An optical frequency comb comprises a cluster of equally spaced,phase-locked spectral lines.Replacing these classical components with correlated quantum light gives rise to cluster quantum frequency combs,providing ab...An optical frequency comb comprises a cluster of equally spaced,phase-locked spectral lines.Replacing these classical components with correlated quantum light gives rise to cluster quantum frequency combs,providing abundant quantum resources for measurement-based quantum computation,and multi-user quantum networks.We propose and generate cluster quantum microcombs within an on-chip optical microresonator driven by multi-frequency lasers.Through resonantly enhanced four-wave mixing processes,continuous-variable cluster states with 60 qumodes are deterministically created.The graph structures can be programmed into one-and two-dimensional lattices by adjusting the configurations of the pump lines,which are confirmed inseparable based on the measured covariance matrices.Our work demonstrates the largest-scale cluster states with unprecedented raw squeezing levels from a photonic chip,offering a compact and scalable platform for computational and communicational tasks with quantum advantages.展开更多
基金supported by the National Key R&D Plan of China(Grant No.2021ZD0301500)Beijing Natural Science Foundation(Z210004,Z240007)+2 种基金National Natural Science Foundation of China(92150108,62222515,12125402,12174438)the High-performance Computing Platform of Peking Universitysupported by the Micro/nano Fabrication Laboratory of Synergetic Extreme Condition User Facility(SECUF).
文摘An optical frequency comb comprises a cluster of equally spaced,phase-locked spectral lines.Replacing these classical components with correlated quantum light gives rise to cluster quantum frequency combs,providing abundant quantum resources for measurement-based quantum computation,and multi-user quantum networks.We propose and generate cluster quantum microcombs within an on-chip optical microresonator driven by multi-frequency lasers.Through resonantly enhanced four-wave mixing processes,continuous-variable cluster states with 60 qumodes are deterministically created.The graph structures can be programmed into one-and two-dimensional lattices by adjusting the configurations of the pump lines,which are confirmed inseparable based on the measured covariance matrices.Our work demonstrates the largest-scale cluster states with unprecedented raw squeezing levels from a photonic chip,offering a compact and scalable platform for computational and communicational tasks with quantum advantages.