期刊文献+
共找到8,451篇文章
< 1 2 250 >
每页显示 20 50 100
Quafu-Qcover:Explore combinatorial optimization problems on cloud-based quantum computers 被引量:1
1
作者 许宏泽 庄伟峰 +29 位作者 王正安 黄凯旋 时运豪 马卫国 李天铭 陈驰通 许凯 冯玉龙 刘培 陈墨 李尚书 杨智鹏 钱辰 靳羽欣 马运恒 肖骁 钱鹏 顾炎武 柴绪丹 普亚南 张翼鹏 魏世杰 增进峰 李行 龙桂鲁 金贻荣 于海峰 范桁 刘东 胡孟军 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期104-115,共12页
We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and c... We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and comprehensive workflow that utilizes the quantum approximate optimization algorithm(QAOA).It facilitates the automatic conversion of the original problem into a quadratic unconstrained binary optimization(QUBO)model and its corresponding Ising model,which can be subsequently transformed into a weight graph.The core of Qcover relies on a graph decomposition-based classical algorithm,which efficiently derives the optimal parameters for the shallow QAOA circuit.Quafu-Qcover incorporates a dedicated compiler capable of translating QAOA circuits into physical quantum circuits that can be executed on Quafu cloud quantum computers.Compared to a general-purpose compiler,our compiler demonstrates the ability to generate shorter circuit depths,while also exhibiting superior speed performance.Additionally,the Qcover compiler has the capability to dynamically create a library of qubits coupling substructures in real-time,utilizing the most recent calibration data from the superconducting quantum devices.This ensures that computational tasks can be assigned to connected physical qubits with the highest fidelity.The Quafu-Qcover allows us to retrieve quantum computing sampling results using a task ID at any time,enabling asynchronous processing.Moreover,it incorporates modules for results preprocessing and visualization,facilitating an intuitive display of solutions for combinatorial optimization problems.We hope that Quafu-Qcover can serve as an instructive illustration for how to explore application problems on the Quafu cloud quantum computers. 展开更多
关键词 quantum cloud platform combinatorial optimization problems quantum software
原文传递
SOME COMBINATORIAL OPTIMIZATION PROBLEMS ARISING FROM VLSI CIRCUIT DESIGN 被引量:2
2
作者 刘彦佩 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1993年第2期218-235,共18页
This paper is basically a survey to show a number of combinatorial optimization problems arising from VLSI circuit design. Some of them including the existence problem, minimax problem, net representation, bend minimi... This paper is basically a survey to show a number of combinatorial optimization problems arising from VLSI circuit design. Some of them including the existence problem, minimax problem, net representation, bend minimization, area minimization, placement problem, routing problem, etc. are especially discussed with new results and theoretical ideas for treating them. Finally, a number of problems for further research are mentioned. 展开更多
关键词 VLSI Circuit Design Rectilinear Embedding Rectilinear Convexity Forbidden Configuration combinatorial optimization.
在线阅读 下载PDF
Decomposition for Large-Scale Optimization Problems:An Overview
3
作者 Thai Doan CHUONG Chen LIU Xinghuo YU 《Artificial Intelligence Science and Engineering》 2025年第3期157-174,共18页
Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale opti... Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale optimization problems are solved using computing machines,leading to an enormous computational time being required,which may delay deriving timely solutions.Decomposition methods,which partition a large-scale optimization problem into lower-dimensional subproblems,represent a key approach to addressing time-efficiency issues.There has been significant progress in both applied mathematics and emerging artificial intelligence approaches on this front.This work aims at providing an overview of the decomposition methods from both the mathematics and computer science points of view.We also remark on the state-of-the-art developments and recent applications of the decomposition methods,and discuss the future research and development perspectives. 展开更多
关键词 decomposition methods nonlinear optimization large-scale problems computational intelligence
在线阅读 下载PDF
Systematic Benchmarking of Topology Optimization Methods Using Both Binary and Relaxed Forms of the Zhou-Rozvany Problem
4
作者 Jiye Zhou Yun-Fei Fu Kazem Ghabraie 《Computer Modeling in Engineering & Sciences》 2025年第6期3233-3251,共19页
Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits.However,when benchmarking these methods,researchers... Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits.However,when benchmarking these methods,researchers use known solutions to only a single form of benchmark problem.This paper proposes a comparison platform for systematic benchmarking of topology optimization methods using both binary and relaxed forms.A greyness measure is implemented to evaluate how far a solution is from the desired binary form.The well-known ZhouRozvany(ZR)problem is selected as the benchmarking problem here,making use of available global solutions for both its relaxed and binary forms.The recently developed non-penalization Smooth-edged Material Distribution for Optimizing Topology(SEMDOT),well-established Solid Isotropic Material with Penalization(SIMP),and continuation methods are studied on this platform.Interestingly,in most cases,the grayscale solutions obtained by SEMDOT demonstrate better performance in dealing with the ZR problem than SIMP.The reasons are investigated and attributed to the usage of two different regularization techniques,namely,the Heaviside smooth function in SEMDOT and the power-law penalty in SIMP.More importantly,a simple-to-use benchmarking graph is proposed for evaluating newly developed topology optimization methods. 展开更多
关键词 Topology optimization Zhou-Rozvany problem BENCHMARKING binary forms relaxed forms power-law penalty heaviside smooth function
在线阅读 下载PDF
Cooperative Metaheuristics with Dynamic Dimension Reduction for High-Dimensional Optimization Problems
5
作者 Junxiang Li Zhipeng Dong +2 位作者 Ben Han Jianqiao Chen Xinxin Zhang 《Computers, Materials & Continua》 2026年第1期1484-1502,共19页
Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when ta... Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when tackling high-dimensional optimization challenges.To effectively address these challenges,this study introduces cooperative metaheuristics integrating dynamic dimension reduction(DR).Building upon particle swarm optimization(PSO)and differential evolution(DE),the proposed cooperative methods C-PSO and C-DE are developed.In the proposed methods,the modified principal components analysis(PCA)is utilized to reduce the dimension of design variables,thereby decreasing computational costs.The dynamic DR strategy implements periodic execution of modified PCA after a fixed number of iterations,resulting in the important dimensions being dynamically identified.Compared with the static one,the dynamic DR strategy can achieve precise identification of important dimensions,thereby enabling accelerated convergence toward optimal solutions.Furthermore,the influence of cumulative contribution rate thresholds on optimization problems with different dimensions is investigated.Metaheuristic algorithms(PSO,DE)and cooperative metaheuristics(C-PSO,C-DE)are examined by 15 benchmark functions and two engineering design problems(speed reducer and composite pressure vessel).Comparative results demonstrate that the cooperative methods achieve significantly superior performance compared to standard methods in both solution accuracy and computational efficiency.Compared to standard metaheuristic algorithms,cooperative metaheuristics achieve a reduction in computational cost of at least 40%.The cooperative metaheuristics can be effectively used to tackle both high-dimensional unconstrained and constrained optimization problems. 展开更多
关键词 Dimension reduction modified principal components analysis high-dimensional optimization problems cooperative metaheuristics metaheuristic algorithms
在线阅读 下载PDF
A Comparative Study of Metaheuristic Optimization Algorithms for Solving Real-World Engineering Design Problems
6
作者 Elif Varol Altay Osman Altay Yusuf Ovik 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期1039-1094,共56页
Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as ... Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as industry,automotive,construction,machinery,and interdisciplinary research.However,there are established optimization techniques that have shown effectiveness in addressing these types of issues.This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues.The algorithms used in the study are listed as:transient search optimization(TSO),equilibrium optimizer(EO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),slimemould algorithm(SMA),harris hawks optimization(HHO),chimp optimization algorithm(COA),coot optimization algorithm(COOT),multi-verse optimization(MVO),arithmetic optimization algorithm(AOA),aquila optimizer(AO),sine cosine algorithm(SCA),smell agent optimization(SAO),and seagull optimization algorithm(SOA),pelican optimization algorithm(POA),and coati optimization algorithm(CA).As far as we know,there is no comparative analysis of recent and popular methods against the concrete conditions of real-world engineering problems.Hence,a remarkable research guideline is presented in the study for researchersworking in the fields of engineering and artificial intelligence,especiallywhen applying the optimization methods that have emerged recently.Future research can rely on this work for a literature search on comparisons of metaheuristic optimization methods in real-world problems under similar conditions. 展开更多
关键词 Metaheuristic optimization algorithms real-world engineering design problems multidisciplinary design optimization problems
在线阅读 下载PDF
Solving Combinatorial Optimization Problems with Deep Neural Network:A Survey 被引量:1
7
作者 Feng Wang Qi He Shicheng Li 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第5期1266-1282,共17页
Combinatorial Optimization Problems(COPs)are a class of optimization problems that are commonly encountered in industrial production and everyday life.Over the last few decades,traditional algorithms,such as exact alg... Combinatorial Optimization Problems(COPs)are a class of optimization problems that are commonly encountered in industrial production and everyday life.Over the last few decades,traditional algorithms,such as exact algorithms,approximate algorithms,and heuristic algorithms,have been proposed to solve COPs.However,as COPs in the real world become more complex,traditional algorithms struggle to generate optimal solutions in a limited amount of time.Since Deep Neural Networks(DNNs)are not heavily dependent on expert knowledge and are adequately flexible for generalization to various COPs,several DNN-based algorithms have been proposed in the last ten years for solving COPs.Herein,we categorize these algorithms into four classes and provide a brief overview of their applications in real-world problems. 展开更多
关键词 combinatorial optimization problem(COPs) pointer network Transformer Graph Neural Network(GNN) Reinforcement Learning(RL)
原文传递
An Adaptive Hybrid Metaheuristic for Solving the Vehicle Routing Problem with Time Windows under Uncertainty
8
作者 Manuel J.C.S.Reis 《Computers, Materials & Continua》 2025年第11期3023-3039,共17页
The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic ... The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic customer demands.These uncertainties make traditional deterministic models inadequate,often leading to suboptimal or infeasible solutions.To address these challenges,this work proposes an adaptive hybrid metaheuristic that integrates Genetic Algorithms(GA)with Local Search(LS),while incorporating stochastic uncertainty modeling through probabilistic travel times.The proposed algorithm dynamically adjusts parameters—such as mutation rate and local search probability—based on real-time search performance.This adaptivity enhances the algorithm’s ability to balance exploration and exploitation during the optimization process.Travel time uncertainties are modeled using Gaussian noise,and solution robustness is evaluated through scenario-based simulations.We test our method on a set of benchmark problems from Solomon’s instance suite,comparing its performance under deterministic and stochastic conditions.Results show that the proposed hybrid approach achieves up to a 9%reduction in expected total travel time and a 40% reduction in time window violations compared to baseline methods,including classical GA and non-adaptive hybrids.Additionally,the algorithm demonstrates strong robustness,with lower solution variance across uncertainty scenarios,and converges faster than competing approaches.These findings highlight the method’s suitability for practical logistics applications such as last-mile delivery and real-time transportation planning,where uncertainty and service-level constraints are critical.The flexibility and effectiveness of the proposed framework make it a promising candidate for deployment in dynamic,uncertainty-aware supply chain environments. 展开更多
关键词 Vehicle routing problem with time windows(VRPTW) hybrid metaheuristic genetic algorithm local search uncertainty modeling stochastic optimization adaptive algorithms combinatorial optimization transportation and logistics robust scheduling
在线阅读 下载PDF
An Improved Artificial Rabbits Optimization Algorithm with Chaotic Local Search and Opposition-Based Learning for Engineering Problems and Its Applications in Breast Cancer Problem 被引量:1
9
作者 Feyza AltunbeyÖzbay ErdalÖzbay Farhad Soleimanian Gharehchopogh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1067-1110,共44页
Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems... Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms. 展开更多
关键词 Artificial rabbit optimization binary optimization breast cancer chaotic local search engineering design problem opposition-based learning
在线阅读 下载PDF
Using Improved Particle Swarm Optimization Algorithm for Location Problem of Drone Logistics Hub 被引量:1
10
作者 Li Zheng Gang Xu Wenbin Chen 《Computers, Materials & Continua》 SCIE EI 2024年第1期935-957,共23页
Drone logistics is a novel method of distribution that will become prevalent.The advantageous location of the logistics hub enables quicker customer deliveries and lower fuel consumption,resulting in cost savings for ... Drone logistics is a novel method of distribution that will become prevalent.The advantageous location of the logistics hub enables quicker customer deliveries and lower fuel consumption,resulting in cost savings for the company’s transportation operations.Logistics firms must discern the ideal location for establishing a logistics hub,which is challenging due to the simplicity of existing models and the intricate delivery factors.To simulate the drone logistics environment,this study presents a new mathematical model.The model not only retains the aspects of the current models,but also considers the degree of transportation difficulty from the logistics hub to the village,the capacity of drones for transportation,and the distribution of logistics hub locations.Moreover,this paper proposes an improved particle swarm optimization(PSO)algorithm which is a diversity-based hybrid PSO(DHPSO)algorithm to solve this model.In DHPSO,the Gaussian random walk can enhance global search in the model space,while the bubble-net attacking strategy can speed convergence.Besides,Archimedes spiral strategy is employed to overcome the local optima trap in the model and improve the exploitation of the algorithm.DHPSO maintains a balance between exploration and exploitation while better defining the distribution of logistics hub locations Numerical experiments show that the newly proposed model always achieves better locations than the current model.Comparing DHPSO with other state-of-the-art intelligent algorithms,the efficiency of the scheme can be improved by 42.58%.This means that logistics companies can reduce distribution costs and consumers can enjoy a more enjoyable shopping experience by using DHPSO’s location selection.All the results show the location of the drone logistics hub is solved by DHPSO effectively. 展开更多
关键词 Drone logistics location problem mathematical model DIVERSITY particle swarm optimization
在线阅读 下载PDF
Learning to Branch in Combinatorial Optimization With Graph Pointer Networks
11
作者 Rui Wang Zhiming Zhou +4 位作者 Kaiwen Li Tao Zhang Ling Wang Xin Xu Xiangke Liao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期157-169,共13页
Traditional expert-designed branching rules in branch-and-bound(B&B) are static, often failing to adapt to diverse and evolving problem instances. Crafting these rules is labor-intensive, and may not scale well wi... Traditional expert-designed branching rules in branch-and-bound(B&B) are static, often failing to adapt to diverse and evolving problem instances. Crafting these rules is labor-intensive, and may not scale well with complex problems.Given the frequent need to solve varied combinatorial optimization problems, leveraging statistical learning to auto-tune B&B algorithms for specific problem classes becomes attractive. This paper proposes a graph pointer network model to learn the branch rules. Graph features, global features and historical features are designated to represent the solver state. The graph neural network processes graph features, while the pointer mechanism assimilates the global and historical features to finally determine the variable on which to branch. The model is trained to imitate the expert strong branching rule by a tailored top-k Kullback-Leibler divergence loss function. Experiments on a series of benchmark problems demonstrate that the proposed approach significantly outperforms the widely used expert-designed branching rules. It also outperforms state-of-the-art machine-learning-based branch-and-bound methods in terms of solving speed and search tree size on all the test instances. In addition, the model can generalize to unseen instances and scale to larger instances. 展开更多
关键词 Branch-and-bound(B&B) combinatorial optimization deep learning graph neural network imitation learning
在线阅读 下载PDF
An Immune-Inspired Approach with Interval Allocation in Solving Multimodal Multi-Objective Optimization Problems with Local Pareto Sets
12
作者 Weiwei Zhang Jiaqiang Li +2 位作者 Chao Wang Meng Li Zhi Rao 《Computers, Materials & Continua》 SCIE EI 2024年第6期4237-4257,共21页
In practical engineering,multi-objective optimization often encounters situations where multiple Pareto sets(PS)in the decision space correspond to the same Pareto front(PF)in the objective space,known as Multi-Modal ... In practical engineering,multi-objective optimization often encounters situations where multiple Pareto sets(PS)in the decision space correspond to the same Pareto front(PF)in the objective space,known as Multi-Modal Multi-Objective Optimization Problems(MMOP).Locating multiple equivalent global PSs poses a significant challenge in real-world applications,especially considering the existence of local PSs.Effectively identifying and locating both global and local PSs is a major challenge.To tackle this issue,we introduce an immune-inspired reproduction strategy designed to produce more offspring in less crowded,promising regions and regulate the number of offspring in areas that have been thoroughly explored.This approach achieves a balanced trade-off between exploration and exploitation.Furthermore,we present an interval allocation strategy that adaptively assigns fitness levels to each antibody.This strategy ensures a broader survival margin for solutions in their initial stages and progressively amplifies the differences in individual fitness values as the population matures,thus fostering better population convergence.Additionally,we incorporate a multi-population mechanism that precisely manages each subpopulation through the interval allocation strategy,ensuring the preservation of both global and local PSs.Experimental results on 21 test problems,encompassing both global and local PSs,are compared with eight state-of-the-art multimodal multi-objective optimization algorithms.The results demonstrate the effectiveness of our proposed algorithm in simultaneously identifying global Pareto sets and locally high-quality PSs. 展开更多
关键词 Multimodal multi-objective optimization problem local PSs immune-inspired reproduction
在线阅读 下载PDF
Enhancing Evolutionary Algorithms With Pattern Mining for Sparse Large-Scale Multi-Objective Optimization Problems
13
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Weixiong Huang Fan Yu Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1786-1801,共16页
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr... Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges. 展开更多
关键词 Evolutionary algorithms pattern mining sparse large-scale multi-objective problems(SLMOPs) sparse large-scale optimization.
在线阅读 下载PDF
Multi-Objective Optimization of Multi-Product Parallel Disassembly Line Balancing Problem Considering Multi-Skilled Workers Using a Discrete Chemical Reaction Optimization Algorithm
14
作者 Xiwang Guo Liangbo Zhou +4 位作者 Zhiwei Zhang Liang Qi Jiacun Wang Shujin Qin Jinrui Cao 《Computers, Materials & Continua》 SCIE EI 2024年第9期4475-4496,共22页
This work investigates a multi-product parallel disassembly line balancing problem considering multi-skilled workers.A mathematical model for the parallel disassembly line is established to achieve maximized disassemb... This work investigates a multi-product parallel disassembly line balancing problem considering multi-skilled workers.A mathematical model for the parallel disassembly line is established to achieve maximized disassembly profit and minimized workstation cycle time.Based on a product’s AND/OR graph,matrices for task-skill,worker-skill,precedence relationships,and disassembly correlations are developed.A multi-objective discrete chemical reaction optimization algorithm is designed.To enhance solution diversity,improvements are made to four reactions:decomposition,synthesis,intermolecular ineffective collision,and wall invalid collision reaction,completing the evolution of molecular individuals.The established model and improved algorithm are applied to ball pen,flashlight,washing machine,and radio combinations,respectively.Introducing a Collaborative Resource Allocation(CRA)strategy based on a Decomposition-Based Multi-Objective Evolutionary Algorithm,the experimental results are compared with four classical algorithms:MOEA/D,MOEAD-CRA,Non-dominated Sorting Genetic Algorithm Ⅱ(NSGA-Ⅱ),and Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ).This validates the feasibility and superiority of the proposed algorithm in parallel disassembly production lines. 展开更多
关键词 Parallel disassembly line balancing problem MULTI-PRODUCT multiskilled workers discrete chemical reaction optimization algorithm
在线阅读 下载PDF
MGOKA:A Multi-Objective Optimization Algorithm for Controller Placement Problem Combining Network Partition with Cluster Fusion in Software Defined Network
15
作者 CHEN Jue XIAO Changwei +1 位作者 QIU Xihe LÜ Wenjing 《Wuhan University Journal of Natural Sciences》 CSCD 2024年第6期589-599,共11页
Software Defined Network(SDN)has been developed rapidly in technology and popularized in application due to its efficiency and flexibility in network management.In multi-controller SDN architecture,the Controller Plac... Software Defined Network(SDN)has been developed rapidly in technology and popularized in application due to its efficiency and flexibility in network management.In multi-controller SDN architecture,the Controller Placement Problem(CPP)must be solved carefully as it directly affects the whole network performance.This paper proposes a Multi-objective Greedy Optimized K-means Algorithm(MGOKA)to solve this problem to optimize worst-case and average delay between switches and controllers as well as synchronization delay and load balance among controllers for Wide Area Networks(WAN).MGOKA combines the process of network partition based on the K-means algorithm with cluster fusion based on the greedy algorithm and designs a normalization strategy to convert a multi-objective into a single-objective optimization problem.The simulation results depict that in different network scales with different numbers of controllers,the relative optimization rate of our proposed algorithm compared with K-means,K-means++,and GOKA can reach up to 101.5%,109.9%,and 79.8%,respectively.Moreover,the error rate between MGOKA and the global optimal solution is always less than 4%. 展开更多
关键词 Software Defined Network Controller Placement problem propagation delay load balance multi-objective optimization
原文传递
Enhanced Arithmetic Optimization Algorithm Guided by a Local Search for the Feature Selection Problem
16
作者 Sana Jawarneh 《Intelligent Automation & Soft Computing》 2024年第3期511-525,共15页
High-dimensional datasets present significant challenges for classification tasks.Dimensionality reduction,a crucial aspect of data preprocessing,has gained substantial attention due to its ability to improve classifi... High-dimensional datasets present significant challenges for classification tasks.Dimensionality reduction,a crucial aspect of data preprocessing,has gained substantial attention due to its ability to improve classification per-formance.However,identifying the optimal features within high-dimensional datasets remains a computationally demanding task,necessitating the use of efficient algorithms.This paper introduces the Arithmetic Optimization Algorithm(AOA),a novel approach for finding the optimal feature subset.AOA is specifically modified to address feature selection problems based on a transfer function.Additionally,two enhancements are incorporated into the AOA algorithm to overcome limitations such as limited precision,slow convergence,and susceptibility to local optima.The first enhancement proposes a new method for selecting solutions to be improved during the search process.This method effectively improves the original algorithm’s accuracy and convergence speed.The second enhancement introduces a local search with neighborhood strategies(AOA_NBH)during the AOA exploitation phase.AOA_NBH explores the vast search space,aiding the algorithm in escaping local optima.Our results demonstrate that incorporating neighborhood methods enhances the output and achieves significant improvement over state-of-the-art methods. 展开更多
关键词 Arithmetic optimization algorithm CLASSIFICATION feature selection problem optimization
在线阅读 下载PDF
MODS: A Novel Metaheuristic of Deterministic Swapping for the Multi-Objective Optimization of Combinatorials Problems
17
作者 Elias David Nifio Ruiz Carlos Julio Ardila Hemandez +2 位作者 Daladier Jabba Molinares Agustin Barrios Sarmiento Yezid Donoso Meisel 《Computer Technology and Application》 2011年第4期280-292,共13页
This paper states a new metaheuristic based on Deterministic Finite Automata (DFA) for the multi - objective optimization of combinatorial problems. First, a new DFA named Multi - Objective Deterministic Finite Auto... This paper states a new metaheuristic based on Deterministic Finite Automata (DFA) for the multi - objective optimization of combinatorial problems. First, a new DFA named Multi - Objective Deterministic Finite Automata (MDFA) is defined. MDFA allows the representation of the feasible solutions space of combinatorial problems. Second, it is defined and implemented a metaheuritic based on MDFA theory. It is named Metaheuristic of Deterministic Swapping (MODS). MODS is a local search strategy that works using a MDFA. Due to this, MODS never take into account unfeasible solutions. Hence, it is not necessary to verify the problem constraints for a new solution found. Lastly, MODS is tested using well know instances of the Bi-Objective Traveling Salesman Problem (TSP) from TSPLIB. Its results were compared with eight Ant Colony inspired algorithms and two Genetic algorithms taken from the specialized literature. The comparison was made using metrics such as Spacing, Generational Distance, Inverse Generational Distance and No-Dominated Generation Vectors. In every case, the MODS results on the metrics were always better and in some of those cases, the superiority was 100%. 展开更多
关键词 METAHEURISTIC deterministic finite automata combinatorial problem multi - objective optimization metrics.
在线阅读 下载PDF
Algorithm and Application in Vehicle Routing Problem: A Review
18
作者 Zhenyu Chen 《Journal of Electronic Research and Application》 2025年第2期166-174,共9页
This paper systematically reviews the latest research developments in Vehicle Routing Problems(VRP).It examines classical VRP models and their classifications across different dimensions,including load capacity,operat... This paper systematically reviews the latest research developments in Vehicle Routing Problems(VRP).It examines classical VRP models and their classifications across different dimensions,including load capacity,operational characteristics,optimization objectives,vehicle types,and time constraints.Based on literature retrieval results from the Web of Science database,the paper analyzes the current state and trends in VRP research,providing detailed explanations of VRP models and algorithms applied to various scenarios in recent years.Additionally,the article discusses limitations in existing research and provides perspectives on future development trends in VRP research.This review offers researchers in the VRP field a comprehensive overview while identifying future research directions. 展开更多
关键词 Vehicle routing problem VRP Delivery route optimization Logistics planning
在线阅读 下载PDF
Bioinspired Discrete Two-Stage Surrogate-Assisted Algorithm for Large-Scale Traveling Salesman Problem
19
作者 Ai-Qing Tian Hong-Xia Lv +2 位作者 Xiao-Yang Wang Jeng-Shyang Pan Václav Snášel 《Journal of Bionic Engineering》 2025年第4期1926-1939,共14页
The Traveling Salesman Problem(TSP)is a well-known NP-Hard problem,particularly challenging for conventional solving methods due to the curse of dimensionality in high-dimensional instances.This paper proposes a novel... The Traveling Salesman Problem(TSP)is a well-known NP-Hard problem,particularly challenging for conventional solving methods due to the curse of dimensionality in high-dimensional instances.This paper proposes a novel Double-stage Surrogate-assisted Pigeon-inspired Optimization algorithm(DOSA-PIO)to address this issue.DOSA-PIO integrates the ordering points to identify the clustering structure method for data clustering and employs a local surrogate model to assist the evolution of the Pigeon-inspired Optimization(PIO)algorithm.This combination enhances the algorithm’s ability to explore the solution space and converge to optimal solutions more effectively.Additionally,two novel approaches are introduced to extend the generalizability of continuous algorithms for solving discrete problems,enabling the adaptation of continuous optimization techniques to the discrete nature of TSP.Extensive experiments using benchmark functions and high-dimensional TSP instances demonstrate that DOSA-PIO significantly outperforms comparative algorithms in various dimensions(10D,20D,30D,50D,and 100D).The proposed algorithm provides superior solutions compared to traditional methods,highlighting its potential for solving high-dimensional TSPs.By leveraging advanced data clustering techniques and surrogate-assisted optimization,DOSA-PIO offers an effective solution for high-dimensional TSP instances,with experimental results confirming its superior performance and potential for practical applications in complex optimization problems. 展开更多
关键词 Traveling salesman problems Pigeon-inspired optimization Surrogate-assisted evolutionary Swarm intelligence
在线阅读 下载PDF
C-SPPO:A deep reinforcement learning framework for large-scale dynamic logistics UAV routing problem
20
作者 Fei WANG Honghai ZHANG +2 位作者 Sen DU Mingzhuang HUA Gang ZHONG 《Chinese Journal of Aeronautics》 2025年第5期296-316,共21页
Unmanned Aerial Vehicle(UAV)stands as a burgeoning electric transportation carrier,holding substantial promise for the logistics sector.A reinforcement learning framework Centralized-S Proximal Policy Optimization(C-S... Unmanned Aerial Vehicle(UAV)stands as a burgeoning electric transportation carrier,holding substantial promise for the logistics sector.A reinforcement learning framework Centralized-S Proximal Policy Optimization(C-SPPO)based on centralized decision process and considering policy entropy(S)is proposed.The proposed framework aims to plan the best scheduling scheme with the objective of minimizing both the timeout of order requests and the flight impact of UAVs that may lead to conflicts.In this framework,the intents of matching act are generated through the observations of UAV agents,and the ultimate conflict-free matching results are output under the guidance of a centralized decision maker.Concurrently,a pre-activation operation is introduced to further enhance the cooperation among UAV agents.Simulation experiments based on real-world data from New York City are conducted.The results indicate that the proposed CSPPO outperforms the baseline algorithms in the Average Delay Time(ADT),the Maximum Delay Time(MDT),the Order Delay Rate(ODR),the Average Flight Distance(AFD),and the Flight Impact Ratio(FIR).Furthermore,the framework demonstrates scalability to scenarios of different sizes without requiring additional training. 展开更多
关键词 Unmanned aerial vehicle Vehicle routing problem Orderdelivery Reinforcement learning MULTI-AGENT Proximal policy optimization
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部