期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Comprehensive Mathematical Model and Optimum Process Parameters of Nitrogen Free Blast Furnace 被引量:3
1
作者 Jian-liang ZHANG Guang-wei WANG +1 位作者 Jiu-gang SHAO Hai-bin ZUO 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第2期151-158,共8页
According to different energy utilization in different regions, blast furnace is divided into raceway zone, bottom heat exchange zone (BHZ), thermal reserve zone (TRZ), and top heat exchange zone (THZ), and a ma... According to different energy utilization in different regions, blast furnace is divided into raceway zone, bottom heat exchange zone (BHZ), thermal reserve zone (TRZ), and top heat exchange zone (THZ), and a mathe- matical model of nitrogen free blast furnace (NF-BF) is established. The optimum process parameters of two kinds of nitrogen free blast furnaces are calculated by the new mathematical model. The results show that for the nitrogen free blast furnace with a single row of tuyeres, the optimum process parameters are coke ratio of 220 kg/t, coal ratio of 193 kg/t, and volume of recycling top gas of 577 m3/t; for two rows of tuyeres, the process parameters are coke ratio of 202 kg/t, coal ratio of 211 kg/t, volume of recycling top gas in upper area of 296 m3/t, and volume of recy- cling top gas in lower area of 295 ma/t. Energy balances are reached in different regions. Theoretical combustion temperature (TCT) in raceway zone is largely affected by different processes, and a lower TCT should be adopted for the single row of tuyeres, but for two rows of tuyeres, a higher TCT should be maintained. Compared with tradi- tional blast furnace, in NF-BF, the emission of CO2 would be reduced by 45.91% and 49.02G for a single row of tuyeres and two rows of tuyeres, respectively, and combined with CO2 sequestration technology, zero emission of CO2 could be realized. 展开更多
关键词 nitrogen tree blast turnace recycling top gas eomprehensLve mathematical model theoretical combus-tion temperature
原文传递
Low-temperature heat capacities and standard molar enthalpy of formation of N-methylnorephedrine C11H17NO(s)
2
作者 Di You-Ying Wang Da-Qi +1 位作者 Shi Quan Tan Zhi-Cheng 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第8期2859-2866,共8页
This paper reports that low-temperature heat capacities of N-methylnorephedrine C11H17NO(s) have been measured by a precision automated adiabatic calorimeter over the temperature range from T=78K to T=400K. A solid ... This paper reports that low-temperature heat capacities of N-methylnorephedrine C11H17NO(s) have been measured by a precision automated adiabatic calorimeter over the temperature range from T=78K to T=400K. A solid to liquid phase transition of the compound was found in the heat capacity curve in the temperature range of T=342-364 K. The peak temperature, molar enthalpy and entropy of fusion of the substance were determined. The experimental values of the molar heat capacities in the temperature regions of T=78-342 K and T=364-400 K were fitted to two poly- nomial equations of heat capacities with the reduced temperatures by least squares method. The smoothed molar heat capacities and thermodynamic functions of N-methylnorephedrine C11H17NO(s) relative to the standard refer- ence temperature 298.15 K were calculated based on the fitted polynomials and tabulated with an interval of 5 K. The constant-volume energy of combustion of the compound at T=298.15 K was measured by means of an isoperibol precision oxygen-bomb combustion calorimeter. The standard molar enthalpy of combustion of the sample was calculated. The standard molar enthalpy of formation of the compound was determined from the combustion enthalpy and other auxiliary thermodynamic data through a Hess thermochemical cycle. 展开更多
关键词 N-methylnorephedrine C11H17NO(s) heat capacity constant-volume energy of combus-tion standard molar enthalpy of formation
原文传递
Combustion characteristics and kinetics of bio-oil 被引量:2
3
作者 Ruixia ZHANG Zhaoping ZHONG Yaji HUANG 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2009年第2期119-124,共6页
The combustion characteristics of bio-oils derived from rice husk and corn were studied by thermogravimetry analysis.According to the thermo-gravimetry(TG),differential thermogravimetry(DTG)and differential thermal an... The combustion characteristics of bio-oils derived from rice husk and corn were studied by thermogravimetry analysis.According to the thermo-gravimetry(TG),differential thermogravimetry(DTG)and differential thermal analysis(DTA)curves of bio-oils in air and nitrogen atmosphere,we analyzed the combustion characteristics of different kinds of bio-oils in different atmospheres and worked out the combustion kinetics parameters of the bio-oil,providing reliable base data for the burningofbio-oil.Thethermogravimetry indicatedthat the combustion process of bio-oil was divided into three stages.At the same time,the combustion process can be described by different order reaction models,and with the method of Coats-Redfern,the activation energy and frequency factor of different kinds of bio-oils were obtained. 展开更多
关键词 BIO-OIL combustion characteristics combus-tion kinetics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部