A crossbreeding program was established in 2019 to address the declining Crassostrea gigas harvests caused by Pacific Oyster Mortality Syndrome(POMS).As a part of the program,this study was performed to estimate the g...A crossbreeding program was established in 2019 to address the declining Crassostrea gigas harvests caused by Pacific Oyster Mortality Syndrome(POMS).As a part of the program,this study was performed to estimate the genetic structure underlying phenotypic variation.Fifteen complete diallel crossings of C.gigas and C.angulata,comprising 60 full-sib families,were used to evaluate the general combining ability(GCA)and specific combining ability(SCA),as well as genotype and environment interactions for shell height(SH),summer survival(SS),and thermal tolerance(TT)of reciprocal hybrids GA(C.gigas♀×C.angulata♂)and AG(C.angulata♀×C.gigas♂)grown in Rongcheng and Rushan,Shandong Province,China.The results suggested that heterosis of the reciprocal hybrids was evident for SH,SS,and TT.The hybrid GA had larger heterosis than AG in both testing environments,and can be a potential donor in the breeding program.The male C.gigas had better GCA for SH in Rongcheng,whereas male C.angulata was a good general combiner for SS and TT in both Rongcheng and Rushan.The estimate of SCA was much higher than GCA for SH and lower than GCA for TT.To harness both additive and non-additive genetic effects,combination breed-ing could be taken to develop hybrid varieties possessing both thermal tolerance and fast-growing traits.The positive correlations between SH and TT suggested that these traits could be improved simultaneously.The significant G×E interactions demonstrated the importance to undertake site-specific breeding programs in different environments.Overall,this study can provide essential information for developing crossbreeding strategies for the oyster farming industry.展开更多
[Background]Traveling-wave tubes(TWTs)are widely applied in radar,imaging,and military systems owing to their excellent amplification characteristics.Miniaturization and integration are critical to the future of TWTs,...[Background]Traveling-wave tubes(TWTs)are widely applied in radar,imaging,and military systems owing to their excellent amplification characteristics.Miniaturization and integration are critical to the future of TWTs,with multi-channel slow-wave structures(SWSs)forming the foundation for their realization in high-power vacuum electronic devices.[Purpose]To provide design insights for multi-channel TWTs and simultaneously enhance their output power,a W-band folded-waveguide TWT with dual electron beams and H-plane power combining was proposed.[Methods]Three-dimensional electromagnetic simulations in CST were conducted to verify the highfrequency characteristics,electric field distribution,and amplification performance of the proposed SWS,thereby confirming the validity of the design.[Results]Results indicate that the designed TWT achieves a transmission bandwidth of 10 GHz.With an electron beam voltage of 17.9 kV and a current of 0.35 A,the output power reaches 450 W at 94 GHz,corresponding to an efficiency of 7.18%and a gain of 23.5 dB.Moreover,under fixed beam voltage and current,the TWT delivers over 200 W output power across 91–99 GHz,with a 3 dB bandwidth of 91–98.5 GHz.The particle voltage distribution after modulation further validates the mode analysis.[Conclusions]These results demonstrate the feasibility of compact dual-beam power-combining structures and provide useful guidance for the design of future multi-channel TWTs.展开更多
Twenty short-statured maize inbred lines were collected from CIMMYT India and Mexico through the Plant Breeding Division, Bangladesh Agricultural Research Institute (BARI), Gazipur. The experiment was conducted from N...Twenty short-statured maize inbred lines were collected from CIMMYT India and Mexico through the Plant Breeding Division, Bangladesh Agricultural Research Institute (BARI), Gazipur. The experiment was conducted from November 2020 to April 2021 in three different agroecological regions such as BARI, Gazipur, RARS Barisal and RARS Rangpur. Seven inbred lines were selected on the basis of genetic diversity and per se performance and they were crossed separately in a 7 × 7 half diallel fashion, producing 21F1 hybrids in 2019 which were evaluated at three locations. However, variances due to GCA were much higher in magnitude than SCA for all the characters indicating preponderance of additive gene effects on the inheritance of these characters. Two parents viz., P3 (CML33) and P4 (CML41) were good general combiners and two crosses viz., P4 × P5 (CML41 × CML31) and P5 × P7 (CML31 × CML124) expressed significant positive SCA effects coupled with significant positive heterosis for grain yield and for most of the yield contributing characters over the two commercial check varieties BHM 9 and NK40. Four crosses: P1 × P5 (CML116 × CML31), P1 × P6 (CML116 × CML32), P2 × P6 (CML72 × CML32) and P3 × P4 (CML33 × CML41), exhibited significant and negative SCA effects for both plant and ear height which were desirable for short stature. Genotypes x location interaction was also significant for maximum characters, suggesting that genotypes interacted significantly in different environments.展开更多
BACKGROUNDGastrointestinal neuroendocrine carcinoma (GI NEC) has a low incidence rate andpoor prognosis. Most patients already have metastatic disease when they arediagnosed. Platinum chemotherapy is the main means of...BACKGROUNDGastrointestinal neuroendocrine carcinoma (GI NEC) has a low incidence rate andpoor prognosis. Most patients already have metastatic disease when they arediagnosed. Platinum chemotherapy is the main means of treating metastatic GINECs. There is a lack of effective treatment methods after chemotherapy failure.Therefore, Therefore, selecting appropriate posterior-line treatment programs toimprove the prognosis of patients is urgently needed.CASE SUMMARYA 64-year-old female was diagnosed with stage IV NEC of the rectum due toabdominal pain and rectal bleeding. After multiline chemotherapy, the conditionprogressed, and the patient was treated with a combination of camrelizumab and surufatinib. The efficacy evaluation revealed partial remission (PR) and stable conditions, with the expression ofthe tumor marker neuron-specific enolase (NSE) returning to normal. The adverse reactions were controllable, andthe overall condition was good, with weight gain achieved in the past four years. Another 51-year-old femaleexperienced recurrence and metastasis of a duodenal NEC after surgery. After multiline chemotherapy, shereceived sintilimab combined with surufatinib. The curative effect fluctuated between PR and stability. Duringtreatment, she recovered from immune-related diabetes and later died due to deterioration of her condition.During the treatment, the patient’s NSE level returned to normal.CONCLUSIONThe combination of antiangiogenic targeted drugs and immunotherapy provides a new therapeutic approach forthe treatment of metastatic GI-NECs.展开更多
Background As the most widely cultivated fiber crop,cotton production depends on hybridization to unlock the yield potential of current varieties.A deep understanding of genetic dissection is crucial for the cultivati...Background As the most widely cultivated fiber crop,cotton production depends on hybridization to unlock the yield potential of current varieties.A deep understanding of genetic dissection is crucial for the cultivation of enhanced hybrid plants with desired traits,such as high yield and fine fiber quality.In this study,the general combining ability(GCA)and specific combining ability(SCA)of yield and fiber quality of nine cotton parents(six lines and three testers)and eighteen F1 crosses produced using a line×tester mating design were analyzed.Results The results revealed significant effects of genotypes,parents,crosses,and interactions between parents and crosses for most of the studied traits.Moreover,the effects of both additive and non-additive gene actions played a notably significant role in the inheritance of most of the yield and fiber quality attributes.The F1 hybrids of(Giza 90×Aust)×Giza 86,Uzbekistan 1×Giza 97,and Giza 96×Giza 97 demonstrated superior performance due to their favorable integration of high yield attributes and premium fiber quality characteristics.Path analysis revealed that lint yield has the highest positive direct effect on seed cotton yield,while lint percentage showed the highest negative direct effect on seed cotton yield.Principal component analysis identified specific parents and hybrids associated with higher cotton yield,fiber quality,and other agronomic traits.Conclusion This study provides insights into identifying potential single-and three-way cross hybrids with superior cotton yield and fiber quality characteristics,laying a foundation for future research on improving fiber quality in cotton.展开更多
The ultrashort lasers working in pulse-burst mode reveal great machining performance in recent years. The number of pulses in bursts effects greatly on the removal rate and roughness. To generate a more equal amplitud...The ultrashort lasers working in pulse-burst mode reveal great machining performance in recent years. The number of pulses in bursts effects greatly on the removal rate and roughness. To generate a more equal amplitude of pulses in burst with linear polarization output and time gap adjustable, we propose a new method by the harmonic beam combining(HBC).The beam combining is commonly used in adding pulses into the output beam while maintaining the pulse waveform and beam quality. In the HBC, dichroic mirrors are used to combine laser pulses of fundamental wave(FW) into harmonic wave(HW), and nonlinear crystals are used to convert the FW into HW. Therefore, HBC can add arbitrarily more HW pulses to generate pulse-burst in linear polarization with simple structure. The amplitude of each pulse in bursts can be adjusted the same to increase the stability of the burst, the time gap of each pulse can be adjusted precisely by proper time delay. Because HBC adds pulses sequentially, the peak power density of the burst is the same as each pulse, pulses can be combined without concern of back-conversion which often occurs in high peak power density. In the demonstration, the extendibility of HBC was verified by combining two beams with a third beam. The combined efficiency rates were larger than 99%, and the beam quality of each beam was maintained at M^(2)≈1.4.展开更多
Background Studies on genetic variation and combining ability are essential tools to employ the suitable breeding programme,particularly for hybrid production,to exploit the heterosis in cross-pollinated crops like co...Background Studies on genetic variation and combining ability are essential tools to employ the suitable breeding programme,particularly for hybrid production,to exploit the heterosis in cross-pollinated crops like cotton.Thus,combining ability studies in desi cotton(Gossypium arboreum L.)was carried out using 13 diverse parents through diallel mating design,evaluating 78 F,hybrids along with their parents,without reciprocals using Griffing's and Hayman's approaches.Results Genotypes H 509,AC 3265,AKH 496,and PBN 565 exhibited superior per se performance,indicating their potential use as parents in future breeding programs to develop superior hybrids.The general combining ability(GCA)effect of the genotypes revealed that AC 3097 and AKA 13-SP1 were good general combiners for most traits in this study.Genotypes PBS 1127-SP1,AKH 496,H 509,N11-54-31-32,and AKA 13-SP1 exhibited strong combining ability,contributing to a significant specific combining ability(SCA)effect in seven selected crosses(AC 3265×PBS1127-SP1,AKH 496×H 509,AKH 496×AC 3097,PBS 1127-SP1×N11-54-31-32,AC 3216×AKA 13-SP1,H 503×N11-54-31-32,and H 509×AKA 13-SP1)for yield improvement.These crosses showed positive heterosis in a positive direction.Conclusion From the present study,five genotypes(AC 3097,AKA 13-SP1,N11-54-31-32,AC 3265,and H 509)were identified as good general combiners for producing hybrids,and seven combinations showed a promising hybrid for future breeding programs.展开更多
Developing high-yield maize hybrids is critical for sustaining maize production,especially in the face of rapid climate changes and the growing global population.Exploring the genetic diversity and combining ability i...Developing high-yield maize hybrids is critical for sustaining maize production,especially in the face of rapid climate changes and the growing global population.Exploring the genetic diversity and combining ability in parental inbreds is needed for developing such high-yielding hybrids.Consequently,this study aimed at evaluating parental genetic diversity employing simple sequence repeats(SSR)markers,estimating effects of general(GCA)and specific(SCA)combining abilities for grain yield and yield contributing characters,identifying high yielding hybrids,and evaluating the association of SCA effects and performance of hybrids with genetic distance.Half-diallel mating scheme was utilized to develop 21 F_(1) hybrids from seven diverse maize inbred lines.The F_(1) hybrids along with check hybrid(SC-10),were investigated in a field trial over two growing seasons under arid conditions.The assessed F_(1) hybrids displayed significant genetic variations across all recorded traits.The inbreds P_(1) and P_(3) were detected as effective combiners to develop early maturing hybrids.Additionally,P_(3) and P_(4) were recognized as better combiners for improving grain yield and yield attributed characters.The hybrids P_(1)×P_(5) and P_(4)×P_(7) displayed significant SCA effects coupled with favorable agronomic performance.These hybrids are recommended for further evaluation and release as variety for arid environments to increase total maize production and contribute to food security.The alleles per locus differed between 2 and 5,with average of 3.5 alleles/locus.The polymorphic information content(PIC)altered between 0.21 to 0.74,with a mean of 0.56.Unweighted neighbor-joining tree grouped the inbred lines into three clusters,providing a valuable tool to decrease the crosses needed to be assessed in the trial field.Parental genetic distance varied from 0.63 to 0.90,averaging 0.79.The relationship between genetic diversity assessed through SSR markers and SCA effects was insignificant for all considered traits.Otherwise,SCA demonstrated a significant correlation with hybrid performance,suggesting that SCA serves as a reliable predictor for hybrid performance.The assessed maize inbred lines and developed hybrids revealed substantial genetic variability,offering valuable resources for enhancing maize productivity under arid conditions.The identified promising inbred lines(P_(1),P_(3),and P_(4))might be regarded as effective combiners for developing early-maturing genotypes and excellent combiners for enhancing yield attributes.Notably,the developed hybrids P_(1)×P_(5) and P_(4)×P_(7) possessed significant SCA alongside superior yield traits.SCA demonstrated a significant correlation with hybrid performance,suggesting its potential as a reliable predictor for the performance of developed hybrids.展开更多
High-precision methane gas detection is of great importance in industrial safety, energy production and environmental protection, etc. However, in the existing measurement techniques, the methane gas concentration inf...High-precision methane gas detection is of great importance in industrial safety, energy production and environmental protection, etc. However, in the existing measurement techniques, the methane gas concentration information is susceptible to noise, which leads to its useful signal being drowned by noise. A fusion algorithm of variational modal decomposition(VMD) and improved wavelet threshold filtering is proposed, which is used in combination with tunable diode laser absorption spectroscopy(TDLAS) to implement a non-contact, high-resolution methane gas concentration detection. The fusion algorithm can perform noise reduction and further segmentation of the methane gas detection signal. And the simulation and experiment verify the effectiveness of the fusion algorithm, and the experimental results show that for the detection of air containing 10 ppm, 30 ppm, 60 ppm, 80 ppm, and 99 ppm methane, the errors are 12.75%, 8.18%, 3.37%, 2.46%, and 1.78%, respectively.展开更多
Orbital-angular-momentum(OAM)multiplexing technology offers a significant dimension to enlarge communication capacity in free-space optical links.The coherent beam combining(CBC)system can simultaneously realize OAM m...Orbital-angular-momentum(OAM)multiplexing technology offers a significant dimension to enlarge communication capacity in free-space optical links.The coherent beam combining(CBC)system can simultaneously realize OAM multiplexing and achieve high-power laser output,providing substantial advantages for long-distance communication.Herein,we present an integrated CBC system for freespace optical links based on OAM multiplexing and demultiplexing technologies for the first time,to the best of our knowledge.A method to achieve flexible OAM multiplexing and efficient demultiplexing based on the CBC system is proposed and demonstrated both theoretically and experimentally.The experimental results exhibit a low bit error rate of 0.47%and a high recognition precision of 98.58%throughout the entire data transmission process.By employing such an ingenious strategy,this work holds promising prospects for enriching ultra-long-distance structured light communication in the future.展开更多
To improve the reliable performance of information transmission in cooperative relay networks, the scheme of the max-rate spatial channel pairing (SCP) based on maximum ratio combining (MRC) is proposed. The schem...To improve the reliable performance of information transmission in cooperative relay networks, the scheme of the max-rate spatial channel pairing (SCP) based on maximum ratio combining (MRC) is proposed. The scheme includes three steps: channel phase cancellation, MRC, and SCP. Eventually, the solution of the scheme is modeled as convex optimization. The objective function of the optimization problem is to maximize the transmission rate and the optimization variable is the strategy of pairing between the uplink spatial sub-channels of each user and the corresponding downlink spatial ones. The theorem of the arrangement inequalities is adopted to obtain the approximate closed-form solution of the optimal pairing for this convex optimization. Simulation results demonstrate that compared to the existing distributed space-time block coding and coherent combined schemes without SCP, the proposed max-rate SCP plus MRC algorithm achieves appreciable improvements in symbol error rate in medium and high signal-to-noise ratio regimes. The achievable performance gain is due to the use of maxrate SCP.展开更多
Information on the genetic relationship between tropical maize (Zea mays L), germplasm and temperate maize germplasm is of great value to maize breeding. The objective of this study was to determine the combining abil...Information on the genetic relationship between tropical maize (Zea mays L), germplasm and temperate maize germplasm is of great value to maize breeding. The objective of this study was to determine the combining ability and genetic relationship of 25 inbreds extracted from five tropical maize populations and a land race, with four temperate maize inbreds (Huangzaosi, Mol7, B73 and Dan 340). The 25 tropical inbreds were crossed with the four temperate inbreds and evaluated. Lines from Suwanl and POP28 had high general combining ability (GCA) for grain yield. The lines from POP32 (ETO) had the highest special combining ability (SCA) with B73; the average SCA value of the 5 lines was 879 kg/ha. The lines from Suwanl had the second-highest SCA (584 kg/ha) with Huangzaosi. The lines from Suwanl had the greatest relative heterosis (20%) with B73, followed by the lines from POP32 (ETO) with B73 (19%). Five heterotic patterns have been identified from this study: Suwanl × Reid, ETO × Reid, POP28× Reid, POP28× Ludahong-gu, and Suwan1× Lancaster.展开更多
BACKGROUND Glucagon-like peptide-1 receptor agonists(GLP-1RA)and sodium-glucose co-transporter-2 inhibitors(SGLT-2I)are associated with significant cardiovascular benefit in type 2 diabetes(T2D).However,GLP-1RA or SGL...BACKGROUND Glucagon-like peptide-1 receptor agonists(GLP-1RA)and sodium-glucose co-transporter-2 inhibitors(SGLT-2I)are associated with significant cardiovascular benefit in type 2 diabetes(T2D).However,GLP-1RA or SGLT-2I alone may not improve some cardiovascular outcomes in patients with prior cardiovascular co-morbidities.AIM To explore whether combining GLP-1RA and SGLT-2I can achieve additional benefit in preventing cardiovascular diseases in T2D.METHODS The systematic review was conducted according to PRISMA recommendations.The protocol was registered on PROSPERO(ID:42022385007).A total of 107049 participants from eligible cardiovascular outcomes trials of GLP-1RA and SGLT-2I were included in network meta-regressions to estimate cardiovascular benefit of the combination treatment.Effect modification of prior myocardial infarction(MI)and heart failure(HF)was also explored to provide clinical insight as to when the INTRODUCTION The macro-and micro-vascular benefits of glucagon-like peptide-1 receptor agonists(GLP-1RA)and sodium-glucose co-transporter-2 inhibitors(SGLT-2I)are independent of their glucose-lowering effects[1].In patients with type 2 diabetes(T2D),the major cardiovascular outcome trials(CVOT)showed that dipeptidyl peptidase-4 inhibitors(DPP-4I)did not improve cardiovascular outcomes[2],whereas cardiovascular benefit of GLP-1RA or SGLT-2I was significant[3,4].Further subgroup analyses indicated that the background cardiovascular risk should be considered when examining the cardiovascular outcomes of these newer glucose-lowering medications.For instance,prevention of major adverse cardiovascular events(MACE)was only seen in those patients with baseline atherosclerotic cardiovascular disease[3,4].Moreover,a series of CVOT conducted in patients with heart failure(HF)have demonstrated that(compared with placebo)SGLT-2I significantly reduced risk of hospitalization for HF or cardiovascular death,irrespective of their history of T2D[5-8].However,similar cardiovascular benefits were not observed in those with myocardial infarction(MI)[9,10].Cardiovascular co-morbidities are not only approximately twice as common but are also associated with dispropor-tionately worse cardiovascular outcomes in patients with T2D,compared to the general population[11].Therefore,it is of clinical importance to investigate whether the combination treatment of GLP-1RA and SGLT-2I could achieve greater cardiovascular benefit,particularly when considering patients with cardiovascular co-morbidities who may not gain sufficient cardiovascular protection from the monotherapies.This systematic review with multiple network meta-regressions was mainly aimed to explore whether combining GLP-1RA and SGLT-2I can provide additional cardiovascular benefit in T2D.Cardiovascular outcomes of these newer antidiabetic medications were also estimated under effect modification of prior cardiovascular diseases.This was to provide clinical insight as to when the combination treatment might be prioritized.展开更多
[Objective] Analysis of combining ability of starch content variation in hybrid sorghum with the assistant of AMMI model. [Method] Based on the analyses of GCA using incomplete diallel cross(NCII), the SCA of hybrid s...[Objective] Analysis of combining ability of starch content variation in hybrid sorghum with the assistant of AMMI model. [Method] Based on the analyses of GCA using incomplete diallel cross(NCII), the SCA of hybrid sorghum was analyzed by AMMI model. [Result] For the starch content change of F1 hybrid sorghum, the effects of GCA and SCA accounted for 81.06% and 17.97%, respectively. In the present study, CMS lines 45A, 29A and restorer lines Hui 1, 44R were proved to be the excellent parent materials for preparing high starch hybrid sorghum cultivars. [Conclusion] The improvement of starch content in parents should be mainly concerned in breeding high starch content hybrid sorghum.展开更多
The combining ability and correlation of eight ear characteristics in 99 maize hybrids generated by crossing nine female parents with 11 male parents were analyzed by incomplete diallel cross (NC II ) design. The re...The combining ability and correlation of eight ear characteristics in 99 maize hybrids generated by crossing nine female parents with 11 male parents were analyzed by incomplete diallel cross (NC II ) design. The results showed that the line F6 had the highest general combining ability (GCA) for yield, followed by F7, M3, M4 and M8. All of the five lines have great potential in maize breeding. The cross combination M3xF10 had the highest specific combining ability (SCA) for yield, showing strong heterosis. Heritability analysis of ear characteristics showed that GCA variance was higher than SCA variance in ear diameter, number of rows per ear and seed rate, and they were mainly controlled by the additive gene effect, indicating that that the selections for these traits are effective at early generations. The other three traits had lower SCA, for which the selections should be carried out at late generations. The correlation analysis revealed that ear length, number of grains per row, ear diameter, number of rows per ear, 100-seed weight and seed rate had extremely significant positive correlations with grain yield per plant. Among them, number of grains per row had the most significant effect on yield per plant. Barren tip length had a significant negative correlation with grain yield per plant. Therefore, we concluded that the combinations with more grains per row and shorter barren tip should be selected to achieve high yield of maize.展开更多
Using 3 sterile lines and 12 restorer of glutinous sorghum as experimental materials,36 hybrid combinations(3×12 NCⅡ) were designed to analyze the combining ability and heritability of six main agronomic trait...Using 3 sterile lines and 12 restorer of glutinous sorghum as experimental materials,36 hybrid combinations(3×12 NCⅡ) were designed to analyze the combining ability and heritability of six main agronomic traits,including plant height,panicle length,growth period,1 000-grain weight,per panicle grains and per panicle grain weight.The results showed that except per panicle grain number all other five agronomic traits have remarkable or extremely remarkable general combining ability and specific combining ability.Six agronomic traits were found to be control by additive genetic effect.Most of these agronomic traits are more easily influenced by restorers than sterile lines,suggesting that more attention should be paid to select restores in hybrid glutinous sorghum breeding.The narrow-sense heritability of these agronomic traits were in order growth period plant height per panicle grain weight panicle length 1 000-grain weight per panicle grains.展开更多
A power amplifier MIC with power combining based on AlGaN/GaN HEMTs was fabricated and measured. The amplifier consists of four 10 × 120μm transistors. A Wilkinson splitters and combining were used to divide and...A power amplifier MIC with power combining based on AlGaN/GaN HEMTs was fabricated and measured. The amplifier consists of four 10 × 120μm transistors. A Wilkinson splitters and combining were used to divide and combine the power. By biasing the amplifier at VDS = 40V, IDS = 0.9A, a maximum CW output power of 41.4dBm with a maximum power added efficiency (PAE) of 32.54% and a power combine efficiency of 69% was achieved at 5.4GHz.展开更多
45A is a glutinous sorghum male sterile line with high starch and high combining ability bred by Rice and Sorghum Institute of Sichuan Academy of Agricultural Sciences in 1998, it is a coeno-species taking non-glutino...45A is a glutinous sorghum male sterile line with high starch and high combining ability bred by Rice and Sorghum Institute of Sichuan Academy of Agricultural Sciences in 1998, it is a coeno-species taking non-glutinous maintainer line TL169-239B which bred by Tieling Institute of Agricultural Sciences in 1991 as the female parent and glutinous maintainer line72B bred by the authors' institute as the male parent, then, based on the backcross breeding between glutinous single plant chosen from F2 segregation population and Tx623A. There are ten hybrid sorghum varieties which already have been examined and approved by national and above provincial(municipal) level units; the patent of this breeding method has been authorized (the patent number: ZL 2012 1 0129155.6); 45A is protected by the Right of New Varieties of Plants, MOA, P.R. China (the variety right number: CNA20090576.1). In this paper, the breeding process of 45A and the characteristics of 45A sterile line and its hybrid sorghum were summed up, what's more, the technical key points of high-yielding breed of 45A and the production of hybrid sorghum seeds were introduced, to provide data for further popularizing the sterile line.展开更多
The theoretical lower bounds on mean squared channel estimation errors for typical fading channels are presented by the infinite-length and non-causal Wiener filter and the exact closed-form expressions of the lower b...The theoretical lower bounds on mean squared channel estimation errors for typical fading channels are presented by the infinite-length and non-causal Wiener filter and the exact closed-form expressions of the lower bounds for different channel Doppler spectra are derived. Based on the obtained lower bounds on mean squared channel estimation errors, the limits on bit error rate (BER) for maximal ratio combining (MRC) with Gaussian distributed weighting errors on independent and identically distributed (i. i. d) fading channels are presented. Numerical results show that the BER performances of ideal MRC are the lower bounds on the BER performances of non-ideal MRC and deteriorate as the maximum Doppler frequency increases or the SNR of channel estimate decreases.展开更多
The two most important activities in maize breeding are the development of inbred lines with high values of general combining ability(GCA)and specific combining ability(SCA),and the identification of hybrids with high...The two most important activities in maize breeding are the development of inbred lines with high values of general combining ability(GCA)and specific combining ability(SCA),and the identification of hybrids with high yield potentials.Genomic selection(GS)is a promising genomic tool to perform selection on the untested breeding material based on the genomic estimated breeding values estimated from the genomic prediction(GP).In this study,GP analyses were carried out to estimate the performance of hybrids,GCA,and SCA for grain yield(GY)in three maize line-by-tester trials,where all the material was phenotyped in 10 to 11 multiple-location trials and genotyped with a mid-density molecular marker platform.Results showed that the prediction abilities for the performance of hybrids ranged from 0.59 to0.81 across all trials in the model including the additive effect of lines and testers.In the model including both additive and non-additive effects,the prediction abilities for the performance of hybrids were improved and ranged from 0.64 to 0.86 across all trials.The prediction abilities of the GCA for GY were low,ranging between-0.14 and 0.13 across all trials in the model including only inbred lines;the prediction abilities of the GCA for GY were improved and ranged from 0.49 to 0.55 across all trials in the model including both inbred lines and testers,while the prediction abilities of the SCA for GY were negative across all trials.The prediction abilities for GY between testers varied from-0.66 to 0.82;the performance of hybrids between testers is difficult to predict.GS offers the opportunity to predict the performance of new hybrids and the GCA of new inbred lines based on the molecular marker information,the total breeding cost could be reduced dramatically by phenotyping fewer multiple-location trials.展开更多
基金founded by the National Key R&D Program of China(No.2022YFD2400305)the Earmarked Fund for Agriculture Seed Improvement Project of Shandong Province(Nos.2022LZGCQY010,2021LZGC027 and 2021ZLGX03)the China Agriculture Research System Project(No.CARS-49)。
文摘A crossbreeding program was established in 2019 to address the declining Crassostrea gigas harvests caused by Pacific Oyster Mortality Syndrome(POMS).As a part of the program,this study was performed to estimate the genetic structure underlying phenotypic variation.Fifteen complete diallel crossings of C.gigas and C.angulata,comprising 60 full-sib families,were used to evaluate the general combining ability(GCA)and specific combining ability(SCA),as well as genotype and environment interactions for shell height(SH),summer survival(SS),and thermal tolerance(TT)of reciprocal hybrids GA(C.gigas♀×C.angulata♂)and AG(C.angulata♀×C.gigas♂)grown in Rongcheng and Rushan,Shandong Province,China.The results suggested that heterosis of the reciprocal hybrids was evident for SH,SS,and TT.The hybrid GA had larger heterosis than AG in both testing environments,and can be a potential donor in the breeding program.The male C.gigas had better GCA for SH in Rongcheng,whereas male C.angulata was a good general combiner for SS and TT in both Rongcheng and Rushan.The estimate of SCA was much higher than GCA for SH and lower than GCA for TT.To harness both additive and non-additive genetic effects,combination breed-ing could be taken to develop hybrid varieties possessing both thermal tolerance and fast-growing traits.The positive correlations between SH and TT suggested that these traits could be improved simultaneously.The significant G×E interactions demonstrated the importance to undertake site-specific breeding programs in different environments.Overall,this study can provide essential information for developing crossbreeding strategies for the oyster farming industry.
基金National Key Research and Development Program of China(2022YFF0707602)National Natural Science Foundation of China(62471097,62471115,62471101)National Natural Science Foundation of Sichuan(2025ZNSFSC0537)。
文摘[Background]Traveling-wave tubes(TWTs)are widely applied in radar,imaging,and military systems owing to their excellent amplification characteristics.Miniaturization and integration are critical to the future of TWTs,with multi-channel slow-wave structures(SWSs)forming the foundation for their realization in high-power vacuum electronic devices.[Purpose]To provide design insights for multi-channel TWTs and simultaneously enhance their output power,a W-band folded-waveguide TWT with dual electron beams and H-plane power combining was proposed.[Methods]Three-dimensional electromagnetic simulations in CST were conducted to verify the highfrequency characteristics,electric field distribution,and amplification performance of the proposed SWS,thereby confirming the validity of the design.[Results]Results indicate that the designed TWT achieves a transmission bandwidth of 10 GHz.With an electron beam voltage of 17.9 kV and a current of 0.35 A,the output power reaches 450 W at 94 GHz,corresponding to an efficiency of 7.18%and a gain of 23.5 dB.Moreover,under fixed beam voltage and current,the TWT delivers over 200 W output power across 91–99 GHz,with a 3 dB bandwidth of 91–98.5 GHz.The particle voltage distribution after modulation further validates the mode analysis.[Conclusions]These results demonstrate the feasibility of compact dual-beam power-combining structures and provide useful guidance for the design of future multi-channel TWTs.
文摘Twenty short-statured maize inbred lines were collected from CIMMYT India and Mexico through the Plant Breeding Division, Bangladesh Agricultural Research Institute (BARI), Gazipur. The experiment was conducted from November 2020 to April 2021 in three different agroecological regions such as BARI, Gazipur, RARS Barisal and RARS Rangpur. Seven inbred lines were selected on the basis of genetic diversity and per se performance and they were crossed separately in a 7 × 7 half diallel fashion, producing 21F1 hybrids in 2019 which were evaluated at three locations. However, variances due to GCA were much higher in magnitude than SCA for all the characters indicating preponderance of additive gene effects on the inheritance of these characters. Two parents viz., P3 (CML33) and P4 (CML41) were good general combiners and two crosses viz., P4 × P5 (CML41 × CML31) and P5 × P7 (CML31 × CML124) expressed significant positive SCA effects coupled with significant positive heterosis for grain yield and for most of the yield contributing characters over the two commercial check varieties BHM 9 and NK40. Four crosses: P1 × P5 (CML116 × CML31), P1 × P6 (CML116 × CML32), P2 × P6 (CML72 × CML32) and P3 × P4 (CML33 × CML41), exhibited significant and negative SCA effects for both plant and ear height which were desirable for short stature. Genotypes x location interaction was also significant for maximum characters, suggesting that genotypes interacted significantly in different environments.
文摘BACKGROUNDGastrointestinal neuroendocrine carcinoma (GI NEC) has a low incidence rate andpoor prognosis. Most patients already have metastatic disease when they arediagnosed. Platinum chemotherapy is the main means of treating metastatic GINECs. There is a lack of effective treatment methods after chemotherapy failure.Therefore, Therefore, selecting appropriate posterior-line treatment programs toimprove the prognosis of patients is urgently needed.CASE SUMMARYA 64-year-old female was diagnosed with stage IV NEC of the rectum due toabdominal pain and rectal bleeding. After multiline chemotherapy, the conditionprogressed, and the patient was treated with a combination of camrelizumab and surufatinib. The efficacy evaluation revealed partial remission (PR) and stable conditions, with the expression ofthe tumor marker neuron-specific enolase (NSE) returning to normal. The adverse reactions were controllable, andthe overall condition was good, with weight gain achieved in the past four years. Another 51-year-old femaleexperienced recurrence and metastasis of a duodenal NEC after surgery. After multiline chemotherapy, shereceived sintilimab combined with surufatinib. The curative effect fluctuated between PR and stability. Duringtreatment, she recovered from immune-related diabetes and later died due to deterioration of her condition.During the treatment, the patient’s NSE level returned to normal.CONCLUSIONThe combination of antiangiogenic targeted drugs and immunotherapy provides a new therapeutic approach forthe treatment of metastatic GI-NECs.
文摘Background As the most widely cultivated fiber crop,cotton production depends on hybridization to unlock the yield potential of current varieties.A deep understanding of genetic dissection is crucial for the cultivation of enhanced hybrid plants with desired traits,such as high yield and fine fiber quality.In this study,the general combining ability(GCA)and specific combining ability(SCA)of yield and fiber quality of nine cotton parents(six lines and three testers)and eighteen F1 crosses produced using a line×tester mating design were analyzed.Results The results revealed significant effects of genotypes,parents,crosses,and interactions between parents and crosses for most of the studied traits.Moreover,the effects of both additive and non-additive gene actions played a notably significant role in the inheritance of most of the yield and fiber quality attributes.The F1 hybrids of(Giza 90×Aust)×Giza 86,Uzbekistan 1×Giza 97,and Giza 96×Giza 97 demonstrated superior performance due to their favorable integration of high yield attributes and premium fiber quality characteristics.Path analysis revealed that lint yield has the highest positive direct effect on seed cotton yield,while lint percentage showed the highest negative direct effect on seed cotton yield.Principal component analysis identified specific parents and hybrids associated with higher cotton yield,fiber quality,and other agronomic traits.Conclusion This study provides insights into identifying potential single-and three-way cross hybrids with superior cotton yield and fiber quality characteristics,laying a foundation for future research on improving fiber quality in cotton.
基金Project supported by Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No.2020029)。
文摘The ultrashort lasers working in pulse-burst mode reveal great machining performance in recent years. The number of pulses in bursts effects greatly on the removal rate and roughness. To generate a more equal amplitude of pulses in burst with linear polarization output and time gap adjustable, we propose a new method by the harmonic beam combining(HBC).The beam combining is commonly used in adding pulses into the output beam while maintaining the pulse waveform and beam quality. In the HBC, dichroic mirrors are used to combine laser pulses of fundamental wave(FW) into harmonic wave(HW), and nonlinear crystals are used to convert the FW into HW. Therefore, HBC can add arbitrarily more HW pulses to generate pulse-burst in linear polarization with simple structure. The amplitude of each pulse in bursts can be adjusted the same to increase the stability of the burst, the time gap of each pulse can be adjusted precisely by proper time delay. Because HBC adds pulses sequentially, the peak power density of the burst is the same as each pulse, pulses can be combined without concern of back-conversion which often occurs in high peak power density. In the demonstration, the extendibility of HBC was verified by combining two beams with a third beam. The combined efficiency rates were larger than 99%, and the beam quality of each beam was maintained at M^(2)≈1.4.
基金supported by ICAR-Central Institute for Cotton Research,Regional Station,Coimbatore,India。
文摘Background Studies on genetic variation and combining ability are essential tools to employ the suitable breeding programme,particularly for hybrid production,to exploit the heterosis in cross-pollinated crops like cotton.Thus,combining ability studies in desi cotton(Gossypium arboreum L.)was carried out using 13 diverse parents through diallel mating design,evaluating 78 F,hybrids along with their parents,without reciprocals using Griffing's and Hayman's approaches.Results Genotypes H 509,AC 3265,AKH 496,and PBN 565 exhibited superior per se performance,indicating their potential use as parents in future breeding programs to develop superior hybrids.The general combining ability(GCA)effect of the genotypes revealed that AC 3097 and AKA 13-SP1 were good general combiners for most traits in this study.Genotypes PBS 1127-SP1,AKH 496,H 509,N11-54-31-32,and AKA 13-SP1 exhibited strong combining ability,contributing to a significant specific combining ability(SCA)effect in seven selected crosses(AC 3265×PBS1127-SP1,AKH 496×H 509,AKH 496×AC 3097,PBS 1127-SP1×N11-54-31-32,AC 3216×AKA 13-SP1,H 503×N11-54-31-32,and H 509×AKA 13-SP1)for yield improvement.These crosses showed positive heterosis in a positive direction.Conclusion From the present study,five genotypes(AC 3097,AKA 13-SP1,N11-54-31-32,AC 3265,and H 509)were identified as good general combiners for producing hybrids,and seven combinations showed a promising hybrid for future breeding programs.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2024R318)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/342/45supported by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia(KFU241870).
文摘Developing high-yield maize hybrids is critical for sustaining maize production,especially in the face of rapid climate changes and the growing global population.Exploring the genetic diversity and combining ability in parental inbreds is needed for developing such high-yielding hybrids.Consequently,this study aimed at evaluating parental genetic diversity employing simple sequence repeats(SSR)markers,estimating effects of general(GCA)and specific(SCA)combining abilities for grain yield and yield contributing characters,identifying high yielding hybrids,and evaluating the association of SCA effects and performance of hybrids with genetic distance.Half-diallel mating scheme was utilized to develop 21 F_(1) hybrids from seven diverse maize inbred lines.The F_(1) hybrids along with check hybrid(SC-10),were investigated in a field trial over two growing seasons under arid conditions.The assessed F_(1) hybrids displayed significant genetic variations across all recorded traits.The inbreds P_(1) and P_(3) were detected as effective combiners to develop early maturing hybrids.Additionally,P_(3) and P_(4) were recognized as better combiners for improving grain yield and yield attributed characters.The hybrids P_(1)×P_(5) and P_(4)×P_(7) displayed significant SCA effects coupled with favorable agronomic performance.These hybrids are recommended for further evaluation and release as variety for arid environments to increase total maize production and contribute to food security.The alleles per locus differed between 2 and 5,with average of 3.5 alleles/locus.The polymorphic information content(PIC)altered between 0.21 to 0.74,with a mean of 0.56.Unweighted neighbor-joining tree grouped the inbred lines into three clusters,providing a valuable tool to decrease the crosses needed to be assessed in the trial field.Parental genetic distance varied from 0.63 to 0.90,averaging 0.79.The relationship between genetic diversity assessed through SSR markers and SCA effects was insignificant for all considered traits.Otherwise,SCA demonstrated a significant correlation with hybrid performance,suggesting that SCA serves as a reliable predictor for hybrid performance.The assessed maize inbred lines and developed hybrids revealed substantial genetic variability,offering valuable resources for enhancing maize productivity under arid conditions.The identified promising inbred lines(P_(1),P_(3),and P_(4))might be regarded as effective combiners for developing early-maturing genotypes and excellent combiners for enhancing yield attributes.Notably,the developed hybrids P_(1)×P_(5) and P_(4)×P_(7) possessed significant SCA alongside superior yield traits.SCA demonstrated a significant correlation with hybrid performance,suggesting its potential as a reliable predictor for the performance of developed hybrids.
基金supported by the Project Grant from Heilongjiang Bayi Agricultural Reclamation University,Heilongjiang,China (No.XDB201813)。
文摘High-precision methane gas detection is of great importance in industrial safety, energy production and environmental protection, etc. However, in the existing measurement techniques, the methane gas concentration information is susceptible to noise, which leads to its useful signal being drowned by noise. A fusion algorithm of variational modal decomposition(VMD) and improved wavelet threshold filtering is proposed, which is used in combination with tunable diode laser absorption spectroscopy(TDLAS) to implement a non-contact, high-resolution methane gas concentration detection. The fusion algorithm can perform noise reduction and further segmentation of the methane gas detection signal. And the simulation and experiment verify the effectiveness of the fusion algorithm, and the experimental results show that for the detection of air containing 10 ppm, 30 ppm, 60 ppm, 80 ppm, and 99 ppm methane, the errors are 12.75%, 8.18%, 3.37%, 2.46%, and 1.78%, respectively.
基金supported by the National Natural Science Foundation of China(Grant No.62305388)the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant No.QL20230007).
文摘Orbital-angular-momentum(OAM)multiplexing technology offers a significant dimension to enlarge communication capacity in free-space optical links.The coherent beam combining(CBC)system can simultaneously realize OAM multiplexing and achieve high-power laser output,providing substantial advantages for long-distance communication.Herein,we present an integrated CBC system for freespace optical links based on OAM multiplexing and demultiplexing technologies for the first time,to the best of our knowledge.A method to achieve flexible OAM multiplexing and efficient demultiplexing based on the CBC system is proposed and demonstrated both theoretically and experimentally.The experimental results exhibit a low bit error rate of 0.47%and a high recognition precision of 98.58%throughout the entire data transmission process.By employing such an ingenious strategy,this work holds promising prospects for enriching ultra-long-distance structured light communication in the future.
基金The Open Research Fund of National Mobile Communications Research Laboratory of Southeast University(No.2013D02)the Open Research Fund of National Key Laboratory of Electromagnetic Environment of China Research Institute of Radio Wave Propagation(No.201500013)the National Natural Science Foundation of China(No.61271230,61472190)
文摘To improve the reliable performance of information transmission in cooperative relay networks, the scheme of the max-rate spatial channel pairing (SCP) based on maximum ratio combining (MRC) is proposed. The scheme includes three steps: channel phase cancellation, MRC, and SCP. Eventually, the solution of the scheme is modeled as convex optimization. The objective function of the optimization problem is to maximize the transmission rate and the optimization variable is the strategy of pairing between the uplink spatial sub-channels of each user and the corresponding downlink spatial ones. The theorem of the arrangement inequalities is adopted to obtain the approximate closed-form solution of the optimal pairing for this convex optimization. Simulation results demonstrate that compared to the existing distributed space-time block coding and coherent combined schemes without SCP, the proposed max-rate SCP plus MRC algorithm achieves appreciable improvements in symbol error rate in medium and high signal-to-noise ratio regimes. The achievable performance gain is due to the use of maxrate SCP.
基金funded by the Natural Science Foundation of Yunnan Province(980006Z).
文摘Information on the genetic relationship between tropical maize (Zea mays L), germplasm and temperate maize germplasm is of great value to maize breeding. The objective of this study was to determine the combining ability and genetic relationship of 25 inbreds extracted from five tropical maize populations and a land race, with four temperate maize inbreds (Huangzaosi, Mol7, B73 and Dan 340). The 25 tropical inbreds were crossed with the four temperate inbreds and evaluated. Lines from Suwanl and POP28 had high general combining ability (GCA) for grain yield. The lines from POP32 (ETO) had the highest special combining ability (SCA) with B73; the average SCA value of the 5 lines was 879 kg/ha. The lines from Suwanl had the second-highest SCA (584 kg/ha) with Huangzaosi. The lines from Suwanl had the greatest relative heterosis (20%) with B73, followed by the lines from POP32 (ETO) with B73 (19%). Five heterotic patterns have been identified from this study: Suwanl × Reid, ETO × Reid, POP28× Reid, POP28× Ludahong-gu, and Suwan1× Lancaster.
基金Supported by China Scholarship Council,No.202006920018Key Talent Program for Medical Applications of Nuclear Technology,No.XKTJ-HRC2021007+2 种基金the Second Affiliated Hospital of Soochow University,No.SDFEYBS1815 and No.SDFEYBS2008National Natural Science Foundation of China,No.82170831The Jiangsu Innovation&Career Fund for PhD 2019.
文摘BACKGROUND Glucagon-like peptide-1 receptor agonists(GLP-1RA)and sodium-glucose co-transporter-2 inhibitors(SGLT-2I)are associated with significant cardiovascular benefit in type 2 diabetes(T2D).However,GLP-1RA or SGLT-2I alone may not improve some cardiovascular outcomes in patients with prior cardiovascular co-morbidities.AIM To explore whether combining GLP-1RA and SGLT-2I can achieve additional benefit in preventing cardiovascular diseases in T2D.METHODS The systematic review was conducted according to PRISMA recommendations.The protocol was registered on PROSPERO(ID:42022385007).A total of 107049 participants from eligible cardiovascular outcomes trials of GLP-1RA and SGLT-2I were included in network meta-regressions to estimate cardiovascular benefit of the combination treatment.Effect modification of prior myocardial infarction(MI)and heart failure(HF)was also explored to provide clinical insight as to when the INTRODUCTION The macro-and micro-vascular benefits of glucagon-like peptide-1 receptor agonists(GLP-1RA)and sodium-glucose co-transporter-2 inhibitors(SGLT-2I)are independent of their glucose-lowering effects[1].In patients with type 2 diabetes(T2D),the major cardiovascular outcome trials(CVOT)showed that dipeptidyl peptidase-4 inhibitors(DPP-4I)did not improve cardiovascular outcomes[2],whereas cardiovascular benefit of GLP-1RA or SGLT-2I was significant[3,4].Further subgroup analyses indicated that the background cardiovascular risk should be considered when examining the cardiovascular outcomes of these newer glucose-lowering medications.For instance,prevention of major adverse cardiovascular events(MACE)was only seen in those patients with baseline atherosclerotic cardiovascular disease[3,4].Moreover,a series of CVOT conducted in patients with heart failure(HF)have demonstrated that(compared with placebo)SGLT-2I significantly reduced risk of hospitalization for HF or cardiovascular death,irrespective of their history of T2D[5-8].However,similar cardiovascular benefits were not observed in those with myocardial infarction(MI)[9,10].Cardiovascular co-morbidities are not only approximately twice as common but are also associated with dispropor-tionately worse cardiovascular outcomes in patients with T2D,compared to the general population[11].Therefore,it is of clinical importance to investigate whether the combination treatment of GLP-1RA and SGLT-2I could achieve greater cardiovascular benefit,particularly when considering patients with cardiovascular co-morbidities who may not gain sufficient cardiovascular protection from the monotherapies.This systematic review with multiple network meta-regressions was mainly aimed to explore whether combining GLP-1RA and SGLT-2I can provide additional cardiovascular benefit in T2D.Cardiovascular outcomes of these newer antidiabetic medications were also estimated under effect modification of prior cardiovascular diseases.This was to provide clinical insight as to when the combination treatment might be prioritized.
文摘[Objective] Analysis of combining ability of starch content variation in hybrid sorghum with the assistant of AMMI model. [Method] Based on the analyses of GCA using incomplete diallel cross(NCII), the SCA of hybrid sorghum was analyzed by AMMI model. [Result] For the starch content change of F1 hybrid sorghum, the effects of GCA and SCA accounted for 81.06% and 17.97%, respectively. In the present study, CMS lines 45A, 29A and restorer lines Hui 1, 44R were proved to be the excellent parent materials for preparing high starch hybrid sorghum cultivars. [Conclusion] The improvement of starch content in parents should be mainly concerned in breeding high starch content hybrid sorghum.
文摘The combining ability and correlation of eight ear characteristics in 99 maize hybrids generated by crossing nine female parents with 11 male parents were analyzed by incomplete diallel cross (NC II ) design. The results showed that the line F6 had the highest general combining ability (GCA) for yield, followed by F7, M3, M4 and M8. All of the five lines have great potential in maize breeding. The cross combination M3xF10 had the highest specific combining ability (SCA) for yield, showing strong heterosis. Heritability analysis of ear characteristics showed that GCA variance was higher than SCA variance in ear diameter, number of rows per ear and seed rate, and they were mainly controlled by the additive gene effect, indicating that that the selections for these traits are effective at early generations. The other three traits had lower SCA, for which the selections should be carried out at late generations. The correlation analysis revealed that ear length, number of grains per row, ear diameter, number of rows per ear, 100-seed weight and seed rate had extremely significant positive correlations with grain yield per plant. Among them, number of grains per row had the most significant effect on yield per plant. Barren tip length had a significant negative correlation with grain yield per plant. Therefore, we concluded that the combinations with more grains per row and shorter barren tip should be selected to achieve high yield of maize.
基金Supported by National Sorghum Industry Technology Development System(CARS-06-01-05)Financial Genetic Breeding Program of Sichuan Province(2011JYGC11-031)+2 种基金Key R&D Program for Sorghum Breeding of Sichuan Province during the 12th Five Year PeriodScience&Technology Pillar Program in Sichuan ProvinceYouth Funds of Sichuan Academy of Agricultural Sciences(2012QNJJ-023)~~
文摘Using 3 sterile lines and 12 restorer of glutinous sorghum as experimental materials,36 hybrid combinations(3×12 NCⅡ) were designed to analyze the combining ability and heritability of six main agronomic traits,including plant height,panicle length,growth period,1 000-grain weight,per panicle grains and per panicle grain weight.The results showed that except per panicle grain number all other five agronomic traits have remarkable or extremely remarkable general combining ability and specific combining ability.Six agronomic traits were found to be control by additive genetic effect.Most of these agronomic traits are more easily influenced by restorers than sterile lines,suggesting that more attention should be paid to select restores in hybrid glutinous sorghum breeding.The narrow-sense heritability of these agronomic traits were in order growth period plant height per panicle grain weight panicle length 1 000-grain weight per panicle grains.
文摘A power amplifier MIC with power combining based on AlGaN/GaN HEMTs was fabricated and measured. The amplifier consists of four 10 × 120μm transistors. A Wilkinson splitters and combining were used to divide and combine the power. By biasing the amplifier at VDS = 40V, IDS = 0.9A, a maximum CW output power of 41.4dBm with a maximum power added efficiency (PAE) of 32.54% and a power combine efficiency of 69% was achieved at 5.4GHz.
文摘45A is a glutinous sorghum male sterile line with high starch and high combining ability bred by Rice and Sorghum Institute of Sichuan Academy of Agricultural Sciences in 1998, it is a coeno-species taking non-glutinous maintainer line TL169-239B which bred by Tieling Institute of Agricultural Sciences in 1991 as the female parent and glutinous maintainer line72B bred by the authors' institute as the male parent, then, based on the backcross breeding between glutinous single plant chosen from F2 segregation population and Tx623A. There are ten hybrid sorghum varieties which already have been examined and approved by national and above provincial(municipal) level units; the patent of this breeding method has been authorized (the patent number: ZL 2012 1 0129155.6); 45A is protected by the Right of New Varieties of Plants, MOA, P.R. China (the variety right number: CNA20090576.1). In this paper, the breeding process of 45A and the characteristics of 45A sterile line and its hybrid sorghum were summed up, what's more, the technical key points of high-yielding breed of 45A and the production of hybrid sorghum seeds were introduced, to provide data for further popularizing the sterile line.
文摘The theoretical lower bounds on mean squared channel estimation errors for typical fading channels are presented by the infinite-length and non-causal Wiener filter and the exact closed-form expressions of the lower bounds for different channel Doppler spectra are derived. Based on the obtained lower bounds on mean squared channel estimation errors, the limits on bit error rate (BER) for maximal ratio combining (MRC) with Gaussian distributed weighting errors on independent and identically distributed (i. i. d) fading channels are presented. Numerical results show that the BER performances of ideal MRC are the lower bounds on the BER performances of non-ideal MRC and deteriorate as the maximum Doppler frequency increases or the SNR of channel estimate decreases.
基金financial support of the Shanghai Agriculture Applied Technology Development Program of China(Z20190101)the Harvest Plus Project+7 种基金the Genomic Opensource Breeding Informatics Initiative(GOBII)(OPP1093167)supported by the Bill&Melinda Gates Foundationthe CGIAR Research Program(CRP)on MAIZEW1&W2 support from the Governments of Australia,Belgium,Canada,China,France,India,Japan,Republic of Korea,Mexico,the Netherlands,New Zealand,Norway,Sweden,Switzerland,the United Kingdom,the United States,and the World Bankgrants from the National Key Research and Development Program of China(2016YFD0101803)the National Natural Science Foundation of China(31801442)Shenyang City Key Laboratory of Maize Genomic Selection,Liaoning Province Key Scientific and Technological Research and Development Project(2011208001)the CIMMYT-China Specialty Maize Research Center Project funded by the Shanghai Municipal Finance Bureau(KF201802)the Chinese Scholarship Council。
文摘The two most important activities in maize breeding are the development of inbred lines with high values of general combining ability(GCA)and specific combining ability(SCA),and the identification of hybrids with high yield potentials.Genomic selection(GS)is a promising genomic tool to perform selection on the untested breeding material based on the genomic estimated breeding values estimated from the genomic prediction(GP).In this study,GP analyses were carried out to estimate the performance of hybrids,GCA,and SCA for grain yield(GY)in three maize line-by-tester trials,where all the material was phenotyped in 10 to 11 multiple-location trials and genotyped with a mid-density molecular marker platform.Results showed that the prediction abilities for the performance of hybrids ranged from 0.59 to0.81 across all trials in the model including the additive effect of lines and testers.In the model including both additive and non-additive effects,the prediction abilities for the performance of hybrids were improved and ranged from 0.64 to 0.86 across all trials.The prediction abilities of the GCA for GY were low,ranging between-0.14 and 0.13 across all trials in the model including only inbred lines;the prediction abilities of the GCA for GY were improved and ranged from 0.49 to 0.55 across all trials in the model including both inbred lines and testers,while the prediction abilities of the SCA for GY were negative across all trials.The prediction abilities for GY between testers varied from-0.66 to 0.82;the performance of hybrids between testers is difficult to predict.GS offers the opportunity to predict the performance of new hybrids and the GCA of new inbred lines based on the molecular marker information,the total breeding cost could be reduced dramatically by phenotyping fewer multiple-location trials.