期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Adaptive Resource Allocation Algorithm for 5G Vehicular Cloud Communication
1
作者 Huanhuan Li Hongchang Wei +1 位作者 Zheliang Chen Yue Xu 《Computers, Materials & Continua》 SCIE EI 2024年第8期2199-2219,共21页
The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We pro... The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We propose an adaptive allocation algorithm for mobile cloud communication resources in 5G vehicular networks to address these issues.This study analyzes the components of the 5G vehicular network architecture to determine the performance of different components.It is ascertained that the communication modes in 5G vehicular networks for mobile cloud communication include in-band and out-of-band modes.Furthermore,this study analyzes the single-hop and multi-hop modes in mobile cloud communication and calculates the resource transmission rate and bandwidth in different communication modes.The study also determines the scenario of one-way and two-way vehicle lane cloud communication network connectivity,calculates the probability of vehicle network connectivity under different mobile cloud communication radii,and determines the amount of cloud communication resources required by vehicles in different lane scenarios.Based on the communication status of users in 5G vehicular networks,this study calculates the bandwidth and transmission rate of the allocated channels using Shannon’s formula.It determines the adaptive allocation of cloud communication resources,introduces an objective function to obtain the optimal solution after allocation,and completes the adaptive allocation process.The experimental results demonstrate that,with the application of the proposed method,the maximum utilization of user communication resources reaches approximately 99%.The balance coefficient curve approaches 1,and the allocation time remains under 2 s.This indicates that the proposed method has higher adaptive allocation efficiency. 展开更多
关键词 5G vehicular networks mobile cloud communication resource allocation channel capacity network connectivity communication radius objective function
在线阅读 下载PDF
Triboelectric Intelligence
2
作者 Renyun Zhang 《SmartSys》 2025年第1期47-57,共11页
1|Background The innovation of triboelectric nanogenerators and their application in self‐powered sensors[1-3]provides a new strat-egy for sensor development.Such a development is becoming an important part of IoT as... 1|Background The innovation of triboelectric nanogenerators and their application in self‐powered sensors[1-3]provides a new strat-egy for sensor development.Such a development is becoming an important part of IoT as a large number of sensors are needed to sense different things and communicate over net-works.Among the sensors,triboelectric nanogenerator(TENG)based sensors are attracting rising attention during the last 10 years.A unique feature of the TENG sensors is the self‐powering,which eliminates the need for batteries that are normally required of other types of sensors.In the early years of TENG sensors,researchers focused on the sensors'feasibility,flexibility,and sensitivity[4-7].Lately,TENG sensing systems[8,9]have been developed to obtain information from different places and times,which provides more data to be analyzed to describe a specific scenario.Moreover,the data could be communicated over a cloud. 展开更多
关键词 triboelectric nanogenerators self powered sensors cloud communication data analysis sensorstriboelectric nanogenerator teng based sense different things IoT
在线阅读 下载PDF
A Combinatorial Auction-Based Collaborative Cloud Services Platform
3
作者 Xiaowei Zhang Bin Li Junwu Zhu 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2015年第1期50-61,共12页
In this paper, we present a novel, dynamic collaboration cloud platform in which a Combinatorial Auction(CA)-based market model enables the platform to run effectively. The platform can facilitate expense reduction ... In this paper, we present a novel, dynamic collaboration cloud platform in which a Combinatorial Auction(CA)-based market model enables the platform to run effectively. The platform can facilitate expense reduction and improve the scalability of the cloud, which is divided into three layers: The user-layer receives requests from end-users, the auction-layer matches the requests with the cloud services provided by the Cloud Service Provider(CSP), and the CSP-layer forms a coalition to improve serving ability to satisfy complex requirements of users.In fact, the aim of the coalition formation is to find suitable partners for a particular CSP. However, identifying a suitable combination of partners to form the coalition is an NP-hard problem. Hence, we propose approximation algorithms for the coalition formation. The Breadth Traversal Algorithm(BTA) and Revised Ant Colony Algorithm(RACA) are proposed to form a coalition when bidding for a single cloud service in the auction. The experimental results show that RACA outperforms the BTA in bid price. Other experiments were conducted to evaluate the impact of the communication cost on coalition formation and to assess the impact of iteration times for the optimal bidding price. In addition, the performance of the market model was compared to the existing CA-based model in terms of economic efficiency. 展开更多
关键词 cloud computing coalition formation combinatorial auction ant colony algorithm communication cost
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部