New electric power systems characterized by a high proportion of renewable energy and power electronics equipment face significant challenges due to high-frequency(HF)electromagnetic interference from the high-speed s...New electric power systems characterized by a high proportion of renewable energy and power electronics equipment face significant challenges due to high-frequency(HF)electromagnetic interference from the high-speed switching of power converters.To address this situation,this paper offers an in-depth review of HF interference problems and challenges originating from power electronic devices.First,the root cause of HF electromagnetic interference,i.e.,the resonant response of the parasitic parameters of the system to high-speed switching transients,is analyzed,and various scenarios of HF interference in power systems are highlighted.Next,the types of HF interference are summarized,with a focus on common-mode interference in grounding systems.This paper thoroughly reviews and compares various suppression methods for conducted HF interference.Finally,the challenges involved and suggestions for addressing emerging HF interference problems from the perspective of both power electronics equipment and power systems are discussed.This review aims to offer a structured understanding of HF interference problems and their suppression techniques for researchers and practitioners.展开更多
In the gravitational field of central mass with electric and magnetic charges and magnetic moment (CM spacetime), this paper calculates the interference phase of mass neutrino along geodesic in the radial direction,...In the gravitational field of central mass with electric and magnetic charges and magnetic moment (CM spacetime), this paper calculates the interference phase of mass neutrino along geodesic in the radial direction, and discusses the contribution of the electric and magnetic charges and magnetic moment of the central mass to the phase.展开更多
Solid-state transformers(SSTs)have been widely used in many areas owing to their advantages of high-frequency isolation and high power density.However,high-frequency switching causes severe electromagnetic interferenc...Solid-state transformers(SSTs)have been widely used in many areas owing to their advantages of high-frequency isolation and high power density.However,high-frequency switching causes severe electromagnetic interference(EMI)problems.Particularly,the common-mode(CM)EMI caused by the switching of the dual active bridge(DAB)converter is conducted through the parasitic capacitances in the high-frequency transformer and impacts the system reliability.With the understanding of the CM EMI model in SSTs,CM EMI mitigation methods have been studied.For passive mitigation,the coupled inductor can be integrated with the phase-shift inductor function to reduce CM EMI.For active mitigation,variations in the DAB switching frequency can help reduce the CM EMI peak.An active EMI filter can also be designed to sample and compensate for CM EMI.Using these methods,CM EMI can be reduced in SSTs.展开更多
在整流—逆变系统中,功率开关器件的高频动作会产生巨大的dv/dt,di/dt,形成严重的电磁干扰(EMI)。为了预测进而抑制系统的共模传导电磁干扰,需要研究其建模和分析方法。通过与单相逆变器共模干扰模型进行对比、分析共模电磁干扰源和传...在整流—逆变系统中,功率开关器件的高频动作会产生巨大的dv/dt,di/dt,形成严重的电磁干扰(EMI)。为了预测进而抑制系统的共模传导电磁干扰,需要研究其建模和分析方法。通过与单相逆变器共模干扰模型进行对比、分析共模电磁干扰源和传播途径,构建了用于研究整流—逆变系统共模电磁干扰的等效电路。在10 k Hz^30 MHz频段,对整流器、逆变器以及系统的共模干扰进行了仿真和测试,预测结果与实测结果对比基本一致,证明了提出的共模电磁干扰等效电路模型及其分析方法的正确性。展开更多
基金supported by the science and technology project of State Grid Shanghai Municipal Electric Power Company(No.52094023003L).
文摘New electric power systems characterized by a high proportion of renewable energy and power electronics equipment face significant challenges due to high-frequency(HF)electromagnetic interference from the high-speed switching of power converters.To address this situation,this paper offers an in-depth review of HF interference problems and challenges originating from power electronic devices.First,the root cause of HF electromagnetic interference,i.e.,the resonant response of the parasitic parameters of the system to high-speed switching transients,is analyzed,and various scenarios of HF interference in power systems are highlighted.Next,the types of HF interference are summarized,with a focus on common-mode interference in grounding systems.This paper thoroughly reviews and compares various suppression methods for conducted HF interference.Finally,the challenges involved and suggestions for addressing emerging HF interference problems from the perspective of both power electronics equipment and power systems are discussed.This review aims to offer a structured understanding of HF interference problems and their suppression techniques for researchers and practitioners.
基金Project supported by National Basic Research Program of China (Grant No 2003CB716300)the National Natural Science Foundation of China (Grant No 10873004)+1 种基金the Scientific Research Fund of Hunan Provincial Education Department (Grant No 08B051)the Scientific Research Fund of Hunan Normal University
文摘In the gravitational field of central mass with electric and magnetic charges and magnetic moment (CM spacetime), this paper calculates the interference phase of mass neutrino along geodesic in the radial direction, and discusses the contribution of the electric and magnetic charges and magnetic moment of the central mass to the phase.
文摘Solid-state transformers(SSTs)have been widely used in many areas owing to their advantages of high-frequency isolation and high power density.However,high-frequency switching causes severe electromagnetic interference(EMI)problems.Particularly,the common-mode(CM)EMI caused by the switching of the dual active bridge(DAB)converter is conducted through the parasitic capacitances in the high-frequency transformer and impacts the system reliability.With the understanding of the CM EMI model in SSTs,CM EMI mitigation methods have been studied.For passive mitigation,the coupled inductor can be integrated with the phase-shift inductor function to reduce CM EMI.For active mitigation,variations in the DAB switching frequency can help reduce the CM EMI peak.An active EMI filter can also be designed to sample and compensate for CM EMI.Using these methods,CM EMI can be reduced in SSTs.
文摘在整流—逆变系统中,功率开关器件的高频动作会产生巨大的dv/dt,di/dt,形成严重的电磁干扰(EMI)。为了预测进而抑制系统的共模传导电磁干扰,需要研究其建模和分析方法。通过与单相逆变器共模干扰模型进行对比、分析共模电磁干扰源和传播途径,构建了用于研究整流—逆变系统共模电磁干扰的等效电路。在10 k Hz^30 MHz频段,对整流器、逆变器以及系统的共模干扰进行了仿真和测试,预测结果与实测结果对比基本一致,证明了提出的共模电磁干扰等效电路模型及其分析方法的正确性。