期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Influence of injection positions on combustion performance in kerosene-fueled multi-cavity Scramjet combustor
1
作者 Fangbin LIU Rongchun ZHANG +1 位作者 Riheng ZHENG Qiang SUN 《Chinese Journal of Aeronautics》 2025年第5期92-108,共17页
The kerosene-fueled Scramjet with multi-cavity combustor has the potential to serve aspropulsion system for hypersonic flight.However,the impact of injection positions on combustionperformance and mechanism at high Ma... The kerosene-fueled Scramjet with multi-cavity combustor has the potential to serve aspropulsion system for hypersonic flight.However,the impact of injection positions on combustionperformance and mechanism at high Mach numbers remains uncertain.Therefore,a comparativestudy was conducted using numerical methods to explore multi-cavity Scramjet combustor perfor-mance at a flight Mach number 7.0 with different injection positions.The combustor is equippedwith 6 cavities arranged in three groups along the flow direction,each consisting of two cavities per-pendicular to the flow.It is shown that the injection location significantly influences combustionperformance:Front-injection yields higher combustion efficiency than post-injection,but post-injection is advantageous for the intake start.Additionally,regardless of injection positions,themainstream flow state near the cavities behind the injection can be categorized as supersonic flow,supersonic-subsonic coexistence flow,and subsonic flow.The optimal length from the downstreamto the trailing edge of the cavities behind the injection for achieving maximum combustion effi-ciency is determined.Further extension beyond this optimal length does not significantly increasethe combustion efficiency.In addition,the optimal length varies with different injection positions-specifically,it is about 60%longer with post-injection conditions than with front-injection con-ditions in this investigation.Moreover,significant secondary combustion within the cavities leadingto improved efficiency only occurs when mainstream flow state is either supersonic flow orsupersonic-subsonic coexistence flow.Also,with a well-optimized design,the kerosene-fueledmulti-cavity Scramjet can achieve enhanced combustion efficiency,which shows relatively smallvariation across a wide range of equivalence ratios.This might be caused by the effects of interac-tion among these multiple cavities.Therefore,these research findings can provide valuable insightsfor designing and optimizing the kerosene-fueled multi-cavity combustor in Scramjet at high Machnumbers. 展开更多
关键词 SCRAMJET INJECTION combustion performance Optimization MULTI-CAVITY
原文传递
Combustion performance of pulverized coal and corresponding kinetics study after adding the additives of Fe_(2)O_(3) and CaO 被引量:3
2
作者 Qiangjian Gao Guopeng Zhang +2 位作者 Haiyan Zheng Xin Jiang Fengman Shen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期314-323,共10页
Combustion performance of pulverized coal(PC)in blast furnace(BF)process is regarded as a criteria parameter to assess the prop-er injection dosage of PC.In this paper,effects of two kinds of additives,Fe_(2)O_(3) and... Combustion performance of pulverized coal(PC)in blast furnace(BF)process is regarded as a criteria parameter to assess the prop-er injection dosage of PC.In this paper,effects of two kinds of additives,Fe_(2)O_(3) and CaO,on PC combustion were studied using the thermo-gravimetric method.The results demonstrate that both the Fe_(2)O_(3) and CaO can promote combustion performance index of PC including igni-tion index(C_(i)),burnout index(D_(b)),as well as comprehensive combustibility index(S_(n)).The S_(n) increases from 1.37×10^(−6) to 2.16×10^(−6)%2·min^(−2)·℃^(−3) as the Fe_(2)O_(3) proportion increases from 0 to 5.0wt%.Additionally,the combustion kinetics of PC was clarified using the Coats-Redfern method.The results show that the activation energy(E)of PC combustion decreases after adding the above additives.For instance,the E decreases from 56.54 to 35.75 kJ/mol when the Fe_(2)O_(3) proportion increases from 0 to 5.0wt%,which supports the improved combustion per-formance.Moreover,it is uneconomic to utilize pure Fe_(2)O_(3) and CaO in production.Based on economy analysis,we selected the iron-bearing dust(IBD)which contains much Fe_(2)O_(3) and CaO component to investigate,and got the same effects.Therefore,the IBD is a potential option for catalytic PC combustion in BF process. 展开更多
关键词 pulverized coal combustion performance blast furnace KINETICS ADDITIVES
在线阅读 下载PDF
Ignition characteristics and combustion performances of a LO_2/GCH_4 small thrust rocket engine 被引量:2
3
作者 ZHANG Jia-qi LI Qing-lian SHEN Chi-bing 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第3期646-652,共7页
A 500 N model engine filled with LO2/GCH4 was designed and manufactured.A series of ignition attempts were performed in it by both head spark plug and body spark plug.Results show that the engine can be ignited but th... A 500 N model engine filled with LO2/GCH4 was designed and manufactured.A series of ignition attempts were performed in it by both head spark plug and body spark plug.Results show that the engine can be ignited but the combustion cannot be sustained when head spark plug applied as the plug tip was set in the gaseous low-velocity zone with thin spray.This is mainly because flame from this zone cannot supply enough ignition energy for the whole chamber.However,reliable ignition and stable combustion can be achieved by body spark plug.As the O/F ratio increases from 2.61 to 3.49,chamber pressure increases from 0.474 to 0.925 MPa and combustion efficiency increases from 57.8%to 95.1%.This is determined by the injector configuration,which cannot produce the sufficiently breakup of the liquid oxygen on the low flow rate case. 展开更多
关键词 LO2/GCH4 small thrust rocket engine ignition characteristic combustion performance
在线阅读 下载PDF
Combustion performance of nozzles with multiple gas orifices in large ladles for temperature uniformity 被引量:1
4
作者 Fei Yuan Hong-bing Wang +1 位作者 Pei-ling Zhou Anojun Xu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第4期387-397,共11页
In order to improve the baking temperature uniformity of the large ladle in steelmaking plants, the flame combustion characteristics of nozzles with different inner structures were numerically simulated with the finit... In order to improve the baking temperature uniformity of the large ladle in steelmaking plants, the flame combustion characteristics of nozzles with different inner structures were numerically simulated with the finite volume method code Fluent. The flow field and premixed combustion reaction inside and outside the nozzle with multiple gas orifices were exhibited. Meanwhile, the influences of the gas injecting angle and the number of gas orifices on temperature, velocity, and pressure fields were studied. The results show that the flame length and width at the rear of flame temperature field reach the maximum values in the nozzle with the gas injecting angle of 20° and 4 gas orifices for the control of premixed combustion inside the nozzle, which could provide better temperature uniformity in ladles. The length of the 1273 K isothermal surface is 4.89 m, and the cross-section area at 4 m away from the outlet of the nozzle is 0.13 m2. The pressure losses of different types of nozzles range from 112.2 to 169.4 Pa and decrease with the decrement in gas injecting angle and the number of gas orifices. The ladle bottom preheating temperature is increased by 320-360 K for the optimized nozzle. The inner surface temperature differences between wall and bottom of the ladle are less than 10%. There is good baking temperature uniformity after the application of optimum structurally designed nozzles. 展开更多
关键词 LADLE NOZZLE PREHEATING Flame combustion performance Gas orifice Temperature uniformity
原文传递
Effect of NaOH treatment on combustion performance of Xilinhaote lignite 被引量:5
5
作者 Liu Xiangchun Feng Li +2 位作者 Song Lingling Wang Xinhua Zhang Ying 《International Journal of Mining Science and Technology》 SCIE EI 2014年第1期51-55,共5页
The combustion characteristics of NaOH treated and untreated Xilihaote lignite was investigated by thermogravimetric analysis.The relationship between physico-chemical properties,including the ash content,oxygen-conta... The combustion characteristics of NaOH treated and untreated Xilihaote lignite was investigated by thermogravimetric analysis.The relationship between physico-chemical properties,including the ash content,oxygen-containing functional groups,mean pore diameter and specific surface area and combustion performance,was also studied in this paper.Combustion kinetic parameters were calculated through Coasts Redfern Method.The results show that ignition of treated samples takes place at higher temperature compared to raw lignite,and peak temperature also occurs at higher temperature.The maximum combustion rate of the sample,which was treated by 0.01 mol/L NaOH lignite,was the biggest.Reaction orders of 0.6,2.0,and 0.8 were found to be effective mechanism for definite three temperature regions.Average activation energies of these three temperature regions of XLHTR,XLHT0.01,XLHT0.50 and XLTH1.00 are 19.17,23.87,10.77,and 10.93 kJ/mol,respectively.Treatment of lignite with NaOH can reduce the reactivity of lignite at proper concentration. 展开更多
关键词 Lignite Alkali treatment Non-isothermal thermogravimetry combustion performance
在线阅读 下载PDF
Scaling study of the combustion performance of gas gas rocket injectors 被引量:1
6
作者 汪小卫 蔡国飙 金平 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第10期293-304,共12页
To obtain the key subelements that may influence the scaling of gas-as injector combustor performance, the combustion performance subelements in a liquid propellant rocket engine combustor are initially analysed based... To obtain the key subelements that may influence the scaling of gas-as injector combustor performance, the combustion performance subelements in a liquid propellant rocket engine combustor are initially analysed based on the results of a previous study on the scaling of a gas gas combustion fiowfield. Analysis indicates that inner wall friction loss and heat-flux loss are two key issues in gaining the scaling criterion of the combustion performance. The similarity conditions of the inner wall friction loss and heat-flux loss in a gas-gas combustion chamber are obtained by theoretical analyses. Then the theoretical scaling criterion was obtained for the combustion performance, but it proved to be impractical. The criterion conditions, the wall friction and the heat flux are further analysed in detail to obtain the specific engineering scaling criterion of the combustion performance. The results indicate that when the inner fiowfields in the combustors are similar, the combustor wall shear stress will have similar distributions qualitatively and will be directly proportional to pc0.8dt-0.2 quantitatively. In addition, the combustion peformance will remain unchanged. Furthermore, multi-element injector chambers with different geometric sizes and at different pressures are numerically simulated and the wall shear stress and combustion efficiencies are solved and compared with each other. A multi- element injector chamber is designed and hot-fire tested at several chamber pressures and the combustion performances are measured in a total of nine hot-fire tests. The numerical and experimental results verified the similarities among combustor wall shear stress and combustion performances at different chamber pressures and geometries, with the criterion applied. 展开更多
关键词 SCALING combustion performance subscale combustor wall friction gas-gas combustion
原文传递
Survey and Study on Combustion Performance of W-Flame Double Arch Boiler 被引量:1
7
作者 Yuan Ying Xiang Daguang (Thermal Power Research Institute State Power Corporation of China) 《Electricity》 2000年第1期23-30,共8页
By the end of 1997, totally ten 300 MW grade W-flame double arch boilers, firing anthracite or meager coal, were operating in China. These W-flame boilers were designed and supplied separately by four different manufa... By the end of 1997, totally ten 300 MW grade W-flame double arch boilers, firing anthracite or meager coal, were operating in China. These W-flame boilers were designed and supplied separately by four different manufacturers in the world, using either their own technology or foreign patent. It is shown by a recent survey that all these boilers are having a normal operation. However, there is still some room to be improved, such as boiler furnace configuration. Also, for raising the burnout rate and avoiding local slagging, furnace volume and burner layout need to be deliberated. And the tineness of pulverized coal and the air / coal ratio need to be improved. Some suggestions are made in this paper for optimizing the boiler design, Test data for the minimum stable combustion load and NOx emission are given too. 展开更多
关键词 Survey and Study on combustion performance of W-Flame Double Arch Boiler
在线阅读 下载PDF
Experimental Investigation on Combustion Performance of Solid Propellant Subjected to Erosion of Particles with Different Concentrations
8
作者 卢明章 赵志博 +1 位作者 何国强 刘佩进 《Defence Technology(防务技术)》 SCIE EI CAS 2011年第2期87-92,共6页
A test device with rectangular channel is developed to study the combustion performance of solid propellant in high temperature particles erosion.The flowfields in this newdevice and a test device with circular channe... A test device with rectangular channel is developed to study the combustion performance of solid propellant in high temperature particles erosion.The flowfields in this newdevice and a test device with circular channels are simulated numerically.The particle erosion experiments in these two devices are carried out under different particle concentrations.The results showthat the test device with rectangular channel can effectively improve the clarity and precision of combustion diagnosis image and can be used for research on combustion performance of solid propellant under lowconcentration particle erosion;the circular channel device has good particle convergent effect,provides high concentration particle erosion,and can be used for research on the combustion performance of solid propellant under high concentration particle erosion.The experiment data indicates that the propellant burning rate does not change obviously in lower particle concentration;the propellant with lower static burning rate increases remarkably under particle erosion,while the propellant with high static burning rate is not sensitive to the particle erosion. 展开更多
关键词 propulsion system of aviation &aerospace solid propellant particle erosion combustion performance maximum burning rate increment ratio
在线阅读 下载PDF
Study on Influence of Functional Composition Distribution on Combustion Performance of a Modified Single Base Propellant
9
作者 刘波 王琼林 +5 位作者 刘少武 于慧芳 李达 姚月娟 潘清 魏伦 《Defence Technology(防务技术)》 CAS 2012年第2期114-118,共5页
The modified single base propellant samples were prepared by impregnating blasting oil into single base grains and deactivating deterrent in water medium. The concentration distribution of functional compositions in t... The modified single base propellant samples were prepared by impregnating blasting oil into single base grains and deactivating deterrent in water medium. The concentration distribution of functional compositions in this propellant was determined by using FTIR micro-spectroscopy. Its combustion performance was investigated by means of closed-bomb and interior ballistic tests. The results show that the concentration of NG distributes parabolically along the radius and the concentration of NA decreases from the surface to the centre exponentially. The deeper the NG impregnates, the slower the NA concentration decreases, the stronger the progressive combustion is and the better the interior ballistic performance is. When the depth corresponding to maximum NG concentration is about 1/2 of the web and the NA decreases slowly, the progressive combustion is the strongest and the interior ballistic performance is the best. 展开更多
关键词 physical chemistry modified single base propellant functional component CONCENTRATION combustion performance
在线阅读 下载PDF
Comparative Study on Combustion Performance of Petroleum Coke, Hejin Coal and Shenmu Coal
10
作者 W.Y. Dou Q.L. Zhou +2 位作者 Y.H. Li T.M. Xu S.E. Hui 《Journal of Energy and Power Engineering》 2011年第2期135-141,共7页
The effects of three factors on combustion performance of petroleum coke, Herin Coal and Shenmu Coal have been studied, including the ratio of primary air, excess air factor, and the swirling intensity of outer second... The effects of three factors on combustion performance of petroleum coke, Herin Coal and Shenmu Coal have been studied, including the ratio of primary air, excess air factor, and the swirling intensity of outer secondary air. The experiments were carried out on a one-dimensional furnace with dual channel swirling burner, in which temperature of center furnace, emission of air pollutants, and burn-out rate of fuel were measured. The results provide the optimal ratio of primary air, excess air factor and swirling intensity of outer secondary air for the fuels. The combustion performance of petroleum coke B is much better than petroleum coke A, but worse than Hejin coal and Shenmu coal. In addition, the burn-out rate of petroleum coke depends much more on the temperature in terminal stage of combustion than in the early stage of combustion. 展开更多
关键词 combustion performance petroleum coke Hejin coal Shenmu coal comparative study
在线阅读 下载PDF
Preparation of Si/NC/CL-20 Composite Explosives by Electrostatic Spraying Method and Its Performance Characterization
11
作者 DUAN Yi-long WANG Ling-xin +3 位作者 DONG Jun LI Xiu-long HE Xi JI Wei 《火炸药学报》 北大核心 2025年第5期424-429,I0001,共7页
To study the influence of silicon(Si)on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20),NC/CL-20 composite explosives and Si/NC/CL-20 composite explosives were prepared by the electrostatic spraying ... To study the influence of silicon(Si)on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20),NC/CL-20 composite explosives and Si/NC/CL-20 composite explosives were prepared by the electrostatic spraying method.The morphology,structure and thermal decomposition properties of the samples were analyzed using scanning electron microscopy(SEM),X-ray energy spectroscopy(EDS),infrared spectroscopy(FT-IR),and simultaneous thermal analyzer(TG-DSC).Additionally,the combustion process of the samples was tested using a high-speed camera.The results show that the addition of nano-Si contributes to the formation of composite explosives with regular morphology and smaller particle size.The Si/NC/CL-20 composite explosive has better and more uniform sphericity,with an average particle size of 73.4 nm,compared to the NC/CL-20 composite explosive.The Si/NC/CL-20 composite explosive which produced by the electrostatic spraying method,achieves physically uniform distribution of the components including NC,CL-20,Si.The addition of Si promotes the thermal decomposition of CL-20.In comparison to the NC/CL-20 composite explosive,the activation energy of the Si/NC/CL-20 composite explosive decreases by 16.78 kJ/mol,and the self-accelerated decomposition temperature and the critical temperature of thermal explosion decreases by 3.12 K and 2.61 K,respectively.Furthermore,Si/NC/CL-20 composite explosive has shorter ignition delay time and faster combustion rate compared to the NC/CL-20 composite explosive,which shows that Si can improve the combustion performance of CL-20. 展开更多
关键词 applied chemistry electrostatic spraying method SI Si/NC/CL-20 thermal decomposition performance combustion performance
在线阅读 下载PDF
Preparation of HMX-based energetic microspheres with efficient self-healing function by microchannel technology to enhance storage performance and interface bonding effect
12
作者 Wenqing Li Mianji Qiu +5 位作者 Wangjian Cheng Qian Yang Xiaohong Yan Yousheng Qiu Chongwei An Baoyun Ye 《Defence Technology(防务技术)》 2025年第10期47-59,共13页
The self-healing function is considered one of the effective ways to address structural damage and improve interfacial bonding in Energetic composite materials(ECMs).However,the currently prepared ECMs with self-heali... The self-healing function is considered one of the effective ways to address structural damage and improve interfacial bonding in Energetic composite materials(ECMs).However,the currently prepared ECMs with self-healing function have problems such as irregular particle shape and uneven distribution of components,which affect the efficient play of self-healing function.In this paper,HMX-based energetic microspheres with self-healing function were successfully prepared by microchannel technology,which showed excellent self-healing effect in both Polymer-bonded explosives(PBXs)and Composite solid propellants(CSPs).The experimental results show that the HMX-based energetic microspheres with different binder contents prepared by microchannel technology show regular shape,HMX crystal particles are uniformly wrapped by self-healing binder(GAPU).When the content of GAPU in HMX-based energetic microspheres is 10%,PBXs show excellent self-healing effect and mechanical safety is improved by 400%(raw HMX vs S4,5 J vs 25 J).As a high-energy component,the burning rate of CSPs is increased by 359.4%,the time(burning temperature>1700℃)is prolonged by 333.3%,and the maximum impulse force is increased by 107.3%(CSP-H vs CSP-S4,0.84 mm/s vs 3.87 mm/s,0.06 s vs 0.26 s,0.82 m N vs 1.70 m N).It also has excellent storage performance.The preparation of HMX-based energetic microspheres with self-healing function by microchannel technology provides a new strategy to improve the storage performance of ECMs and the combustion performance of CSPs. 展开更多
关键词 SELF-HEALING HMX Microchannel technology Storage performance combustion performance
在线阅读 下载PDF
Screening of metal additives in ABS polymer fuel for enhanced performance in hybrid rocket motors:A computational analysis using CEA
13
作者 Gail Ndlovu Bilainu Oboirien Patrick Ndungu 《Defence Technology(防务技术)》 2025年第8期176-184,共9页
This study investigates the potential of metal additives in acrylonitrile butadiene styrene(ABS)polymer fuel to enhance hybrid rocket motor(HRM)performance through computational analysis,Chemical Equilibrium with Appl... This study investigates the potential of metal additives in acrylonitrile butadiene styrene(ABS)polymer fuel to enhance hybrid rocket motor(HRM)performance through computational analysis,Chemical Equilibrium with Applications(CEA),software.ABS was selected as the base fuel due to its thermoplastic nature,which allows for the creation of complex fuel geometries through 3D printing,offering significant flexibility in fuel design.Hybrid rockets,which combine a solid fuel with a liquid oxidiser,offer advantages in terms of operational simplicity and safety.However,conventional polymer fuels often exhibit low regression rates and suboptimal combustion efficiencies.In this research,we evaluated a range of metal additives-aluminium(Al),boron(B),nickel(Ni),copper(Cu),and iron(Fe)-at chamber pressures ranging from 1 to 30 bar and oxidiser-to-fuel(O/F)ratios between 1.1 and 12,resulting in 1800 unique test conditions.The main performance parameters used to assess each formulation were characteristic velocity(C^(*))and adiabatic flame temperature.The results revealed that each test produced a different optimum O/F ratio,with most ratios falling between 4 and 6.The highest performance was achieved at a chamber pressure of 30 bar across all formulations.Among the additives,Al and B demonstrated significant potential for improved combustion performance with increasing metal loadings.In contrast,Fe,Cu,and Ni reached optimal performance at a minimum loading of 1%.Future work includes investigating B-Al metal composites as additives into the ABS base polymer fuel,and doing experimental validation tests where the metallised ABS polymer fuel is 3D printed. 展开更多
关键词 Hybrid rocket motors Acrylonitrile butadiene styrene(ABS) Metallised polymer fuels combustion performance Characteristic velocity(C*) Chemical equilibrium with applications (CEA)
在线阅读 下载PDF
Combustion and Sulfur-fixing Performance of Pulping Black Liquor Coal-water Slurry 被引量:3
14
作者 BaoNong Tian LianQing Huang +1 位作者 JunHong Zhang FuShan Chen 《Paper And Biomaterials》 2017年第2期33-41,共9页
The effects of adding pulping black liquor and other additives to coal-water slurry(CWS) on the sulfur-fixing performance of the resultant mixture(pulping black liquor coal-water slurry) were evaluated. The experiment... The effects of adding pulping black liquor and other additives to coal-water slurry(CWS) on the sulfur-fixing performance of the resultant mixture(pulping black liquor coal-water slurry) were evaluated. The experimental results demonstrated that the ash content of the black liquor coalwater slurry decreased as the addition of pulping black liquor in the mixture increased. Nevertheless, the addition amount should be appropriately selected to ensure that the black liquor coal-water slurry had a moderate calorific value. Addition of black liquor improved the combustion performance of CWS by lowering the ignition point and stabilizing the combustion process; moreover, the sulfur-fixation ratio after combustion increased by 12 to 16 percentage points than that of CWS, and the content of high-melting-point salt in the ash from CWS after adding black liquor was low. The sulfur-fixing ratio of CWS after adding a sulfur-fixing agent was effectively increased by 25 to 30 percenatge points, but with compromise of the fluidity and stability of the CWS; thus, the addition amount of a sulfur-fixing agent should be optimized. 展开更多
关键词 pulping black liquor coal-water slurry combustion performance sulfur-fixing performance
在线阅读 下载PDF
Performance of water-based foams affected by chemical inhibitors to retard spontaneous combustion of coal 被引量:3
15
作者 Chen Peng Huang Fujun Fu Yue 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第3期443-448,共6页
The micelle generating process of the sodium dodecyl sulfate(SDS) solution with the addition of chemical inhibitors was elucidated using phase separation model, and the descending order of the capacity for the selecte... The micelle generating process of the sodium dodecyl sulfate(SDS) solution with the addition of chemical inhibitors was elucidated using phase separation model, and the descending order of the capacity for the selected chemical inhibitors to reduce the critical micelle concentrations of the solution are Mg Cl_2, Ca Cl_2,NH_4HCO_3 and NH_4Cl. The data to quantitatively describe the foam decay process, including foaming ratio,foam life and decay behaviors, was obtained by pressure measuring system. The results indicate that chemical inhibitors can improve the solution foamability. The capacity of the inhibitors to enhance the solution foamability is sorted as NH_4 Cl, NH_4HCO_3, Mg Cl2 and Ca Cl_2 which can distinctly improve the foam stability as well. The capacity of the inhibitors to enhance the SDS foam stability can be arranged as Mg Cl_2, NH_4 Cl, NH_4HCO_3 and Ca Cl_2. It is observed that the gravity drainage plays a leading role in the increase of proportion of diffusion drainage. The oxidation dynamic parameters of the coal samples treated by inhibition foams were investigated using thermal analysis technique, and their synergistic effects on inhibiting coal oxidation were explored. 展开更多
关键词 Coal spontaneous combustion Chemical inhibitors Micelle thermal power Foam performance Activation energy
在线阅读 下载PDF
Application of aluminum-based micro-cell composite fuel in HTPB propellant
16
作者 ZHOU Zhipeng LI Miaomiao +5 位作者 ZENG Guowei WU Xingliang ZHANG Zhengjin ZHENG Tingting XIA Yu CHEN Jingjing 《Journal of Measurement Science and Instrumentation》 2025年第3期464-471,共8页
To study the combustion performance of aluminum-based micro-cell composite fuel aluminum@ammonium perchlorate(Al@AP),in hydroxyl-terminated polybutadiene(HTPB)solid propellant,the Al@AP was added to HTPB solid propell... To study the combustion performance of aluminum-based micro-cell composite fuel aluminum@ammonium perchlorate(Al@AP),in hydroxyl-terminated polybutadiene(HTPB)solid propellant,the Al@AP was added to HTPB solid propellant instead of Al powder and part of AP.Firstly,the ignition and energy performance of Al@AP were investigated and the effects of Al@AP on the combustion,process and mechanical properties of HTPB solid propellant were studied by means of sphere explosion test system,adiabatic oxygen bomb calorimeter test,standard test engine test,residual active Al test,viscosity test,and tensile test.In addition,the combustion mechanism of Al@AP in HTPB solid propellant was analyzed.The results indicate that Al@AP composites offer faster ignition response than simple physical blends,and the heat of HTPB solid propellant increases from 7385 J·g^(-1) to 7834 J·g^(-1) when 21.3%Al@AP was used instead of aluminium powder.The amount of residue decreases from 3.88%to 2.10%in mass fraction,the content of active Al in residue decrease from 6.14%to 2.57%,and the particle size d_(50) of residue decrease from 298μm to 62μm.The combustion efficiency of HTPB solid propellant improves from 94.0%to 94.6%.The mechanical and process properties of HTPB propellant containing Al@AP can satisfy the application. 展开更多
关键词 Al@AP composite fuel hydroxyl-terminated polybutadiene(HTPB)solid propellant combustion performance
在线阅读 下载PDF
Performance comparison of aero-ramp and transverse injector based on gas-pilot flame 被引量:6
17
作者 SONG Gang-lin ZHANG Yan +2 位作者 WEI Bao-xi TIAN Liang XU Xu 《航空动力学报》 EI CAS CSCD 北大核心 2014年第2期405-419,共15页
A direct performance comparison between the four-hole aero-ramp injector and single transverse injector in a dual-mode scramjet combustor was conducted.The mixing characteristics of two injectors were calculated by so... A direct performance comparison between the four-hole aero-ramp injector and single transverse injector in a dual-mode scramjet combustor was conducted.The mixing characteristics of two injectors were calculated by solving the three-dimensional(3-D)compressible Reynolds-averaged Navier-Stokes equations(RANS),with the help of the shear-stress-transport(SST)k-ωturbulence model.The numerical results show that the far field mixing efficiency of the aero-ramp injector is higher than that of the single transverse injector.High enthalpy vitiated air was heated to a total temperature of 1 200Kby hydrogen-oxygen combustion, entering the isolator entrance at a Mach number of 2.0.Non-reacting experimental conditions involved sonic injection of nitrogen to safely simulate ethylene injected into the combustor at a jet-to-free stream momentum flux ratio of 2.6.Schlieren photographs were obtained to analyze the shock structure around the injectors.Reacting test conditions involved sonic injection of ethylene at the jet-to-free stream momentum flux ratios ranging from 0.5to 2.7.High speed camera was used to capture the flame structures in the near-field combustion. The experimental results show that the aero-ramp injector produce sustained combustion over a wider range of fuel-air ratios than the single transverse injector.At the identical jet-to-free stream momentum flux ratio,the aero-ramp has a larger isolator margin than the single transverse injector,demonstrating a better ability for avoiding overflows.However,the air specific impulse and total temperature recovery of two injectors,which are calculated by the one-dimensional(1-D)performance analysis code,are almost identical. 展开更多
关键词 dual-mode scramjet aero-ramp injector transverse injector gas-pilot flame mixing and combustion performance
原文传递
Numerical analysis on combustion characteristics of hybrid rocket motor with star-tube segmented grain 被引量:5
18
作者 Chengen LI Zongwei WANG +4 位作者 Jin YANG Jinpeng JIANG Fan GONG Zhu LIU Yu SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第12期102-112,共11页
A method of star-tube combined segmented grain is proposed to improve the combustion performance of hybrid rocket motor.The star-tube combined segmented grain consists of a single-port star part and a single-port tube... A method of star-tube combined segmented grain is proposed to improve the combustion performance of hybrid rocket motor.The star-tube combined segmented grain consists of a single-port star part and a single-port tube part.A mid-chamber forms between the fore-grain and the aft-grain for better mixing effect.The single-port feature gives hybrid rocket motor several advantages,such as simple structure,high reliability,and variable combinations.This paper is mainly aimed at studying the combustion characteristics of hybrid rocket motor with star-tube segmented grain through three-dimensional steady simulations.Combustion performance of the motors with different segmented grain combinations,including fore-tube/aft-tube,fore-tube/aftstar,fore-star/aft-star and fore-star/aft-tube,is contrastively analyzed.The motor in this paper adopts polyethylene and 90%hydrogen peroxide as the propellants.Simulations reveal that segmented grain with different-type grain combinations could greatly change the flow field in the second half of the combustion chamber.Transformation of the flow field is beneficial to the mixing between the fuel and the oxidizer,and it could increase the fuel regression rate and the combustion efficiency.The turbulence effect of tube aft-grain is better than that of star aft-grain.Among the four segmented grain combinations,the combination of star fore-grain and tube aft-grain is the preferred method with optimal overall performance.This grain configuration could increase the regression rate of tube aft-grain to surpass that of star aft-grain in other combinations.Besides,hybrid rocket motor with this grain configuration achieves the highest combustion efficiency. 展开更多
关键词 combustion performance Flow fields Fluid-solid coulping Hybrid rocket motor Star-tube segmented grain
原文传递
Using polyvinylidene fluoride to improve ignition and combustion of micron-sized boron powder by fluorination reaction 被引量:3
19
作者 Lingqi ZHU Baozhong ZHU +4 位作者 Xiaolong ZHAO Yanan WANG Mengchen LI Jiuyu CHEN Yunlan Sun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第10期64-76,共13页
Boron has a promising application in the field of propellants due to its high calorific value.However,the difficulty of ignition and the poor combustion efficiency of boron(B)have severely limited its efficient applic... Boron has a promising application in the field of propellants due to its high calorific value.However,the difficulty of ignition and the poor combustion efficiency of boron(B)have severely limited its efficient application.In response to this issue,this paper proposes to improve the ignition and combustion performance of micron-sized boron by the Polyvinylidene Fluoride(PVDF)coating.The effect of PVDF content on the B combustion performance was systematically studied using a Thermogravimetry-Differential Scanning Calorimetry(TG-DSC),a Transmission Electron Microscope(TEM),an X-Ray Diffractometer(XRD),a laser Particle Size Analyzer(PSA),and a high-speed camera.The results show that PVDF can significantly reduce the initial oxidation temperature of B powder and increase its reaction heat.When the PVDF content is 23wt%,the reaction heat and the combustion intensity of B powder reach the maximum and are significantly higher than those of the uncoated B powder.Moreover,the fluorination reaction that occurs during the combustion process not only can effectively shorten the combustion time of B powder,but also has a positive effect on its flame intensity and propagation speed,and it significantly reduces B particle agglomeration,which improves the combustion efficiency significantly.This study lays the foundation for the application of PVDF modified B in B-based solid propellants. 展开更多
关键词 AGGLOMERATION COATING combustion performance Fluorination reaction Polyvinylidene fluoride
原文传递
Design and Performance of an Improved Trapped Vortex Combustor 被引量:8
20
作者 JIN Yi HE Xiaomin JIANG Bo WU Zejun DING Guoyu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第6期864-870,共7页
A trapped vortex combustor (TVC) has been a very promising novel concept for it offers improvements in lean blow out, altitude relight, operating range, as well as a potential to decrease NOx emissions compared to c... A trapped vortex combustor (TVC) has been a very promising novel concept for it offers improvements in lean blow out, altitude relight, operating range, as well as a potential to decrease NOx emissions compared to conventional combustors. The present paper discusses the improved designs of the new combustor over the prior ones of our research group, including that:a) the over-all dimensions, both axial and radial, are reduced to those of an actual aero-engine combustor; b) the air flow distribution is optimized, and especially 15% of the air is fed into the liner as cooling air; c) a straight-wall diffuser with divergence angle 9°is added. A series of experiments (cavity-fueled only, under atmospheric pressure) has been conducted to investigate the performance of the improved TVC. Experimental results show that at the inlet temperature of 523 K, the inlet pressure of 0.1 MPa, stable operation of the TVC test rig is observed for the Mach number 0.15-0.34, indicating good flame stability; the combustion efficiency obtained in this paper falls into the range of 60%-96%; as the total excess air ratio increases, the combustion efficiency decreases, while the increase of the inlet temperature is beneficial to high combustion efficiency; besides, the optimal Mach numbers for high combustion efficiency under different inlet conditions are confirmed. The outlet temperature profiles feature a bottom in the midheight of the exit. This paper demonstrates the feasibility for the TVC to be applied to a realistic aero-engine preliminarily and provides reference for TVC design. 展开更多
关键词 combustion trapped vortex combustor improved design performance experimental demonstration
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部