Red-green-blue(RGB)beam combiners are widely used in scenarios such as augmented reality/virtual reality(AR/VR),laser projection,biochemical detection,and other fields.Optical waveguide combiners have attracted extens...Red-green-blue(RGB)beam combiners are widely used in scenarios such as augmented reality/virtual reality(AR/VR),laser projection,biochemical detection,and other fields.Optical waveguide combiners have attracted extensive attention due to their advantages of small size,high multiplexing efficiency,convenient mass production,and low cost.An RGB beam combiner based on directional couplers is designed,with a core-cladding relative refractive index difference of 0.75%.The RGB beam combiner is optimized from the perspective of parameter optimization.Using the beam propagation method(BPM),the relationship between the performance of the RGB beam combiner and individual parameters is studied,achieving preliminary optimization of the device’s performance.The key parameters of the RGB beam combiner are optimized using the entropy weight-technique for order preference by similarity to an ideal solution TOPSIS method,establishing the optimal parameter scheme and further improving the device’s performance indicators.The results show that after optimization,the multiplexing efficiencies for red,green,and blue lights,as well as the average multiplexing efficiency,reached 99.17%,99.76%,96.63%and 98.52%,respectively.The size of the RGB beam combiner is 4.768 mm×0.062 mm.展开更多
We study the topological states(TSs)of all-dielectric honeycomb valley photonic crystals(VPCs).Breaking the space inversion symmetry of the honeycomb lattice by varying the filling ratio of materials for circular ring...We study the topological states(TSs)of all-dielectric honeycomb valley photonic crystals(VPCs).Breaking the space inversion symmetry of the honeycomb lattice by varying the filling ratio of materials for circular ring dielectric columns in the unit cell,which triggers topological phase transitions and thus achieves topological edge states(TESs)and topological corner states(TCSs).The results demonstrate that this structure has efficient photon transmission characteristics and anti-scattering robustness.In particular,we have found that changing the type of edge splicing between VPCs with different topological properties produces a change in the frequency of TCSs,and then based on this phenomenon,we have used a new method of adjusting only the type of edge splicing of the structure to design a novel TCSs combiner that can integrate four TCSs with different frequencies.This work not only expands the variety and number of unexplored TCSs that may exist in a fixed photonic band gap and can be rationalized to be selectively excited in the fixed configuration.Our study provides a feasible pathway for the design of integrated optical devices in which multiple TSs coexist in a single photonic system.展开更多
A new tapered multimode interference (MMl)-based coherent lightwave combiner is reported. A comprehensive theoretical analysis of mode behaviors in the tapered MMI waveguide is presented, and the output characterist...A new tapered multimode interference (MMl)-based coherent lightwave combiner is reported. A comprehensive theoretical analysis of mode behaviors in the tapered MMI waveguide is presented, and the output characteristics of the tapered MMI combiners with various structures are demonstrated. The combiner is fabricated on a silicon-on-insulator (SO1) substrate. Due to its advantages of having no end-facet reflection,easy extension to a multi-port configuration, high tolerance for fabrication errors, and compact size, the tapered MMI is a good candidate for a coherent lightwave combiner to be used in large-scale photonic integrated circuits.展开更多
A simple fast correlation attack is used to analysis the security of Bluetooth combiner in this paper. This attack solves the tradeoff between the length of the keystream and the computing complexity needed to recover...A simple fast correlation attack is used to analysis the security of Bluetooth combiner in this paper. This attack solves the tradeoff between the length of the keystream and the computing complexity needed to recover the secret key. We give the computing complexities of the attack algorithm according to different lengths of the known keystream. The result is less time-consuming than before. It is also shown that the secu-rity of the modified Bluetooth combiner by Hermelin and Nyberg is not significantly enhanced.展开更多
A method of designing an E-plane power combiner composed of two quarter-arc bent rectangular waveguides is proposed for sub-THz and THz waves. The quarter-arc bent-waveguide power combiner has a simple geometry which ...A method of designing an E-plane power combiner composed of two quarter-arc bent rectangular waveguides is proposed for sub-THz and THz waves. The quarter-arc bent-waveguide power combiner has a simple geometry which is easy to design and fabricate. By HFSS codes, the physical mechanism and performance of the power combiner are analyzed, and the relationship between the output characteristics and the structure/operating parameters is given. Simulation results show that our power combiner is suitable for the combining of two equalpower and reversed-phase signals, the bandwidth of the combiner is wide and can be adjusted by the radius of the quarter-arc, and the isolation performance of the combiner can be improved by adding thin film resistive septa at the junction of two quarter-arc bent waveguides. Meanwhile, an approximate method based on the analytic geometrical analysis is given to design this power combiner for different frequency bands.展开更多
The structural composition, scheme selection and component design of a five-channel transmitter combiner for 800MHz trucking mobile communication system (TMC) is proposed. More attentions have been paid to the analysi...The structural composition, scheme selection and component design of a five-channel transmitter combiner for 800MHz trucking mobile communication system (TMC) is proposed. More attentions have been paid to the analysis and design of the high-Q microwave resonant cavity with accurate tuning structure. Also, a model transmitter combiner designed by the authors is proposed. Test results of the combiner are given. It has been proved that the technical specifications of the combiner have reached an advanced technical level compared with the products of the same kind imported from abroad.展开更多
This article presents the design and performance of a terahertz on-chip coupled-grounded coplanar waveguide(GCPW)power combiner using a 50μm-thick InP process.The proposed topology uses two coupled-GCPW lines at the ...This article presents the design and performance of a terahertz on-chip coupled-grounded coplanar waveguide(GCPW)power combiner using a 50μm-thick InP process.The proposed topology uses two coupled-GCPW lines at the end of the input port to substitute two quarter-wavelength GCPW lines,which is different from the conventional Wilkinson power combiner and can availably minimize the coverage area.According to the results obtained,for the frequency range of 210-250 GHz,the insertion losses for each two-way combiner and four-way combiner were lower than 1.05 dB and1.35 dB,respectively,and the in-band return losses were better than 11 dB.Moreover,the proposed on-chip GCPW-based combiners achieved a compromise in low-loss,broadband,and small-size,which can find wide applications in terahertz bands,such as power amplifiers and signal distribution networks.展开更多
Analysis of the scattering parameters(S-parameters) of planar N-way metamaterial power dividers/combiners mostly uses commercial microwave circuit simulators due to the large circuit size involved. This paper presen...Analysis of the scattering parameters(S-parameters) of planar N-way metamaterial power dividers/combiners mostly uses commercial microwave circuit simulators due to the large circuit size involved. This paper presents an efficient circuit modeling approach, which is based on the multi-input and multi-output transmission matrix(T-matrix) method, to analyze the S-parameter of a planar nine-way metamaterial power-divider/combiner structure. S-parameter computation results are shown in good agreement with the simulation results by using the Agilent advanced design system(ADS) and measurement results. The computation time of an N-way metamaterial power divider/combiner with N=5, 9, 13, and 17 using T-matrix method is also compared with those of ADS and AWR Microwave Office(MWO) to demonstrate its computational efficiency.展开更多
A complete nonlinear model of the 3-dB hybrid-coupled power combiner is proposed forthe first time and a set of state equations describing this nonlinear system are derived.Nonlinear analysis on the hybrid-coupled pow...A complete nonlinear model of the 3-dB hybrid-coupled power combiner is proposed forthe first time and a set of state equations describing this nonlinear system are derived.Nonlinear analysis on the hybrid-coupled power combiner is performed by using the Routh-Hurwitz stability criterion. All the operation parameters, such as the output power, thecombining efficiency, the operating frequency and the bandwidth, are calculated correctly.Therefore, it is possible to fulfil the computer-aided analysis (CAA) and the computer-aideddesign (CAD) of complex corporation and tandem power-combining systems.展开更多
Compared with end pumping fiber combiner, one of the advantages for side pumping combiner is the unlimited pumping points, which means multi-point or cascaded side pumping can be realized. However, the loss mechanism ...Compared with end pumping fiber combiner, one of the advantages for side pumping combiner is the unlimited pumping points, which means multi-point or cascaded side pumping can be realized. However, the loss mechanism of the cascaded structure is rarely discussed. In this paper, we present the numerical and experimental investigation about the loss mechanism of a two-stage-cascaded side pumping combiner based on tapered-fused technique. The influence of loss mechanism on the coupling efficiency and thermal load of the fiber coating is analyzed according to simulations and experiments with different tapering ratios for the first stage. Based on the analysis, a cascaded component with total pump coupling efficiency of 96.4% handling a pump power of 1088 W is achieved by employing 1018 nm fiber laser as the pump source. Future work to further improve the performance of a cascaded side pumping combiner is discussed and prospected.展开更多
Cavity combiners have been put forward for high power combining due to their advantages of larger combining ability, variable input channels and less power loss. For a high power cavity combiner, it is better to keep ...Cavity combiners have been put forward for high power combining due to their advantages of larger combining ability, variable input channels and less power loss. For a high power cavity combiner, it is better to keep the power loss ratio in a reasonable range, because large power loss would lead to strict requirements on the cooling system. A combiner with variable input channels is convenient for outputting different power levels according to practical demands. In this paper, a method for designing a variable-channel high-power cavity combiner is proposed, based on the relation between input and output coupling coefficients obtained by analyzing the equivalent circuit of the cavity combiner. This method can put the designed cavity combiner in a matching state and keep its power loss rate in a reasonable range as the number of input channels changes. As an example, a cavity combiner with 500 MHz and variable input channels from 16 to 64 is designed, and the simulation results show that our proposed method is feasible.展开更多
Side pumping combiners are widely used in fiber laser schemes for their high coupling efficiency, low insertion loss, and multi-point pumping capability. However, side pumping combiners perform differently in coupling...Side pumping combiners are widely used in fiber laser schemes for their high coupling efficiency, low insertion loss, and multi-point pumping capability. However, side pumping combiners perform differently in coupling efficiency when pumping with a laser diode(LD) and a high-brightness 1018 nm Yb-doped fiber laser(YDFL). In this paper, for the first time, to the best of our knowledge, we investigated the different parameters to fabricate the(2 + 1) × 1 combiner with high coupling efficiency when pumping with an LD and a YDFL, respectively. After optimization, the maximum coupled pump power from one single-pump port of the combiner was 1200 W and 2730 W when pumping with a LD and a YDFL, respectively.展开更多
The rapid advancement of modern science and technology,coupled with the recent surge in new-energy electric vehicles,has significantly boosted the demand for lithium.This has promoted the development and efficient uti...The rapid advancement of modern science and technology,coupled with the recent surge in new-energy electric vehicles,has significantly boosted the demand for lithium.This has promoted the development and efficient utilization of lepidolite as a lithium source.Therefore,the processes for the flotation of lepidolite have been studied in depth,particularly the development and use of lepidolite flotation collectors and the action mechanism of the collectors on the lepidolite surface.Based on the crystal-structure characteristics of lepidolite minerals,this review focuses on the application of anionic collectors,amine cationic collectors(primary amines,quaternary ammonium salts,ether amines,and Gemini amines),and combined collectors to the flotation behavior of lepidolite as well as the adsorption mechanisms.New directions and technologies for the controllable flotation of lepidolite are proposed,including process improvement,reagent synthesis,and mechanistic research.This analysis demonstrates the need for the further study of the complex environment inside lepidolite and pulp.By using modern analytical detection methods and quantum chemical calculations,research on reagents for the flotation of lepidolite has expanded,providing new concepts and references for the efficient flotation recovery and utilization of lepidolite.展开更多
Blood-brain barrier disruption and the neuroinflammatory response are significant pathological features that critically influence disease progression and treatment outcomes.This review systematically analyzes the curr...Blood-brain barrier disruption and the neuroinflammatory response are significant pathological features that critically influence disease progression and treatment outcomes.This review systematically analyzes the current understanding of the bidirectional relationship between blood-brain barrier disruption and neuroinflammation in traumatic brain injury,along with emerging combination therapeutic strategies.Literature review indicates that blood-brain barrier disruption and neuroinflammatory responses are key pathological features following traumatic brain injury.In the acute phase after traumatic brain injury,the pathological characteristics include primary blood-brain barrier disruption and the activation of inflammatory cascades.In the subacute phase,the pathological features are characterized by repair mechanisms and inflammatory modulation.In the chronic phase,the pathological features show persistent low-grade inflammation and incomplete recovery of the blood-brain barrier.Various physiological changes,such as structural alterations of the blood-brain barrier,inflammatory cascades,and extracellular matrix remodeling,interact with each other and are influenced by genetic,age,sex,and environmental factors.The dynamic balance between blood-brain barrier permeability and neuroinflammation is regulated by hormones,particularly sex hormones and stress-related hormones.Additionally,the role of gastrointestinal hormones is receiving increasing attention.Current treatment strategies for traumatic brain injury include various methods such as conventional drug combinations,multimodality neuromonitoring,hyperbaric oxygen therapy,and non-invasive brain stimulation.Artificial intelligence also shows potential in treatment decision-making and personalized therapy.Emerging sequential combination strategies and precision medicine approaches can help improve treatment outcomes;however,challenges remain,such as inadequate research on the mechanisms of the chronic phase traumatic brain injury and difficulties with technology integration.Future research on traumatic brain injury should focus on personalized treatment strategies,the standardization of techniques,costeffectiveness evaluations,and addressing the needs of patients with comorbidities.A multidisciplinary approach should be used to enhance treatment and improve patient outcomes.展开更多
In this paper,we have proposed a hybrid optical wavelength demultiplexer and power combiner for a hybrid timeand wavelength-division multiplexing(TWDM)passive optical network(PON),i.e.,a single passive optical device ...In this paper,we have proposed a hybrid optical wavelength demultiplexer and power combiner for a hybrid timeand wavelength-division multiplexing(TWDM)passive optical network(PON),i.e.,a single passive optical device that functions as a 1×N wavelength demultiplexer for distributing the downstream signal in multiple wavelengths from the optical line terminal(OLT)to the N optical network units(ONUs),and simultaneously as an N×1 power combiner for collecting the upstream signal in the same wavelength from the N ONUs to the OLT.Through a design example of a 32 channel hybrid optical wavelength demultiplexer and power combiner on the silicon-on-insulator platform,our numerical simulation result shows that the insertion loss and adjacent channel crosstalk of the downstream wavelength demultiplexer are as low as 4.6 and-16.3 dB,respectively,while the insertion loss and channel non-uniformity of the upstream power combiner can reach 3.5 and 2.1 dB,respectively.The proposed structure can readily be extended to other material platforms such as the silica-based planar lightwave circuit.Its fabrication process is fully compatible with standard clean-room technologies such as photolithography and etching,without any complicated and/or costly approach involved.展开更多
Background:Human skin is affected by ultraviolet rays on a daily basis,and excessive ultraviolet radiation(UVR)can lead to sunburn erythema,tanning,photoaging,and skin tumors.The combination of Astragali Radix(AR)and ...Background:Human skin is affected by ultraviolet rays on a daily basis,and excessive ultraviolet radiation(UVR)can lead to sunburn erythema,tanning,photoaging,and skin tumors.The combination of Astragali Radix(AR)and Anemarrhenae Rhizoma(AAR)is a common pairing in traditional Chinese medicine(TCM).According to earlier studies,they possess properties capable of alleviating the adverse impacts of UVR on the skin.However,the specific actions and underlying mechanisms require further investigation.The study aims to analyze the efficacy of AR-AAR in preventing UVR-induced skin damage and to clarify the associated molecular mechanisms.Methods:Potential signaling pathways by which AR and AAR may protect against UVR-induced skin damage were identified with network pharmacology,molecular docking techniques and molecular dynamics(MD)simulation.Except the normal group,the back skin of SD rats was exposed to 1.1 mW/cm^(2) UVA combined with 0.1 mW/cm^(2) UVB daily,and the UVR skin damage model was established.Morphological features of skin tissues of different groups were discovered through Hematoxylin and Eosin(HE)staining,Masson staining,Weigert staining.ELISA was utilized to measure the levels of reactive oxygen species(ROS),Interleukin 6(IL-6),Interleukin 1β(IL-1β)and Tumor necrosis factos-α(TNF-α)in skin tissues.RT-PCR and Western blot were employed to quantify the mRNA and protein contents of PI3K,AKT,and MMP-9.Results:Network pharmacology analysis predicts that AR-AAR may improve skin damage induced by UVR through the PI3K/AKT signaling pathway.Histological staining shows that AR-AAR can significantly reduce inflammatory infiltration and fibrosis in damaged skin.Treatment with AR-AAR(2:1)significantly reduced the expression levels of IL-1β,IL-6,TNF-αand ROS in UVR-damaged rat skin.After treatment with AR-AAR(2:1),not only did the relative mRNA expression levels of PI3K and AKT and the protein expression levels of PI3K,AKT,P-PI3K,and P-AKT increase,but the mRNA and protein expression levels of MMP-9 decreased.Conclusion:The study indicate that the AR-AAR combination and its active components may mitigate UVR skin damage by modulating the PI3K/AKT signaling pathway.展开更多
Atrazine,a persistent triazine herbicide,poses environmental and health risks.This study examines the synergis-tic remediation of atrazine-contaminated soil using green manure plant(GMP)hairy vetch(Vicia villosa Roth,...Atrazine,a persistent triazine herbicide,poses environmental and health risks.This study examines the synergis-tic remediation of atrazine-contaminated soil using green manure plant(GMP)hairy vetch(Vicia villosa Roth,VV)and the exogenous atrazine-degrading bacterium Arthrobacter sp.ATR1.Soil samples contaminated with atrazine at 5 and 20 mg/kg were treated with control(CK),ATR1(CKatr),hairy vetch(VV),and combined hairy vetch and ATR1 remediation(VVatr).The results indicated that the VVatr treatment exhibited the most effective atrazine removal,achieving enhancements of 56.12%at 5 mg/kg and 54.51%at 20 mg/kg compared to CK after 28 days.Soil enzyme activities,including urease,sucrase,and alkaline phosphatase,were significantly elevated in the VV and VVatr treatments,contributing to improved soil quality.Additionally,the CKatr,VV,and VVatr treat-ments enhanced bacterial diversity and richness while altering the microbial community structure.The VV and VVatr treatments notably enriched indigenous atrazine-degrading bacteria and nitrogen-fixing bacteria in the rhizosphere.This microbial enrichment upregulated the Atrazine degradation and Nitrogen metabolism pathways,facilitating both atrazine removal and nitrogen cycling in the soil.And VVatr treatment promoted the stability of the microbial network and enhanced the cooperative relationship between key indigenous atrazine-degrading and nitrogen-fixing bacteria.These findings explain the mechanism of plantmicrobe combined remediation of atrazine-contaminated soil from the perspective of rhizosphere microorganisms and offer a theoretical basis for the practical application of this method.展开更多
Radiofrequency ablation(RFA),particularly endoscopic ultrasound-guided RFA(EUS-RFA),has emerged as a promising minimally invasive approach for the treatment of pancreatic cancer,especially in patients with locally adv...Radiofrequency ablation(RFA),particularly endoscopic ultrasound-guided RFA(EUS-RFA),has emerged as a promising minimally invasive approach for the treatment of pancreatic cancer,especially in patients with locally advanced or unresectable disease.This review outlines recent technological developments in EUS-RFA,including innovations in energy delivery systems,probe design,and real-time thermal monitoring,which have improved the precision and safety of the procedure.Clinical studies combining EUS-RFA with chemotherapy have demonstrated encouraging outcomes,with improvements in overall survival,progression-free survival,tumor necrosis,and symptom control compared to chemotherapy alone.Additionally,RFA-induced tumor antigen release and modulation of the tumor microenvironment suggest a potential synergistic role with immunotherapy.Despite its promise,the widespread adoption of EUS-RFA is limited by a lack of large-scale randomized controlled trials and standardized treatment protocols.展开更多
To achieve the goals of sustainable development of the energy system and the construction of a lowcarbon society,this study proposes a multi-energy storage collaborative optimization strategy for industrial park that ...To achieve the goals of sustainable development of the energy system and the construction of a lowcarbon society,this study proposes a multi-energy storage collaborative optimization strategy for industrial park that integrates the laddered carbon trading mechanism with demand response.Firstly,a dual dimensional DR model is constructed based on the characteristics of load elasticity.The alternativeDRenables flexible substitution of energy loads through complementary conversion of electricity/heat/cold multi-energy sources,while the price DR relies on timeof-use electricity price signals to guide load spatiotemporal migration;Secondly,the LCT mechanism is introduced to achieve optimal carbon emission costs through a tiered carbon quota allocation mechanism.On this basis,an optimization decision model is established with the core objective of maximizing the annual net profit of the park.The objective function takes into account energy sales revenue,generator unit costs,and investment and operation costs of multiple types of energy storage facilities.Themodel constraint system covers three key dimensions:dynamic operation constraints of power generation units,including unit output limits,ramping capability,and minimum start-stop time;the physical boundary of an electric/hot/cold multi-energy storage system involves energy storage capacity and charge/discharge efficiency;The multi-energy network coupling balance equation ensures that the energy conversion and transmission process satisfies the law of conservation of energy.Using CPLEX mathematical programming solver for simulation verification,construct an energy storage capacity configuration decision process that includes LCT-DR synergistic effect.The research results show that compared with the traditional single energy storage configuration mode,this strategy effectively enhances the economic feasibility and engineering practicality of industrial park operation by coordinating demand side resource scheduling and finely controlling carbon costs,while maintaining stable system operation.Its methodological framework provides a technical path that combines theoretical rigor and practical operability for the low-carbon transformation of regional integrated energy systems.展开更多
Spinal cord injuries have overwhelming physical and occupational implications for patients.Moreover,the extensive and long-term medical care required for spinal cord injury significantly increases healthcare costs and...Spinal cord injuries have overwhelming physical and occupational implications for patients.Moreover,the extensive and long-term medical care required for spinal cord injury significantly increases healthcare costs and resources,adding a substantial burden to the healthcare system and patients'families.In this context,chondroitinase ABC,a bacterial enzyme isolated from Proteus vulgaris that is modified to facilitate expression and secretion in mammals,has emerged as a promising therapeutic agent.It works by degrading chondroitin sulfate proteoglycans,cleaving the glycosaminoglycanchains of chondroitin sulfate proteoglycans into soluble disaccharides or tetrasaccharides.Chondroitin sulfate proteoglycans are potent axon growth inhibitors and principal constituents of the extracellular matrix surrounding glial and neuronal cells attached to glycosaminoglycan chains.Chondroitinase ABC has been shown to play an effective role in promoting recovery from acute and chronic spinal cord injury by improving axonal regeneration and sprouting,enhancing the plasticity of perineuronal nets,inhibiting neuronal apoptosis,and modulating immune responses in various animal models.In this review,we introduce the classification and pathological mechanisms of spinal cord injury and discuss the pathophysiological role of chondroitin sulfate proteoglycans in spinal cord injury.We also highlight research advancements in spinal cord injury treatment strategies,with a focus on chondroitinase ABC,and illustrate how improvements in chondroitinase ABC stability,enzymatic activity,and delivery methods have enhanced injured spinal cord repair.Furthermore,we emphasize that combination treatment with chondroitinase ABC further enhances therapeutic efficacy.This review aimed to provide a comprehensive understanding of the current trends and future directions of chondroitinase ABC-based spinal cord injury therapies,with an emphasis on how modern technologies are accelerating the optimization of chondroitinase ABC development.展开更多
基金Project(52175445)supported by the National Natural Science Foundation of ChinaProject(2022JJ30743)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(2023GK2024)supported by the Key Research and Development Program of Hunan Province,ChinaProject(2023ZZTS0391)supported by the Fundamental Research Funds for the Central Universities of China。
文摘Red-green-blue(RGB)beam combiners are widely used in scenarios such as augmented reality/virtual reality(AR/VR),laser projection,biochemical detection,and other fields.Optical waveguide combiners have attracted extensive attention due to their advantages of small size,high multiplexing efficiency,convenient mass production,and low cost.An RGB beam combiner based on directional couplers is designed,with a core-cladding relative refractive index difference of 0.75%.The RGB beam combiner is optimized from the perspective of parameter optimization.Using the beam propagation method(BPM),the relationship between the performance of the RGB beam combiner and individual parameters is studied,achieving preliminary optimization of the device’s performance.The key parameters of the RGB beam combiner are optimized using the entropy weight-technique for order preference by similarity to an ideal solution TOPSIS method,establishing the optimal parameter scheme and further improving the device’s performance indicators.The results show that after optimization,the multiplexing efficiencies for red,green,and blue lights,as well as the average multiplexing efficiency,reached 99.17%,99.76%,96.63%and 98.52%,respectively.The size of the RGB beam combiner is 4.768 mm×0.062 mm.
文摘We study the topological states(TSs)of all-dielectric honeycomb valley photonic crystals(VPCs).Breaking the space inversion symmetry of the honeycomb lattice by varying the filling ratio of materials for circular ring dielectric columns in the unit cell,which triggers topological phase transitions and thus achieves topological edge states(TESs)and topological corner states(TCSs).The results demonstrate that this structure has efficient photon transmission characteristics and anti-scattering robustness.In particular,we have found that changing the type of edge splicing between VPCs with different topological properties produces a change in the frequency of TCSs,and then based on this phenomenon,we have used a new method of adjusting only the type of edge splicing of the structure to design a novel TCSs combiner that can integrate four TCSs with different frequencies.This work not only expands the variety and number of unexplored TCSs that may exist in a fixed photonic band gap and can be rationalized to be selectively excited in the fixed configuration.Our study provides a feasible pathway for the design of integrated optical devices in which multiple TSs coexist in a single photonic system.
文摘A new tapered multimode interference (MMl)-based coherent lightwave combiner is reported. A comprehensive theoretical analysis of mode behaviors in the tapered MMI waveguide is presented, and the output characteristics of the tapered MMI combiners with various structures are demonstrated. The combiner is fabricated on a silicon-on-insulator (SO1) substrate. Due to its advantages of having no end-facet reflection,easy extension to a multi-port configuration, high tolerance for fabrication errors, and compact size, the tapered MMI is a good candidate for a coherent lightwave combiner to be used in large-scale photonic integrated circuits.
基金Supported by the National Key Foundation Research "973" project (No.G1999035802) and the National Natural Science Foundation of China (No.60273027).
文摘A simple fast correlation attack is used to analysis the security of Bluetooth combiner in this paper. This attack solves the tradeoff between the length of the keystream and the computing complexity needed to recover the secret key. We give the computing complexities of the attack algorithm according to different lengths of the known keystream. The result is less time-consuming than before. It is also shown that the secu-rity of the modified Bluetooth combiner by Hermelin and Nyberg is not significantly enhanced.
基金Supported by the National Natural Science Foundation of China under Grant No 11075032the Fundamental Research Funds for the Central Universities under Grant No ZYGX2014J033
文摘A method of designing an E-plane power combiner composed of two quarter-arc bent rectangular waveguides is proposed for sub-THz and THz waves. The quarter-arc bent-waveguide power combiner has a simple geometry which is easy to design and fabricate. By HFSS codes, the physical mechanism and performance of the power combiner are analyzed, and the relationship between the output characteristics and the structure/operating parameters is given. Simulation results show that our power combiner is suitable for the combining of two equalpower and reversed-phase signals, the bandwidth of the combiner is wide and can be adjusted by the radius of the quarter-arc, and the isolation performance of the combiner can be improved by adding thin film resistive septa at the junction of two quarter-arc bent waveguides. Meanwhile, an approximate method based on the analytic geometrical analysis is given to design this power combiner for different frequency bands.
文摘The structural composition, scheme selection and component design of a five-channel transmitter combiner for 800MHz trucking mobile communication system (TMC) is proposed. More attentions have been paid to the analysis and design of the high-Q microwave resonant cavity with accurate tuning structure. Also, a model transmitter combiner designed by the authors is proposed. Test results of the combiner are given. It has been proved that the technical specifications of the combiner have reached an advanced technical level compared with the products of the same kind imported from abroad.
基金Project supported in part by the National Natural Science Foundation of China(Grant No.61871072)。
文摘This article presents the design and performance of a terahertz on-chip coupled-grounded coplanar waveguide(GCPW)power combiner using a 50μm-thick InP process.The proposed topology uses two coupled-GCPW lines at the end of the input port to substitute two quarter-wavelength GCPW lines,which is different from the conventional Wilkinson power combiner and can availably minimize the coverage area.According to the results obtained,for the frequency range of 210-250 GHz,the insertion losses for each two-way combiner and four-way combiner were lower than 1.05 dB and1.35 dB,respectively,and the in-band return losses were better than 11 dB.Moreover,the proposed on-chip GCPW-based combiners achieved a compromise in low-loss,broadband,and small-size,which can find wide applications in terahertz bands,such as power amplifiers and signal distribution networks.
基金supported by MOST under Grant No.MOST 103-2221-E-002-050
文摘Analysis of the scattering parameters(S-parameters) of planar N-way metamaterial power dividers/combiners mostly uses commercial microwave circuit simulators due to the large circuit size involved. This paper presents an efficient circuit modeling approach, which is based on the multi-input and multi-output transmission matrix(T-matrix) method, to analyze the S-parameter of a planar nine-way metamaterial power-divider/combiner structure. S-parameter computation results are shown in good agreement with the simulation results by using the Agilent advanced design system(ADS) and measurement results. The computation time of an N-way metamaterial power divider/combiner with N=5, 9, 13, and 17 using T-matrix method is also compared with those of ADS and AWR Microwave Office(MWO) to demonstrate its computational efficiency.
基金Project supported by the National Natural Science Foundation of China.
文摘A complete nonlinear model of the 3-dB hybrid-coupled power combiner is proposed forthe first time and a set of state equations describing this nonlinear system are derived.Nonlinear analysis on the hybrid-coupled power combiner is performed by using the Routh-Hurwitz stability criterion. All the operation parameters, such as the output power, thecombining efficiency, the operating frequency and the bandwidth, are calculated correctly.Therefore, it is possible to fulfil the computer-aided analysis (CAA) and the computer-aideddesign (CAD) of complex corporation and tandem power-combining systems.
基金supported by the National Natural Science Foundation of China(No.61370045)the National Key R&D Program of China(No.2017YFF0104600)
文摘Compared with end pumping fiber combiner, one of the advantages for side pumping combiner is the unlimited pumping points, which means multi-point or cascaded side pumping can be realized. However, the loss mechanism of the cascaded structure is rarely discussed. In this paper, we present the numerical and experimental investigation about the loss mechanism of a two-stage-cascaded side pumping combiner based on tapered-fused technique. The influence of loss mechanism on the coupling efficiency and thermal load of the fiber coating is analyzed according to simulations and experiments with different tapering ratios for the first stage. Based on the analysis, a cascaded component with total pump coupling efficiency of 96.4% handling a pump power of 1088 W is achieved by employing 1018 nm fiber laser as the pump source. Future work to further improve the performance of a cascaded side pumping combiner is discussed and prospected.
基金Supported by National Natural Science Foundation of China(11079034)
文摘Cavity combiners have been put forward for high power combining due to their advantages of larger combining ability, variable input channels and less power loss. For a high power cavity combiner, it is better to keep the power loss ratio in a reasonable range, because large power loss would lead to strict requirements on the cooling system. A combiner with variable input channels is convenient for outputting different power levels according to practical demands. In this paper, a method for designing a variable-channel high-power cavity combiner is proposed, based on the relation between input and output coupling coefficients obtained by analyzing the equivalent circuit of the cavity combiner. This method can put the designed cavity combiner in a matching state and keep its power loss rate in a reasonable range as the number of input channels changes. As an example, a cavity combiner with 500 MHz and variable input channels from 16 to 64 is designed, and the simulation results show that our proposed method is feasible.
文摘Side pumping combiners are widely used in fiber laser schemes for their high coupling efficiency, low insertion loss, and multi-point pumping capability. However, side pumping combiners perform differently in coupling efficiency when pumping with a laser diode(LD) and a high-brightness 1018 nm Yb-doped fiber laser(YDFL). In this paper, for the first time, to the best of our knowledge, we investigated the different parameters to fabricate the(2 + 1) × 1 combiner with high coupling efficiency when pumping with an LD and a YDFL, respectively. After optimization, the maximum coupled pump power from one single-pump port of the combiner was 1200 W and 2730 W when pumping with a LD and a YDFL, respectively.
基金financially supported by the Excellent Youth Scholars Program of State Key Laboratory of Complex Nonferrous Metal Resource Clean Utilization,Kunming University of Science and Technology,China(No.YXQN-2024003)the Central Government-Guided Local Science and Technology Development Fund Project,China(No.202407AB110022)。
文摘The rapid advancement of modern science and technology,coupled with the recent surge in new-energy electric vehicles,has significantly boosted the demand for lithium.This has promoted the development and efficient utilization of lepidolite as a lithium source.Therefore,the processes for the flotation of lepidolite have been studied in depth,particularly the development and use of lepidolite flotation collectors and the action mechanism of the collectors on the lepidolite surface.Based on the crystal-structure characteristics of lepidolite minerals,this review focuses on the application of anionic collectors,amine cationic collectors(primary amines,quaternary ammonium salts,ether amines,and Gemini amines),and combined collectors to the flotation behavior of lepidolite as well as the adsorption mechanisms.New directions and technologies for the controllable flotation of lepidolite are proposed,including process improvement,reagent synthesis,and mechanistic research.This analysis demonstrates the need for the further study of the complex environment inside lepidolite and pulp.By using modern analytical detection methods and quantum chemical calculations,research on reagents for the flotation of lepidolite has expanded,providing new concepts and references for the efficient flotation recovery and utilization of lepidolite.
基金supported by Open Scientific Research Program of Military Logistics,No.BLB20J009(to YZhao).
文摘Blood-brain barrier disruption and the neuroinflammatory response are significant pathological features that critically influence disease progression and treatment outcomes.This review systematically analyzes the current understanding of the bidirectional relationship between blood-brain barrier disruption and neuroinflammation in traumatic brain injury,along with emerging combination therapeutic strategies.Literature review indicates that blood-brain barrier disruption and neuroinflammatory responses are key pathological features following traumatic brain injury.In the acute phase after traumatic brain injury,the pathological characteristics include primary blood-brain barrier disruption and the activation of inflammatory cascades.In the subacute phase,the pathological features are characterized by repair mechanisms and inflammatory modulation.In the chronic phase,the pathological features show persistent low-grade inflammation and incomplete recovery of the blood-brain barrier.Various physiological changes,such as structural alterations of the blood-brain barrier,inflammatory cascades,and extracellular matrix remodeling,interact with each other and are influenced by genetic,age,sex,and environmental factors.The dynamic balance between blood-brain barrier permeability and neuroinflammation is regulated by hormones,particularly sex hormones and stress-related hormones.Additionally,the role of gastrointestinal hormones is receiving increasing attention.Current treatment strategies for traumatic brain injury include various methods such as conventional drug combinations,multimodality neuromonitoring,hyperbaric oxygen therapy,and non-invasive brain stimulation.Artificial intelligence also shows potential in treatment decision-making and personalized therapy.Emerging sequential combination strategies and precision medicine approaches can help improve treatment outcomes;however,challenges remain,such as inadequate research on the mechanisms of the chronic phase traumatic brain injury and difficulties with technology integration.Future research on traumatic brain injury should focus on personalized treatment strategies,the standardization of techniques,costeffectiveness evaluations,and addressing the needs of patients with comorbidities.A multidisciplinary approach should be used to enhance treatment and improve patient outcomes.
文摘In this paper,we have proposed a hybrid optical wavelength demultiplexer and power combiner for a hybrid timeand wavelength-division multiplexing(TWDM)passive optical network(PON),i.e.,a single passive optical device that functions as a 1×N wavelength demultiplexer for distributing the downstream signal in multiple wavelengths from the optical line terminal(OLT)to the N optical network units(ONUs),and simultaneously as an N×1 power combiner for collecting the upstream signal in the same wavelength from the N ONUs to the OLT.Through a design example of a 32 channel hybrid optical wavelength demultiplexer and power combiner on the silicon-on-insulator platform,our numerical simulation result shows that the insertion loss and adjacent channel crosstalk of the downstream wavelength demultiplexer are as low as 4.6 and-16.3 dB,respectively,while the insertion loss and channel non-uniformity of the upstream power combiner can reach 3.5 and 2.1 dB,respectively.The proposed structure can readily be extended to other material platforms such as the silica-based planar lightwave circuit.Its fabrication process is fully compatible with standard clean-room technologies such as photolithography and etching,without any complicated and/or costly approach involved.
基金supported by the Shaanxi Qinchuang Yuan“scientist+engineer”team construction(No.2023KXJ-080)Shaanxi Chiral Drug Engineering Technology Research Center(Department of Science and Technology of Shaanxi Province.No.[2011]-251).
文摘Background:Human skin is affected by ultraviolet rays on a daily basis,and excessive ultraviolet radiation(UVR)can lead to sunburn erythema,tanning,photoaging,and skin tumors.The combination of Astragali Radix(AR)and Anemarrhenae Rhizoma(AAR)is a common pairing in traditional Chinese medicine(TCM).According to earlier studies,they possess properties capable of alleviating the adverse impacts of UVR on the skin.However,the specific actions and underlying mechanisms require further investigation.The study aims to analyze the efficacy of AR-AAR in preventing UVR-induced skin damage and to clarify the associated molecular mechanisms.Methods:Potential signaling pathways by which AR and AAR may protect against UVR-induced skin damage were identified with network pharmacology,molecular docking techniques and molecular dynamics(MD)simulation.Except the normal group,the back skin of SD rats was exposed to 1.1 mW/cm^(2) UVA combined with 0.1 mW/cm^(2) UVB daily,and the UVR skin damage model was established.Morphological features of skin tissues of different groups were discovered through Hematoxylin and Eosin(HE)staining,Masson staining,Weigert staining.ELISA was utilized to measure the levels of reactive oxygen species(ROS),Interleukin 6(IL-6),Interleukin 1β(IL-1β)and Tumor necrosis factos-α(TNF-α)in skin tissues.RT-PCR and Western blot were employed to quantify the mRNA and protein contents of PI3K,AKT,and MMP-9.Results:Network pharmacology analysis predicts that AR-AAR may improve skin damage induced by UVR through the PI3K/AKT signaling pathway.Histological staining shows that AR-AAR can significantly reduce inflammatory infiltration and fibrosis in damaged skin.Treatment with AR-AAR(2:1)significantly reduced the expression levels of IL-1β,IL-6,TNF-αand ROS in UVR-damaged rat skin.After treatment with AR-AAR(2:1),not only did the relative mRNA expression levels of PI3K and AKT and the protein expression levels of PI3K,AKT,P-PI3K,and P-AKT increase,but the mRNA and protein expression levels of MMP-9 decreased.Conclusion:The study indicate that the AR-AAR combination and its active components may mitigate UVR skin damage by modulating the PI3K/AKT signaling pathway.
基金supported by the National Key Research and Development Program of China(No.2024YFD1701101)the Fund for Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA28010503)+2 种基金the National Natural Science Foundation of China(No.31971515)the Fund for National Key Research and Development Plan of China(No.2019YFC1804100)the Fund for Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(No.CAAS-ZDRW202110).
文摘Atrazine,a persistent triazine herbicide,poses environmental and health risks.This study examines the synergis-tic remediation of atrazine-contaminated soil using green manure plant(GMP)hairy vetch(Vicia villosa Roth,VV)and the exogenous atrazine-degrading bacterium Arthrobacter sp.ATR1.Soil samples contaminated with atrazine at 5 and 20 mg/kg were treated with control(CK),ATR1(CKatr),hairy vetch(VV),and combined hairy vetch and ATR1 remediation(VVatr).The results indicated that the VVatr treatment exhibited the most effective atrazine removal,achieving enhancements of 56.12%at 5 mg/kg and 54.51%at 20 mg/kg compared to CK after 28 days.Soil enzyme activities,including urease,sucrase,and alkaline phosphatase,were significantly elevated in the VV and VVatr treatments,contributing to improved soil quality.Additionally,the CKatr,VV,and VVatr treat-ments enhanced bacterial diversity and richness while altering the microbial community structure.The VV and VVatr treatments notably enriched indigenous atrazine-degrading bacteria and nitrogen-fixing bacteria in the rhizosphere.This microbial enrichment upregulated the Atrazine degradation and Nitrogen metabolism pathways,facilitating both atrazine removal and nitrogen cycling in the soil.And VVatr treatment promoted the stability of the microbial network and enhanced the cooperative relationship between key indigenous atrazine-degrading and nitrogen-fixing bacteria.These findings explain the mechanism of plantmicrobe combined remediation of atrazine-contaminated soil from the perspective of rhizosphere microorganisms and offer a theoretical basis for the practical application of this method.
文摘Radiofrequency ablation(RFA),particularly endoscopic ultrasound-guided RFA(EUS-RFA),has emerged as a promising minimally invasive approach for the treatment of pancreatic cancer,especially in patients with locally advanced or unresectable disease.This review outlines recent technological developments in EUS-RFA,including innovations in energy delivery systems,probe design,and real-time thermal monitoring,which have improved the precision and safety of the procedure.Clinical studies combining EUS-RFA with chemotherapy have demonstrated encouraging outcomes,with improvements in overall survival,progression-free survival,tumor necrosis,and symptom control compared to chemotherapy alone.Additionally,RFA-induced tumor antigen release and modulation of the tumor microenvironment suggest a potential synergistic role with immunotherapy.Despite its promise,the widespread adoption of EUS-RFA is limited by a lack of large-scale randomized controlled trials and standardized treatment protocols.
基金funded by Science and Technology Projects from State Grid Corporation of China,(Research on Adaptive Balance Optimization and Simulation Technology of Industrial community Energy System with High Proportion of Distributed Energy,No.:5100-202355752A-3-4-SY).
文摘To achieve the goals of sustainable development of the energy system and the construction of a lowcarbon society,this study proposes a multi-energy storage collaborative optimization strategy for industrial park that integrates the laddered carbon trading mechanism with demand response.Firstly,a dual dimensional DR model is constructed based on the characteristics of load elasticity.The alternativeDRenables flexible substitution of energy loads through complementary conversion of electricity/heat/cold multi-energy sources,while the price DR relies on timeof-use electricity price signals to guide load spatiotemporal migration;Secondly,the LCT mechanism is introduced to achieve optimal carbon emission costs through a tiered carbon quota allocation mechanism.On this basis,an optimization decision model is established with the core objective of maximizing the annual net profit of the park.The objective function takes into account energy sales revenue,generator unit costs,and investment and operation costs of multiple types of energy storage facilities.Themodel constraint system covers three key dimensions:dynamic operation constraints of power generation units,including unit output limits,ramping capability,and minimum start-stop time;the physical boundary of an electric/hot/cold multi-energy storage system involves energy storage capacity and charge/discharge efficiency;The multi-energy network coupling balance equation ensures that the energy conversion and transmission process satisfies the law of conservation of energy.Using CPLEX mathematical programming solver for simulation verification,construct an energy storage capacity configuration decision process that includes LCT-DR synergistic effect.The research results show that compared with the traditional single energy storage configuration mode,this strategy effectively enhances the economic feasibility and engineering practicality of industrial park operation by coordinating demand side resource scheduling and finely controlling carbon costs,while maintaining stable system operation.Its methodological framework provides a technical path that combines theoretical rigor and practical operability for the low-carbon transformation of regional integrated energy systems.
基金supported by the National Natural Science Foundation of China,No.82002645China Postdoctoral Science Foundation,No.2022M722321Jiangsu Funding Program for Excellent Postdoctoral Talent,No.2022ZB552(all to YH)。
文摘Spinal cord injuries have overwhelming physical and occupational implications for patients.Moreover,the extensive and long-term medical care required for spinal cord injury significantly increases healthcare costs and resources,adding a substantial burden to the healthcare system and patients'families.In this context,chondroitinase ABC,a bacterial enzyme isolated from Proteus vulgaris that is modified to facilitate expression and secretion in mammals,has emerged as a promising therapeutic agent.It works by degrading chondroitin sulfate proteoglycans,cleaving the glycosaminoglycanchains of chondroitin sulfate proteoglycans into soluble disaccharides or tetrasaccharides.Chondroitin sulfate proteoglycans are potent axon growth inhibitors and principal constituents of the extracellular matrix surrounding glial and neuronal cells attached to glycosaminoglycan chains.Chondroitinase ABC has been shown to play an effective role in promoting recovery from acute and chronic spinal cord injury by improving axonal regeneration and sprouting,enhancing the plasticity of perineuronal nets,inhibiting neuronal apoptosis,and modulating immune responses in various animal models.In this review,we introduce the classification and pathological mechanisms of spinal cord injury and discuss the pathophysiological role of chondroitin sulfate proteoglycans in spinal cord injury.We also highlight research advancements in spinal cord injury treatment strategies,with a focus on chondroitinase ABC,and illustrate how improvements in chondroitinase ABC stability,enzymatic activity,and delivery methods have enhanced injured spinal cord repair.Furthermore,we emphasize that combination treatment with chondroitinase ABC further enhances therapeutic efficacy.This review aimed to provide a comprehensive understanding of the current trends and future directions of chondroitinase ABC-based spinal cord injury therapies,with an emphasis on how modern technologies are accelerating the optimization of chondroitinase ABC development.