期刊文献+
共找到8,520篇文章
< 1 2 250 >
每页显示 20 50 100
Quafu-Qcover:Explore combinatorial optimization problems on cloud-based quantum computers 被引量:1
1
作者 许宏泽 庄伟峰 +29 位作者 王正安 黄凯旋 时运豪 马卫国 李天铭 陈驰通 许凯 冯玉龙 刘培 陈墨 李尚书 杨智鹏 钱辰 靳羽欣 马运恒 肖骁 钱鹏 顾炎武 柴绪丹 普亚南 张翼鹏 魏世杰 增进峰 李行 龙桂鲁 金贻荣 于海峰 范桁 刘东 胡孟军 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期104-115,共12页
We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and c... We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and comprehensive workflow that utilizes the quantum approximate optimization algorithm(QAOA).It facilitates the automatic conversion of the original problem into a quadratic unconstrained binary optimization(QUBO)model and its corresponding Ising model,which can be subsequently transformed into a weight graph.The core of Qcover relies on a graph decomposition-based classical algorithm,which efficiently derives the optimal parameters for the shallow QAOA circuit.Quafu-Qcover incorporates a dedicated compiler capable of translating QAOA circuits into physical quantum circuits that can be executed on Quafu cloud quantum computers.Compared to a general-purpose compiler,our compiler demonstrates the ability to generate shorter circuit depths,while also exhibiting superior speed performance.Additionally,the Qcover compiler has the capability to dynamically create a library of qubits coupling substructures in real-time,utilizing the most recent calibration data from the superconducting quantum devices.This ensures that computational tasks can be assigned to connected physical qubits with the highest fidelity.The Quafu-Qcover allows us to retrieve quantum computing sampling results using a task ID at any time,enabling asynchronous processing.Moreover,it incorporates modules for results preprocessing and visualization,facilitating an intuitive display of solutions for combinatorial optimization problems.We hope that Quafu-Qcover can serve as an instructive illustration for how to explore application problems on the Quafu cloud quantum computers. 展开更多
关键词 quantum cloud platform combinatorial optimization problems quantum software
原文传递
SOME COMBINATORIAL OPTIMIZATION PROBLEMS ARISING FROM VLSI CIRCUIT DESIGN 被引量:2
2
作者 刘彦佩 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1993年第2期218-235,共18页
This paper is basically a survey to show a number of combinatorial optimization problems arising from VLSI circuit design. Some of them including the existence problem, minimax problem, net representation, bend minimi... This paper is basically a survey to show a number of combinatorial optimization problems arising from VLSI circuit design. Some of them including the existence problem, minimax problem, net representation, bend minimization, area minimization, placement problem, routing problem, etc. are especially discussed with new results and theoretical ideas for treating them. Finally, a number of problems for further research are mentioned. 展开更多
关键词 VLSI Circuit Design Rectilinear Embedding Rectilinear Convexity Forbidden Configuration combinatorial optimization.
在线阅读 下载PDF
Cooperative Metaheuristics with Dynamic Dimension Reduction for High-Dimensional Optimization Problems
3
作者 Junxiang Li Zhipeng Dong +2 位作者 Ben Han Jianqiao Chen Xinxin Zhang 《Computers, Materials & Continua》 2026年第1期1484-1502,共19页
Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when ta... Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when tackling high-dimensional optimization challenges.To effectively address these challenges,this study introduces cooperative metaheuristics integrating dynamic dimension reduction(DR).Building upon particle swarm optimization(PSO)and differential evolution(DE),the proposed cooperative methods C-PSO and C-DE are developed.In the proposed methods,the modified principal components analysis(PCA)is utilized to reduce the dimension of design variables,thereby decreasing computational costs.The dynamic DR strategy implements periodic execution of modified PCA after a fixed number of iterations,resulting in the important dimensions being dynamically identified.Compared with the static one,the dynamic DR strategy can achieve precise identification of important dimensions,thereby enabling accelerated convergence toward optimal solutions.Furthermore,the influence of cumulative contribution rate thresholds on optimization problems with different dimensions is investigated.Metaheuristic algorithms(PSO,DE)and cooperative metaheuristics(C-PSO,C-DE)are examined by 15 benchmark functions and two engineering design problems(speed reducer and composite pressure vessel).Comparative results demonstrate that the cooperative methods achieve significantly superior performance compared to standard methods in both solution accuracy and computational efficiency.Compared to standard metaheuristic algorithms,cooperative metaheuristics achieve a reduction in computational cost of at least 40%.The cooperative metaheuristics can be effectively used to tackle both high-dimensional unconstrained and constrained optimization problems. 展开更多
关键词 Dimension reduction modified principal components analysis high-dimensional optimization problems cooperative metaheuristics metaheuristic algorithms
在线阅读 下载PDF
Combinatorial optimization with dual meanfield dynamics
4
作者 Wen-Biao Xu Zi-Song Shen +1 位作者 Ying Tang Pan Zhang 《Communications in Theoretical Physics》 2025年第12期178-186,共9页
Combinatorial optimization problems and ground state problems of spin glasses are crucial in various fields of science and technology.However,they often belong to the computational class of NP-hard,presenting signific... Combinatorial optimization problems and ground state problems of spin glasses are crucial in various fields of science and technology.However,they often belong to the computational class of NP-hard,presenting significant computational challenges.Traditional algorithms inspired by statistical physics like simulated annealing have been widely adopted.Recently,advancements in Ising machines,such as quantum annealers and coherent Ising machines,offer new paradigms for solving these problems efficiently by embedding them into the analog evolution of nonlinear dynamical systems.However,existing dynamics-based algorithms often suffer from low convergence rates and local minima traps.In this work,we introduce the dual mean-field dynamics into Ising machines.The approach integrates the gradient force and the transverse force into the dynamics of Ising machines in solving combinatorial optimization problems,making it easier for the system to jump out of the local minimums and allowing the dynamics to explore wider in configuration space.We conduct extensive numerical experiments using the Sherrington–Kirkpatrick spin glass up to 10000 spins and the maximum cut problems with the standard G-set benchmarks.The numerical results demonstrate that our dual mean-field dynamics approach enhances the performance of base Ising machines,providing a more effective solution for large-scale combinatorial optimization problems. 展开更多
关键词 combinatorial optimization Ising machines mean field dynamics
原文传递
Decomposition for Large-Scale Optimization Problems:An Overview
5
作者 Thai Doan CHUONG Chen LIU Xinghuo YU 《Artificial Intelligence Science and Engineering》 2025年第3期157-174,共18页
Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale opti... Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale optimization problems are solved using computing machines,leading to an enormous computational time being required,which may delay deriving timely solutions.Decomposition methods,which partition a large-scale optimization problem into lower-dimensional subproblems,represent a key approach to addressing time-efficiency issues.There has been significant progress in both applied mathematics and emerging artificial intelligence approaches on this front.This work aims at providing an overview of the decomposition methods from both the mathematics and computer science points of view.We also remark on the state-of-the-art developments and recent applications of the decomposition methods,and discuss the future research and development perspectives. 展开更多
关键词 decomposition methods nonlinear optimization large-scale problems computational intelligence
在线阅读 下载PDF
Systematic Benchmarking of Topology Optimization Methods Using Both Binary and Relaxed Forms of the Zhou-Rozvany Problem
6
作者 Jiye Zhou Yun-Fei Fu Kazem Ghabraie 《Computer Modeling in Engineering & Sciences》 2025年第6期3233-3251,共19页
Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits.However,when benchmarking these methods,researchers... Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits.However,when benchmarking these methods,researchers use known solutions to only a single form of benchmark problem.This paper proposes a comparison platform for systematic benchmarking of topology optimization methods using both binary and relaxed forms.A greyness measure is implemented to evaluate how far a solution is from the desired binary form.The well-known ZhouRozvany(ZR)problem is selected as the benchmarking problem here,making use of available global solutions for both its relaxed and binary forms.The recently developed non-penalization Smooth-edged Material Distribution for Optimizing Topology(SEMDOT),well-established Solid Isotropic Material with Penalization(SIMP),and continuation methods are studied on this platform.Interestingly,in most cases,the grayscale solutions obtained by SEMDOT demonstrate better performance in dealing with the ZR problem than SIMP.The reasons are investigated and attributed to the usage of two different regularization techniques,namely,the Heaviside smooth function in SEMDOT and the power-law penalty in SIMP.More importantly,a simple-to-use benchmarking graph is proposed for evaluating newly developed topology optimization methods. 展开更多
关键词 Topology optimization Zhou-Rozvany problem BENCHMARKING binary forms relaxed forms power-law penalty heaviside smooth function
在线阅读 下载PDF
MODS: A Novel Metaheuristic of Deterministic Swapping for the Multi-Objective Optimization of Combinatorials Problems
7
作者 Elias David Nifio Ruiz Carlos Julio Ardila Hemandez +2 位作者 Daladier Jabba Molinares Agustin Barrios Sarmiento Yezid Donoso Meisel 《Computer Technology and Application》 2011年第4期280-292,共13页
This paper states a new metaheuristic based on Deterministic Finite Automata (DFA) for the multi - objective optimization of combinatorial problems. First, a new DFA named Multi - Objective Deterministic Finite Auto... This paper states a new metaheuristic based on Deterministic Finite Automata (DFA) for the multi - objective optimization of combinatorial problems. First, a new DFA named Multi - Objective Deterministic Finite Automata (MDFA) is defined. MDFA allows the representation of the feasible solutions space of combinatorial problems. Second, it is defined and implemented a metaheuritic based on MDFA theory. It is named Metaheuristic of Deterministic Swapping (MODS). MODS is a local search strategy that works using a MDFA. Due to this, MODS never take into account unfeasible solutions. Hence, it is not necessary to verify the problem constraints for a new solution found. Lastly, MODS is tested using well know instances of the Bi-Objective Traveling Salesman Problem (TSP) from TSPLIB. Its results were compared with eight Ant Colony inspired algorithms and two Genetic algorithms taken from the specialized literature. The comparison was made using metrics such as Spacing, Generational Distance, Inverse Generational Distance and No-Dominated Generation Vectors. In every case, the MODS results on the metrics were always better and in some of those cases, the superiority was 100%. 展开更多
关键词 METAHEURISTIC deterministic finite automata combinatorial problem multi - objective optimization metrics.
在线阅读 下载PDF
On vector variational-like inequalities and vector optimization problems with (G, α)-invexity 被引量:1
8
作者 JAYSWAL Anurag CHOUDHURY Sarita 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2017年第3期323-338,共16页
The aim of this paper is to study the relationship among Minty vector variational-like inequality problem, Stampacchia vector variational-like inequality problem and vector optimization problem involving (G, α)-invex... The aim of this paper is to study the relationship among Minty vector variational-like inequality problem, Stampacchia vector variational-like inequality problem and vector optimization problem involving (G, α)-invex functions. Furthermore, we establish equivalence among the solutions of weak formulations of Minty vector variational-like inequality problem, Stampacchia vector variational-like inequality problem and weak efficient solution of vector optimization problem under the assumption of (G, α)-invex functions. Examples are provided to elucidate our results. 展开更多
关键词 Minty vector variational-like inequality problem Stampacchia vector variational-like inequality problem vector optimization problem (G α)-invexity vector critical point
在线阅读 下载PDF
Degree-aware Progressive Contrastive Learning for Graph Combinatorial Optimization Problems
9
作者 Shiyun Zhao Yang Wu Yifan Zhang 《Machine Intelligence Research》 2025年第6期1153-1166,共14页
Addressing graph combinatorial optimization problems often poses significant challenges due to the difficulty and high cost of obtaining supervised labels.As a result,unsupervised algorithms have garnered increasing a... Addressing graph combinatorial optimization problems often poses significant challenges due to the difficulty and high cost of obtaining supervised labels.As a result,unsupervised algorithms have garnered increasing attention from researchers.In this paper,we propose a novel unsupervised framework that leverages contrastive learning to address these challenges.Drawing inspiration from traditional exact algorithms,we introduce a vertex-based degree-aware data augmentation method that enables the progressive learning of graph structure features.Furthermore,we incorporate optimal transport theory by using distance measures as the contrastive loss,thereby enhancing the model′s ability to capture local graph structures.Extensive experiments demonstrate the superior performance of our approach in terms of both solution accuracy and inference speed on most graph combinatorial optimization problems,particularly in large-scale graph problems and scenarios where training samples are scarce. 展开更多
关键词 Graph combinatorial optimization contrastive learning graph neural network unsupervised learning machine learning
原文传递
New Meta-Heuristic for Combinatorial Optimization Problems:Intersection Based Scaling 被引量:5
10
作者 PengZou ZhiZhou +2 位作者 Ying-YuWan Guo-LiangChen JunGu 《Journal of Computer Science & Technology》 SCIE EI CSCD 2004年第6期740-751,共12页
Combinatorial optimization problems are found in many application fields such as computer science, engineering and economy. In this paper, a new efficient meta-heuristic, Intersection-Based Scaling (IBS for abbreviati... Combinatorial optimization problems are found in many application fields such as computer science, engineering and economy. In this paper, a new efficient meta-heuristic, Intersection-Based Scaling (IBS for abbreviation), is proposed and it can be applied to the combinatorial optimization problems. The main idea of IBS is to scale the size of the instance based on the intersection of some local optima, and to simplify the search space by extracting the intersection from the instance, which makes the search more efficient. The combination of IBS with some local search heuristics of different combinatorial optimization problems such as Traveling Salesman Problem (TSP) and Graph Partitioning Problem (GPP) is studied, and comparisons are made with some of the best heuristic algorithms and meta-heuristic algorithms. It is found that it has significantly improved the performance of existing local search heuristics and significantly outperforms the known best algorithms. Keywords combinatorial optimization - TSP (Traveling Salesman Problem) - GPP (Graph Partitioning Problem) - IBS (Intersection-Based Scaling) - meta heuristic Regular PaperThis work is supported by the National Basic Research 973 Program of China (Grant No.TG1998030401).Peng Zou was born in 1979. He received the B.S. degree in computer software from University of Science and Technology of China (USTC) in 2000. Now he is a Ph.D. candidate in computer science of USTC. His current research interests include algorithms for NP-hard problems and parallel computing.Zhi Zhou was born in 1976. He received the B.S. degree in computer software from USTC in 1995. Now he is a Ph.D. candidate in computer science of USTC. His current research interests include combinatorial problem and parallel computing.Ying-Yu Wan was born in 1976. He received the B.S. degree in computer software from USTC in 1997, and the Ph.D. degree from USTC in 2002. His current research interests include parallel computing and combinatorial problem.Guo-Liang Chen was born in 1938. Now he is an Academician of CAS and Ph.D. supervisor in Department of Computer Science at USTC, director of the National High Performance Computing Center at Hefei. His current research interests include parallel computing, computer architecture and combinatorial optimization.Jun Gu was born in 1956. He received the B.S. degree in electronic engineering from USTC in 1982, and the Ph.D. degree in computer science from University of Utah. Now he is a professor and Ph.D. supervisor in computer science at USTC and Hong Kong University of Science and Technology. His main research interrests include algorithms for NP-hard problems. 展开更多
关键词 combinatorial optimization TSP (Traveling Salesman problem) GPP (Graph Partitioning problem) IBS (Intersection-Based Scaling) meta heuristic
原文传递
Improved ant colony optimization for multi-depot heterogeneous vehicle routing problem with soft time windows 被引量:10
11
作者 汤雅连 蔡延光 杨期江 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期94-99,共6页
Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a ... Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful. 展开更多
关键词 vehicle routing problem soft time window improved ant colony optimization customer service priority genetic algorithm
在线阅读 下载PDF
Hybrid particle swarm optimization with chaotic search for solving integer and mixed integer programming problems 被引量:21
12
作者 谭跃 谭冠政 邓曙光 《Journal of Central South University》 SCIE EI CAS 2014年第7期2731-2742,共12页
A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.... A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions. 展开更多
关键词 particle swarm optimization chaotic search integer programming problem mixed integer programming problem
在线阅读 下载PDF
Enhanced Butterfly Optimization Algorithm for Large-Scale Optimization Problems 被引量:1
13
作者 Yu Li Xiaomei Yu Jingsen Liu 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第2期554-570,共17页
To solve large-scale optimization problems,Fragrance coefficient and variant Particle Swarm local search Butterfly Optimization Algorithm(FPSBOA)is proposed.In the position update stage of Butterfly Optimization Algor... To solve large-scale optimization problems,Fragrance coefficient and variant Particle Swarm local search Butterfly Optimization Algorithm(FPSBOA)is proposed.In the position update stage of Butterfly Optimization Algorithm(BOA),the fragrance coefficient is designed to balance the exploration and exploitation of BOA.The variant particle swarm local search strategy is proposed to improve the local search ability of the current optimal butterfly and prevent the algorithm from falling into local optimality.192000-dimensional functions and 201000-dimensional CEC 2010 large-scale functions are used to verify FPSBOA for complex large-scale optimization problems.The experimental results are statistically analyzed by Friedman test and Wilcoxon rank-sum test.All attained results demonstrated that FPSBOA can better solve more challenging scientific and industrial real-world problems with thousands of variables.Finally,four mechanical engineering problems and one ten-dimensional process synthesis and design problem are applied to FPSBOA,which shows FPSBOA has the feasibility and effectiveness in real-world application problems. 展开更多
关键词 Butterfy optimization algorithm Fragrance coefcient Variant particle swarm local search Large-scale optimization problems Real-world application problems
在线阅读 下载PDF
Application of the edge of chaos in combinatorial optimization
14
作者 Yanqing Tang Nayue Zhang +2 位作者 Ping Zhu Minghu Fang Guoguang He 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第10期199-206,共8页
Many problems in science,engineering and real life are related to the combinatorial optimization.However,many combinatorial optimization problems belong to a class of the NP-hard problems,and their globally optimal so... Many problems in science,engineering and real life are related to the combinatorial optimization.However,many combinatorial optimization problems belong to a class of the NP-hard problems,and their globally optimal solutions are usually difficult to solve.Therefore,great attention has been attracted to the algorithms of searching the globally optimal solution or near-optimal solution for the combinatorial optimization problems.As a typical combinatorial optimization problem,the traveling salesman problem(TSP)often serves as a touchstone for novel approaches.It has been found that natural systems,particularly brain nervous systems,work at the critical region between order and disorder,namely,on the edge of chaos.In this work,an algorithm for the combinatorial optimization problems is proposed based on the neural networks on the edge of chaos(ECNN).The algorithm is then applied to TSPs of 10 cities,21 cities,48 cities and 70 cities.The results show that ECNN algorithm has strong ability to drive the networks away from local minimums.Compared with the transiently chaotic neural network(TCNN),the stochastic chaotic neural network(SCNN)algorithms and other optimization algorithms,much higher rates of globally optimal solutions and near-optimal solutions are obtained with ECNN algorithm.To conclude,our algorithm provides an effective way for solving the combinatorial optimization problems. 展开更多
关键词 edge of chaos chaotic neural networks combinatorial optimization travelling salesman problem
原文传递
Gradient Gene Algorithm: a Fast Optimization Method to MST Problem
15
作者 Zhang Jin bo, Xu Jing wen, Li Yuan xiang State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China 《Wuhan University Journal of Natural Sciences》 CAS 2001年第Z1期535-540,共6页
The extension of Minimum Spanning Tree(MST) problem is an NP hard problem which does not exit a polynomial time algorithm. In this paper, a fast optimization method on MST problem——the Gradient Gene Algorithm is int... The extension of Minimum Spanning Tree(MST) problem is an NP hard problem which does not exit a polynomial time algorithm. In this paper, a fast optimization method on MST problem——the Gradient Gene Algorithm is introduced. Compared with other evolutionary algorithms on MST problem, it is more advanced: firstly, very simple and easy to realize; then, efficient and accurate; finally general on other combination optimization problems. 展开更多
关键词 combination optimization minimum spanning tree problem extension of minimum spanning tree problem gradient gene algorithm
在线阅读 下载PDF
A Comparative Study of Metaheuristic Optimization Algorithms for Solving Real-World Engineering Design Problems
16
作者 Elif Varol Altay Osman Altay Yusuf Ovik 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期1039-1094,共56页
Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as ... Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as industry,automotive,construction,machinery,and interdisciplinary research.However,there are established optimization techniques that have shown effectiveness in addressing these types of issues.This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues.The algorithms used in the study are listed as:transient search optimization(TSO),equilibrium optimizer(EO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),slimemould algorithm(SMA),harris hawks optimization(HHO),chimp optimization algorithm(COA),coot optimization algorithm(COOT),multi-verse optimization(MVO),arithmetic optimization algorithm(AOA),aquila optimizer(AO),sine cosine algorithm(SCA),smell agent optimization(SAO),and seagull optimization algorithm(SOA),pelican optimization algorithm(POA),and coati optimization algorithm(CA).As far as we know,there is no comparative analysis of recent and popular methods against the concrete conditions of real-world engineering problems.Hence,a remarkable research guideline is presented in the study for researchersworking in the fields of engineering and artificial intelligence,especiallywhen applying the optimization methods that have emerged recently.Future research can rely on this work for a literature search on comparisons of metaheuristic optimization methods in real-world problems under similar conditions. 展开更多
关键词 Metaheuristic optimization algorithms real-world engineering design problems multidisciplinary design optimization problems
在线阅读 下载PDF
Learning-Based Metaheuristic Approach for Home Healthcare Optimization Problem
17
作者 Mariem Belhor Adnen El-Amraoui +1 位作者 Abderrazak Jemai François Delmotte 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期1-19,共19页
This research focuses on the home health care optimization problem that involves staff routing and scheduling problems.The considered problem is an extension of multiple travelling salesman problem.It consists of find... This research focuses on the home health care optimization problem that involves staff routing and scheduling problems.The considered problem is an extension of multiple travelling salesman problem.It consists of finding the shortest path for a set of caregivers visiting a set of patients at their homes in order to perform various tasks during a given horizon.Thus,a mixed-integer linear programming model is proposed to minimize the overall service time performed by all caregivers while respecting the workload balancing constraint.Nevertheless,when the time horizon become large,practical-sized instances become very difficult to solve in a reasonable computational time.Therefore,a new Learning Genetic Algorithm for mTSP(LGA-mTSP)is proposed to solve the problem.LGA-mTSP is composed of a new genetic algorithm for mTSP,combined with a learning approach,called learning curves.Learning refers to that caregivers’productivity increases as they gain more experience.Learning curves approach is considered as a way to save time and costs.Simulation results show the efficiency of the proposed approach and the impact of learning curve strategy to reduce service times. 展开更多
关键词 Home healthcare scheduling and routing problem optimization multiple travelling salesman problem learning curves genetic algorithm
在线阅读 下载PDF
Use the Power of a Genetic Algorithm to Maximize and Minimize Cases to Solve Capacity Supplying Optimization and Travelling Salesman in Nested Problems
18
作者 Ali Abdulhafidh Ibrahim Hajar Araz Qader Nour Ai-Huda Akram Latif 《Journal of Computer and Communications》 2023年第3期24-31,共8页
Using Genetic Algorithms (GAs) is a powerful tool to get solution to large scale design optimization problems. This paper used GA to solve complicated design optimization problems in two different applications. The ai... Using Genetic Algorithms (GAs) is a powerful tool to get solution to large scale design optimization problems. This paper used GA to solve complicated design optimization problems in two different applications. The aims are to implement the genetic algorithm to solve these two different (nested) problems, and to get the best or optimization solutions. 展开更多
关键词 Genetic Algorithm Capacity Supplying optimization Traveling Salesman problem Nested problems
在线阅读 下载PDF
Solving Combinatorial Optimization Problems with Deep Neural Network:A Survey 被引量:1
19
作者 Feng Wang Qi He Shicheng Li 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第5期1266-1282,共17页
Combinatorial Optimization Problems(COPs)are a class of optimization problems that are commonly encountered in industrial production and everyday life.Over the last few decades,traditional algorithms,such as exact alg... Combinatorial Optimization Problems(COPs)are a class of optimization problems that are commonly encountered in industrial production and everyday life.Over the last few decades,traditional algorithms,such as exact algorithms,approximate algorithms,and heuristic algorithms,have been proposed to solve COPs.However,as COPs in the real world become more complex,traditional algorithms struggle to generate optimal solutions in a limited amount of time.Since Deep Neural Networks(DNNs)are not heavily dependent on expert knowledge and are adequately flexible for generalization to various COPs,several DNN-based algorithms have been proposed in the last ten years for solving COPs.Herein,we categorize these algorithms into four classes and provide a brief overview of their applications in real-world problems. 展开更多
关键词 combinatorial optimization problem(COPs) pointer network Transformer Graph Neural Network(GNN) Reinforcement Learning(RL)
原文传递
Improved ant colony optimization algorithm for the traveling salesman problems 被引量:22
20
作者 Rongwei Gan Qingshun Guo +1 位作者 Huiyou Chang Yang Yi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期329-333,共5页
Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is amo... Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is among the most important combinato- rial problems. An ACO algorithm based on scout characteristic is proposed for solving the stagnation behavior and premature con- vergence problem of the basic ACO algorithm on TSP. The main idea is to partition artificial ants into two groups: scout ants and common ants. The common ants work according to the search manner of basic ant colony algorithm, but scout ants have some differences from common ants, they calculate each route's muta- tion probability of the current optimal solution using path evaluation model and search around the optimal solution according to the mutation probability. Simulation on TSP shows that the improved algorithm has high efficiency and robustness. 展开更多
关键词 ant colony optimization heuristic algorithm scout ants path evaluation model traveling salesman problem.
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部