在复杂网络中高质量的社团划分会更好地揭示网络的结构特性与功能。基于节点相似性的算法是一类具有代表性的社团划分算法,但现有的基于节点相似性算法没有充分考虑到共邻节点之间的联系导致准确率下降。针对上述问题,首先定义共邻节点...在复杂网络中高质量的社团划分会更好地揭示网络的结构特性与功能。基于节点相似性的算法是一类具有代表性的社团划分算法,但现有的基于节点相似性算法没有充分考虑到共邻节点之间的联系导致准确率下降。针对上述问题,首先定义共邻节点贡献度概念,提出一种基于共邻节点贡献度的社团划分算法(Contribution of Common Neighbor Nodes Based Community Division Algorithm, CCNNA),将共邻节点之间的连边数参与到RA相似度指标的计算当中,提高了度量的准确性;然后运用改进的层次聚类与最优模块度值的思想实现网络的社团划分。在人工合成网络与真实网络上的实验结果表明,所提算法能够很好地挖掘社团结构,与模块度优化CNM(Clauset-Newman-Moore)算法以及最新的基于节点相似性算法相比,所提算法有更高的社团模块度和划分准确率。展开更多
针对委托权益证明(delegated proof of stake,DPoS)中节点投票不积极和恶意节点操纵选举结果的问题,提出一种基于共邻节点相似度改进的DPoS(DPoS based on similarity of common neighbor nodes,S-DPoS)共识算法。首先,引入共邻节点相...针对委托权益证明(delegated proof of stake,DPoS)中节点投票不积极和恶意节点操纵选举结果的问题,提出一种基于共邻节点相似度改进的DPoS(DPoS based on similarity of common neighbor nodes,S-DPoS)共识算法。首先,引入共邻节点相似度模型实现社区划分,缩短投票周期,提高共识效率。其次,计算节点的信誉度,各社区选出一个信誉度最高的节点作为见证节点且负责生产区块,通过节点身份转换机制及时更新节点类别。最后,通过奖惩机制对节点进行奖惩,快速剔除错误节点。仿真实验结果表明,S-DPoS共识算法的节点参与度比DPoS算法提高30%~40%,并且能够有效降低恶意节点操纵选举结果的可能性,增强了系统的安全性。展开更多
文摘在复杂网络中高质量的社团划分会更好地揭示网络的结构特性与功能。基于节点相似性的算法是一类具有代表性的社团划分算法,但现有的基于节点相似性算法没有充分考虑到共邻节点之间的联系导致准确率下降。针对上述问题,首先定义共邻节点贡献度概念,提出一种基于共邻节点贡献度的社团划分算法(Contribution of Common Neighbor Nodes Based Community Division Algorithm, CCNNA),将共邻节点之间的连边数参与到RA相似度指标的计算当中,提高了度量的准确性;然后运用改进的层次聚类与最优模块度值的思想实现网络的社团划分。在人工合成网络与真实网络上的实验结果表明,所提算法能够很好地挖掘社团结构,与模块度优化CNM(Clauset-Newman-Moore)算法以及最新的基于节点相似性算法相比,所提算法有更高的社团模块度和划分准确率。
文摘针对委托权益证明(delegated proof of stake,DPoS)中节点投票不积极和恶意节点操纵选举结果的问题,提出一种基于共邻节点相似度改进的DPoS(DPoS based on similarity of common neighbor nodes,S-DPoS)共识算法。首先,引入共邻节点相似度模型实现社区划分,缩短投票周期,提高共识效率。其次,计算节点的信誉度,各社区选出一个信誉度最高的节点作为见证节点且负责生产区块,通过节点身份转换机制及时更新节点类别。最后,通过奖惩机制对节点进行奖惩,快速剔除错误节点。仿真实验结果表明,S-DPoS共识算法的节点参与度比DPoS算法提高30%~40%,并且能够有效降低恶意节点操纵选举结果的可能性,增强了系统的安全性。