85)μg/(10 cm^(2))(according to dry weight)respectively.Furthermore,91.26%of the individuals were distributed in the top layer of 0-5 cm of surface sediment,and 90.84%had sizes of 32-250μm.Group diversity index of meiofauna in the survey area was low,and the variation of abundance was the main difference in meiofauna communities among all stations.Abundance and biomass of meiofauna were not significantly correlated with environmental factors except concentration of nutrient Si in bottom seawater.Abundance of meiofauna in shallow water of marginal seas in the Pacific sector of the Arctic Ocean is likely at a same level and higher than that in most of China sea areas,suggesting that the shallow water of the summer Chukchi Sea is a continental shelf area with rich resources of meiofauna.The Chukchi Sea is important for studying the ecosystem of the Arctic Ocean and environmental responses.However,studies on meiofauna in the Chukchi Sea are still not enough,and in the future,natural and human disturbances may increase due to global warming,the Arctic channel opening,and other factors.Thus,more studies on meiofauna should be required,in order to know more about how the Arctic benthic community would alter.
基金supported by the National Key Research and Development Project of China(No.2021YFB2600200)the National Natural Science Foundation of China(Nos.52470185 and 52170159)the Open Research Fund of National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety,the Fund of National Key Laboratory of Water Disaster Prevention and Key Research and Development Program of Jiangsu Province(No.BE2022601).
文摘Microbial corrosion of hydraulic concrete structures(HCSs)has received increasing research concerns.However,knowledge on the morphology of attached biofilms,as well as the community structures and functions cultivated under variable nutrient levels is lacking.Here,biofilm colonization patterns and community structures responding to variable levels of ammonia and sulfate were explored.From field sampling,NH_(4)^(+)-N was proven key factor governing community structure in attached biofilms,verifying the reliability of selecting target nutrient species in batch experiments.Biofilms exhibited significant compositional differences in field sampling and incubation experiments.As the nutrient increased in batch experiments,the growth of biofilms gradually slowed down and uneven distribution was detected.The proportions of proteins and β-d-glucose polysaccharides in biofilms experienced a decrease in response to elevated levels of nutrients.With the increased of nutrients,themass losses of concretes exhibited an increase,reaching a highest value of 2.37%in the presence of 20 mg/L of ammonia.Microbial communities underwent a significant transition in structure and metabolic functions to ammonia gradient.The highest activity of nitrification was observed in biofilms colonized in the presence of 20 mg/L of ammonia.While the communities and their functions remained relativelymore stable responding to sulfate gradient.Our research provides novel insights into the structures of biofilms attached on HCSs and the metabolic functions in the presence of high level of nutrients,which is of significance for the operation and maintenance of hydraulic engineering structures.
基金supported by the National Natural Science Foundation of China(No.52270018).
文摘The organic matter inmunicipal wastewater can be recovered by anaerobic biological treatment,making further resource utilization of municipal wastewater,which meets the requirements of sustainable development.An upflow anaerobic biofilter(UAF)treating municipal wastewater was established.The performances of stable operation and recovery operation of UAF after long-term starvation(234 days)and the changes of microbial community structure were researched.By gradually reducing HRT from 10 h to 4 h,the UAF achieved the treatment performance of pre-starvation after only 50 days recovery operation,in which total COD and soluble COD removal efficiencies reached 66%and 69%,respectively,and the CH_(4) production rate was 0.21 L CH_(4)/g CODremoval.The recovery performance of UAF after long term starvation showed that the recovery sequence of three main anaerobic processes was hydrolytic acidification,hydrogen-acetate production and methanogenesis.High-throughput sequencing results indicated that dominant bacteria associated with hydrolytic acidification process changed from Moduliflexaceae and Trichococcus in stable operation stage to Trichococcus and Romboutsia in recovery stage.Besides,the dominant archaea changed from Methanosaeta(hydrotrophic methanogens)to Methanobacterium(acetotrophic methanogens),showing Methanobacterium was more resistant to starvation environment.Therefore,by using UAF for biological treatment of organic matter,even after a long period of starvation,the system would not be completely destroyed.Once it resumed operation,the treatment performance could be restored in a short period of time.
文摘Various graph representation learning models convert graph nodes into vectors using techniques like matrix factorization,random walk,and deep learning.However,choosing the right method for different tasks can be challenging.Communities within networks help reveal underlying structures and correlations.Investigating how different models preserve community properties is crucial for identifying the best graph representation for data analysis.This paper defines indicators to explore the perceptual quality of community properties in representation learning spaces,including the consistency of community structure,node distribution within and between communities,and central node distribution.A visualization system presents these indicators,allowing users to evaluate models based on community structures.Case studies demonstrate the effectiveness of the indicators for the visual evaluation of graph representation learning models.
基金supported by the National Key Research and Development Program of China(No.2019YFC0408500)the Scientific Research Project of China State Construction Engineering Corporation Limited(CSCEC-2022-K-(36))the Scientific Research Project of CSCEC AECOM Consultants Corporation Limited(XBSZKY2216).
文摘Anaerobic digestion(AD),as an eco-friendly biological process,shows potential for the decomposition of leachate produced by waste incineration power plants.In this study,the effects of Fe oxides nano-modified pumice(FNP)were investigated on the fresh leachate AD process.Firstly,a simple hydrothermal method was used to prepare FNP,then introduced into the UASB reactor to evaluate its AD efficiency.Results showed that the inclusion of FNP could shorten the lag phase by 10 days compared to the control group.Furthermore,cumulative methane production in the FNP group was enhanced by 20.11%.Mechanistic studies suggested that hydrogenotrophic methanogenesis in the FNP group was more pronounced due to the influence of key enzymes(i.e.,dehydrogenase and coenzyme F420).Microbial community analysis demonstrated that FNP could enhance the abundance of Methanosarcina,Proteobacteria,Sytrophomonas,and Limnobacter,which might elevate enzyme activity involved in methane production.These findings suggest that FNP might mediate interspecies electron transfer among these microorganisms,which is essential for efficient leachate treatment.
基金The National Natural Science Foundation of China under contract Nos 42206126 and 42076044the Natural Science Foundation of Shandong Province under contract No.ZR2021QD099.
文摘Plate culture counting and strain isolation methods were utilized to assess the species richness and abundance of planktonic and attached bacteria on glass plates in the surface and bottom seawater of Qingdao Middle Harbor over a year,with monthly and quarterly sampling.Both species richness and bacterial numbers exhibited seasonal variations.Specifically,the abundance of attached bacteria and bacterioplankton peaked in June and July,corresponding to higher water temperatures in summer and autumn,while lower abundances were noted in January and December during cooler periods.Throughout the year,the species richness of attached bacteria consistently exceeded that of planktonic bacteria in both shallow and deep waters.Pseudoalteromonas emerged as the most prevalent genus among both planktonic and attached bacteria in surface and bottom seawater samples.Furthermore,the magnitude of changes in species richness and abundance for attached bacteria(0.66×10^(5)-15.85×10^(5)CFU/cm^(2))was greater than that observed for planktonic bacteria(0.58×10^(8)-5.33×10^(8)CFU/L).We propose that the attached bacterial populations,situated in limited microenvironments within the larger seawater ecosystem,exhibit heightened sensitivity to environmental fluctuations,resulting in more rapid shifts in population dynamics and lower ecological stability.The theoretical implications and potential applications of these findings warrant further investigation.
基金supported by the National Natural Science Foundation of China(No.32201426,No.31988102)the Major Program for Basic Research Project of Yunnan Province(No.202101BC070002)the Key Research and Development Program of Yunnan Provin ce(No.202303AC100009).
文摘Ecological stoichiometry plays an important role in revealing the mechanisms underlying biogeochemical cycles and ecosystem functions.Abiotic factors have strong effects on N-P stoichiometry,yet the impact of plant community structure,especially in forests,has not been fully elucidated.We investigated 68 plots in larch forests in northern China to explore how plant community structure and environmental factors affect the N-P stoichiometry of soil and leaves.The results showed significant differences in soil and leaf N-P stoichiometry among the three larch forests,P concentration and N:P ratio of leaves were significantly related to those of soil.Except for larch forest type,N-P stoichiometry was also regulated by elevation,climatic factors,and community structure.With increasing age(from 25 to 236 years),soil N and N:P ratio significantly increased,especially in the topsoil.With increasing mean DBH,leaf N concentration and N:P ratio also increased,indicating a shift in nutrient limitations with stand growth.These findings provide evidence that plant community structure and environmental factors regulate soil and leaf N-P stoichiometry,which is critically important for understanding biogeochemical cycles and forest management undergoing natural succession.
基金supported by Science and Technology Foundation Project of Ministry of Science and Technology of China(2012FY112000).
文摘Based on the survey data of nine primitive broad-leaved Korean pine forest plots ranging from 1 to 10.4 ha in Heilongjiang Province,this study used the moving window method and GIS technology to analyze the variation characteristics of the spatial distribution pattern of forest biomass in each plot.We explored the minimum area that can reflect the structural and functional characteristics of the primitive broad-leaved Korean pine forest,and used computer simulation random sampling method to verify the accuracy of the minimum area.The results showed that:(1)Through the analysis of the spatial distribution raster map of biomass deviation in the plots at various scales of 10−100 m,there is a minimum area(0.64 ha)for the critical range of biomass density variation in the primitive broad-leaved Korean pine forest.This minimum area based on biomass density can indirectly reflect the comprehensive characteristics of productivity level per unit area,structure,function,and environmental quality of the primitive broad-leaved Korean pine forest community.(2)Using computer simulation random sampling,it was found that only by sampling in a specific plot larger than or equal to the minimum area can equivalent or similar results be achieved as random sampling within the plot,indicating that the minimum area determined by the moving window method is accurate.(3)The minimum area determined in this paper is an excellent indicator reflecting the complexity of community structure,which can be used for comparing changes in community structure and function before and after external disturbances,and has a good evaluation effect.This minimum area can also be used as a basis for scientific and reasonable setting of plot size in the investigation and monitoring work of broad-leaved Korean pine forests in this region,thereby achieving the goals of improving work efficiency and saving work costs.
基金supported by the Natural Science Foundation of China(No.U22A2099)the Innovation Project of Guangxi Graduate Education(YCBZ2023130).
文摘Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate these attacks but are cumbersome, neglect dynamic protection of community structure, and lack precise utility measures. To address these challenges, we present a dynamic social network graph anonymity scheme with community structure protection (DSNGA-CSP), which achieves the dynamic anonymization process by incorporating community detection. First, DSNGA-CSP categorizes communities of the original graph into three types at each timestamp, and only partitions community subgraphs for a specific category at each updated timestamp. Then, DSNGA-CSP achieves intra-community and inter-community anonymization separately to retain more of the community structure of the original graph at each timestamp. It anonymizes community subgraphs by the proposed novel -composition method and anonymizes inter-community edges by edge isomorphism. Finally, a novel information loss metric is introduced in DSNGA-CSP to precisely capture the utility of the anonymized graph through original information preservation and anonymous information changes. Extensive experiments conducted on five real-world datasets demonstrate that DSNGA-CSP consistently outperforms existing methods, providing a more effective balance between privacy and utility. Specifically, DSNGA-CSP shows an average utility improvement of approximately 30% compared to TAKG and CTKGA for three dynamic graph datasets, according to the proposed information loss metric IL.
基金The Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)under contract No.311021004the Biodiversity Assessment of Key Marine Habitat in China under contract Nos PM-zx555-202107-208 and PM-zx555-202106-195.
文摘Macrobenthos can serve as an indicator of hypoxia in the estuarine ecosystem.This comparative study surveyed macrobenthos from hypoxic and non-hypoxic areas of the Zhujiang(Pearl)River Estuary(PRE),and explores the effects of environmental factor on the macrobenthos community structure.In July 2020,49 macrobenthos species were collected from the hypoxic area,contrasting with 91 species found in the non-hypoxic area.July 2021 recorded 51 species in the hypoxic area and 76 in the non-hypoxic area.Analysis of similarities(ANOSIM)and non-metric multidimentional scaling(NMDS)showed no significant difference in the macrobenthos community structure between the two areas.However,Polychaeta displays higher species richness,abundance,and biomass in the hypoxic zone,negatively correlating to dissolved oxygen(DO).Canonical correspondence analysis(CCA)also showed that the abundance of Polychaeta was negatively correlated with that of Crustacea.Interestingly,despite the differences in Polychaeta,macrobenthos community structure remains stable between hypoxic and non-hypoxic samples.This study suggests Polychaeta’s potential adaptation to hypoxic conditions in the PRE’s hypoxic area.Finally,Spearman correlation analysis showed that DO have a significant negative correlation with total phosphorus(TP),total nitrogen(TN)and total organic carbon(TOC)in the PRE,indicating that water eutrophication would exacerbate the occurrence of hypoxia.
基金funded by the National Natural Science Foundation of China(grant number:31971527,32001126)Heilongjiang Provincial Key Research and Development Plan Guidance Projects(grant number:GZ20210009)Natural Science Foundation of Heilongjiang Province(grant number:TD2019C002).
文摘Human activities contribute to elevated nitrogen input in terrestrial ecosystems,influencing the composition of soil nutrients and microbial diversity in forest ecosystems.In this study,we built four addition treatments(0,20,40,and 80 kg ha^(−1)a^(−1)N for 6 a)at a Korean pine plantation of different soil horizons(organic(O)horizon,ranging from 0 to 10 cm,and organomineral(A)horizon,extending from 10 to 20 cm)to evaluate responses of the structure of saprophytic fungal communities.Here,80 kg ha^(−1)a^(−1)N treatment significantly decreased the community richness in soil A horizon with the Chao1 index decreasing by 12.68%.Nitrogen addition induced changes in the composition of saprophytic fungi community between the different soil horizons.The co-occurrence network and its associated topological structure were utilized to identify mycoindicators for specific fungi to both soil horizons and nitrogen addition levels.In soil O horizon,the mycoindicators included Penicillium,Trichoderma,Aspergillus,and Pseudeurotium across control,low,medium,and high nitrogen treatments.In soil A horizon,Geomyces,Cladophialophora,Penicillium,and Pseudeurotium were identified as mycoindicators.Structural equation modeling determined NH_(4)^(+)-N as the key factor driving changes in saprotrophic fungal communities.Our study aimed to screen mycoindicators that can respond to the increasing global nitrogen deposition and to assess the roles of these mycoindicators in the saprophytic fun-gal community structure within Korean pine plantations in northeast China.
基金funded by the Guangxi Natural Science Foundation Program (2022GXNSFAA035583 and 2020GXNSFAA159108)National Natural Science Foundation of China (32060305)+2 种基金Foundation of Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University)Ministry of Education, China (ERESEP 2021Z06)Chinese Forest Biodiversity Monitoring Network
文摘Here,we characterize the temporal and spatial dynamics of forest community structure and species diversity in a subtropical evergreen broad-leaved forest in China.We found that community structure in this forest changed over a 15-year period.Specifically,renewal and death of common species was large,with the renewal of individuals mainly concentrated within a few populations,especially those of Aidia canthioides and Cryptocarya concinna.The numbers of individual deaths for common species were concentrated in the small and mid-diameter level.The spatial distribution of community species diversity fluctuated in each monitoring period,showing a more dispersed diversity after the 15-year study period,and the coefficient of variation on quadrats increased.In 2010,the death and renewal of the community and the spatial variation of species diversity were different compared to other survey years.Extreme weather may have affected species regeneration and community stability in our subtropical monsoon evergreen broad-leaved forests.Our findings suggest that strengthening the monitoring and management of the forest community will help better understand the long-and short-term causes of dynamic fluctuations of community structure and species diversity,and reveal the factors that drive changes in community structure.
基金supported by the National Natural Science Foundation of China(No.31770483)the Natural Science Foundation of Jiangsu Province,China(Nos.21KJB210002,BK20210831,and BK20191310)。
文摘Straw return is a sustainable soil fertility-building practice,which can affect soil microbial communities.However,how straw return affects arbuscular mycorrhizal fungi(AMF)is not well explored.Here,we studied the impacts of different straw management treatments over eight years on the structure and functioning of AMF communities in a rice-wheat rotation system.The straw management treatments included no tillage with no straw(NTNS),rotary tillage straw return(RTSR),and ditch-buried straw return(DBSR).The community structure of AMF was characterized using high-throughput sequencing,and the mycorrhizal functioning was quantified using an in situ mycorrhizal-suppression treatment.Different straw management treatments formed unique AMF community structure,which was closely related to changes in soil total organic carbon,available phosphorus,total nitrogen,ammonium,and nitrate.When compared with NTNS,RTSR significantly increased Shannon diversity in 0–10 cm soil layer,while DBSR increased it in 10–20 cm soil layer;DBSR significantly increased hyphal length density in the whole ploughing layer(0–20 cm),but RTSR only increased it in the subsurface soil layer(10–20 cm).The mycorrhizal responses of shoot biomass and nutrient(N and P)uptake were positive under both straw return treatments(RTSR and DBSR),but negative under NTNS.The community composition of AMF was significantly correlated to hyphal length density,and the latter was further a positive predictor for the mycorrhizal responses of plant growth and nutrient uptake.These findings suggest that straw return can affect AMF community structure and functioning,and farmers should manage mycorrhizas to strengthen their beneficial effects on crop production.
基金carried out in the framework of the 1331 Project of Cultural Ecology Collaborative Innovation Center in Wutai Mountain (00000342)co-financed by Program for the Philosophy and Social Sciences Research of Higher Learning Institutions of Shanxi (2022J027)+1 种基金Applied Basic Research Project of Shanxi Province (202203021221225)Basic Research Project of Xinzhou Science and Technology Bureau (20230501)。
文摘Climate warming profoundly affects plant biodiversity, community productivity, and soil properties in alpine and subalpine grassland ecosystems. However, these effects are poorly understood across elevational gradients in subalpine meadow ecosystems. To reveal the elevational patterns of warming effects on plant biodiversity, community structure, productivity, and soil properties, we conducted a warming experiment using open-top chambers from August 2019 to August 2022 at high(2764 m a. s. l.), medium(2631 m a. s. l.), and low(2544 m a. s. l.) elevational gradients on a subalpine meadow slope of Mount Wutai, Northern China. Our results showed that three years of warming significantly increased topsoil temperature but significantly decreased topsoil moisture at all elevations(P<0.05), and the percentage of increasing temperature and decreasing moisture both gradually raised with elevation lifting. Warming-induced decreasing proportions of soil organic carbon(SOC, by 19.24%), and total nitrogen(TN, by 24.56%) were the greatest at high elevational gradients. Experimental warming did not affect topsoil C: N, p H, NO_(3)^(-)-N, or NH_(4)^(+)-N at the three elevational gradients. Warming significantly increased species richness(P<0.01) and Shannon-Weiner index(P<0.05) at low elevational gradients but significantly decreased belowground biomass(P<0.05) at a depth of 0–10 cm at three elevational gradients. Warming caused significant increases in the aboveground biomass in the three elevational plots. Warming significantly increased the aboveground biomass of graminoids in medium(by 92.47%) and low(by 98.25%) elevational gradients, that of sedges in high(by 72.44%) and medium(by 57.16%) elevational plots, and that of forbs in high(by 75.88%), medium(by 34.38%), and low(by 74.95%) elevational plots. Species richness had significant linear correlations with SOC, TN, and C: N(P<0.05), but significant nonlinear responses to soil temperature and soil moisture in the warmed treatment(P<0.05). The warmed aboveground biomass had a significant nonlinear response to soil temperature and significant linear responses to soil moisture(P<0.05). This study provided evidence that altitude is a factor in sensitivity to climate warming, and these different parameters(e.g., plant species richness, Shannon-Weiner index, soil temperature, soil moisture, SOC, and TN) can be used to measure this sensitivity.
基金Project supported by the Ministry of Education of China in the later stage of philosophy and social science research(Grant No.19JHG091)the National Natural Science Foundation of China(Grant No.72061003)+1 种基金the Major Program of National Social Science Fund of China(Grant No.20&ZD155)the Guizhou Provincial Science and Technology Projects(Grant No.[2020]4Y172)。
文摘We construct a dual-layer coupled complex network of communities and residents to represent the interconnected risk transmission network between communities and the disease transmission network among residents. It characterizes the process of infectious disease transmission among residents between communities through the SE2IHR model considering two types of infectors. By depicting a more fine-grained social structure and combining further simulation experiments, the study validates the crucial role of various prevention and control measures implemented by communities as primary executors in controlling the epidemic. Research shows that the geographical boundaries of communities and the social interaction patterns of residents have a significant impact on the spread of the epidemic, where early detection, isolation and treatment strategies at community level are essential for controlling the spread of the epidemic. In addition, the study explores the collaborative governance model and institutional advantages of communities and residents in epidemic prevention and control.
基金National Natural Science Foundation of China(30070679)the Natural Science Foundation of Hubei Province(2004ABA138)+1 种基金the Key Technology R&D Programme Foundation of Hubei Province(2002AA301C43)the Hubei Health Bureau Research Programme Foundation(NX200427)
文摘Five years' (2000-2004) continuous study has been carried out on small mammals such as rodents in seven different sample plots, at three different altitudes and in six different ecological environment types in the eastern part of the Wuling Mountains, south bank of the Three Gorges of Yangtze River in Hubei. A total of 29 297 rat clamps/times were placed and 2271 small mammals such as rodents were captured, and 26 small mammals were captured by other means. All the small mammals captured belonged to 8 families 19 genera and 24 species, of which rodentia accounted for 70.83% and insectivora 29.17%. Through analysis of the data, the results showed that: 1 ) although the species richness had a trend of increasing along different sample plots as altitude increased from south to north, quite a few species showed a wide habitat range in a vertical distribution ( 15 species were dispersed over three zones and two species over two zones) , indicating a strong adaptability of small mammals such as rOdents at lower altitudes in most areas and comparatively less vertical span of entire mountains; 2) whether in seven different sample plots or six different ecological types, Apodemus agrarius and Rattus norvegicus were dominant species below 1200m, and Anourosorex squamipes, Niviventer confucianus and Apodemus draco were dominant above altitudes of 1300m, however, in quantity they were short of identical regularity, meaning they did not increase as the altitude did, or decrease as the ecological areas changed; 3)the density in winter was obviously greater than that in spring, and the distribution showed an increasing trend along with altitude, but the density in different sample plots was short of identical regularity, showing changes in different seasons and altitude grades had an important impact on small mammals such as rodents; 4) in species diversity and evenness index, there were obvious changes between the seven different sample plots, probably caused by frequent human interference in this area. Comparatively speaking, there was less human interference at high altitudes where vegetation was rich and had a high diversity and evenness index, and the boundary effect and community stability were obvious. Most ecological types have been seriously interfered with due to excessive assart at low altitudes with singular vegetation and low diversity and evenness index and poor community stability, showing an ecosystem with poor anti-reversion. If human interference can be reduced in those communities at high altitudes with low diversity and evenness index, the biological diversity in the communities will gradually recover to similar levels of other ecological areas.
文摘Benthic macroinvertebrate communities in Spartina alterniflora zones in the Yangtze Estuary, in China, were investigated seasonally in 2005, and their structure and biodiversity were analyzed. Twenty-one species were identified, across four Classes; 10 species of Crustacea, five species of Polychaeta, five species of Gastropoda, and one species of Lamellibranchia. Dominant species included: Assiminea sp., Notomastus latericeus, Cerithidea largillierl, Gtauconome chinensi and Gammaridae sp. Functional groups were comprised of a phytophagous group and a detritivorous group. The average density of all benthic macroinvertebrates was 650.5 ±719.2 inds/m^2 in the survey area. The high value of the standard deviation of the average density was a result of abundant Assiminea sp. at Beihu tidal flats. The average density of macroinvertebrates from Beihu tidal flat, Chongming Dongtan to Jinshanwei tidal flat decreased gradually. There was significant difference between compositions and abundance of macroinvertebrates along the estuary gradient (P 〈 0.05). The density and biodiversity were highest in summer and lowest in winter. The mean biomass of macroinvertebrates was 20.8 ± 6.1 g/m^2. Biomass changed seasonally in the same way as density, with the change in biomass being: summer (Aug.) 〉autumn (Oct.) 〉spring (Apr.) 〉 winter (Dec.). A BIO-ENV analysis showed that the mean grain size of sediment, height of Spartina and salinity were the ma- jor factors which affected the structure of the macroinvertebrate community. Variations in the community structure were probably caused by the population dynamics of S. alterniflora along with the variation in sampling time and location.