Polyketides have been widely used clinically due to their significant biological activities, but the needed structural and functional diversity cannot be achieved by common chemical synthetic methods. The tool of comb...Polyketides have been widely used clinically due to their significant biological activities, but the needed structural and functional diversity cannot be achieved by common chemical synthetic methods. The tool of combinatorial biosynthesis provides the possibility to produce "unnatural" natural drugs, which has achieved initial success. This paper provides an overview for the strategies of combinatorial biosynthesis in producing the structural and functional diversity of polyketides, including the redesign of metabolic flow, polyketide synthase(PKS) engineering, and PKS post-translational modification. Although encouraging progress has been made in the last decade, challenges still exist regarding the rational combinatorial biosynthesis of polyketides. In this review, the perspectives of polyketide combinatorial biosynthesis are also discussed.展开更多
There is an urgent need for new antifungal agents to treat or combat fungal infection in humans and plants.Antifungal nucleoside antibiotics are an important family of natural products with distinctive structural feat...There is an urgent need for new antifungal agents to treat or combat fungal infection in humans and plants.Antifungal nucleoside antibiotics are an important family of natural products with distinctive structural features.Understanding their biosynthetic machinery is of great importance for the improvement of antibiotics titers.More importantly,it is a requisite for combinatorial biosynthesis to create hybrid nucleoside antibiotics.We herein focus on findings on the natural and designed biosynthesis of this important family of nucleoside antibiotics.展开更多
Tunicamycin,a potent reversible translocase I inhibitor,is produced by several Actinomycetes species.The tunicamycin structure is highly unusual,and contains an 11-carbon dialdose sugar and anα,β-1″,11′-glycosidic...Tunicamycin,a potent reversible translocase I inhibitor,is produced by several Actinomycetes species.The tunicamycin structure is highly unusual,and contains an 11-carbon dialdose sugar and anα,β-1″,11′-glycosidic linkage.Here we report the identification of a gene cluster essential for tunicamycin biosynthesis by high-throughput heterologous expression(HHE)strategy combined with a bioassay.Introduction of the genes into heterologous non-producing Streptomyces hosts results in production of tunicamycin by these strains,demonstrating the role of the genes for the biosynthesis of tunicamycins.Gene disruption experiments coupled with bioinformatic analysis revealed that the tunicamycin gene cluster is minimally composed of 12 genes(tunA–tunL).Amongst these is a putative radical SAM enzyme(Tun B)with a potentially unique role in biosynthetic carbon-carbon bond formation.Hence,a seven-step novel pathway is proposed for tunicamycin biosynthesis.Moreover,two gene clusters for the potential biosynthesis of tunicamycin-like antibiotics were also identified in Streptomyces clavuligerus ATCC 27064 and Actinosynnema mirums DSM 43827.These data provide clarification of the novel mechanisms for tunicamycin biosynthesis,and for the generation of new-designer tunicamycin analogs with selective/enhanced bioactivity via combinatorial biosynthesis strategies.展开更多
Non-ribosomal peptide synthetases(NRPSs)are attractive targets for biosynthetic pathway engineering due to their modular architecture and the therapeutic relevance of their products.With catalysis mediated by specific...Non-ribosomal peptide synthetases(NRPSs)are attractive targets for biosynthetic pathway engineering due to their modular architecture and the therapeutic relevance of their products.With catalysis mediated by specific protein-protein interactions formed between the peptidyl carrier protein(PCP)and its partner enzymes,NRPS enzymology and control remains fertile ground for discovery.This review focuses on the recent efforts within structural biology by compiling high-resolution structural data that shed light into the various protein-protein interfaces formed between the PCP and its partner enzymes,including the phosphopantetheinyl transferase(PPTase),adenylation(A)domain,condensation(C)domain,thioesterase(TE)domain and other tailoring enzymes within the synthetase.Integrating our understanding of how the PCP recognizes partner proteins with the potential to use directed evolution and combinatorial biosynthetic methods will enhance future efforts in discovery and production of new bioactive compounds.展开更多
基金supported by the Major Research Plan of Tianjin(No.16YFXTSF00460)
文摘Polyketides have been widely used clinically due to their significant biological activities, but the needed structural and functional diversity cannot be achieved by common chemical synthetic methods. The tool of combinatorial biosynthesis provides the possibility to produce "unnatural" natural drugs, which has achieved initial success. This paper provides an overview for the strategies of combinatorial biosynthesis in producing the structural and functional diversity of polyketides, including the redesign of metabolic flow, polyketide synthase(PKS) engineering, and PKS post-translational modification. Although encouraging progress has been made in the last decade, challenges still exist regarding the rational combinatorial biosynthesis of polyketides. In this review, the perspectives of polyketide combinatorial biosynthesis are also discussed.
基金supported by grants from the Ministry of Science and Technology of China(2013CB 734001)the National Natural Science Foundation of China(31470206 and 31571281)
文摘There is an urgent need for new antifungal agents to treat or combat fungal infection in humans and plants.Antifungal nucleoside antibiotics are an important family of natural products with distinctive structural features.Understanding their biosynthetic machinery is of great importance for the improvement of antibiotics titers.More importantly,it is a requisite for combinatorial biosynthesis to create hybrid nucleoside antibiotics.We herein focus on findings on the natural and designed biosynthesis of this important family of nucleoside antibiotics.
基金This work was supported by the National Basic Research Program(973 Program)the National Programs for High Technology Research Development Program(863 Program)from the Ministry of Science and Technology,the National Science Foundation of China,the Ministry of Education,the Science and Technology Commission of Shanghai Municipality,and Shanghai Leading Academic Discipline Project B203.
文摘Tunicamycin,a potent reversible translocase I inhibitor,is produced by several Actinomycetes species.The tunicamycin structure is highly unusual,and contains an 11-carbon dialdose sugar and anα,β-1″,11′-glycosidic linkage.Here we report the identification of a gene cluster essential for tunicamycin biosynthesis by high-throughput heterologous expression(HHE)strategy combined with a bioassay.Introduction of the genes into heterologous non-producing Streptomyces hosts results in production of tunicamycin by these strains,demonstrating the role of the genes for the biosynthesis of tunicamycins.Gene disruption experiments coupled with bioinformatic analysis revealed that the tunicamycin gene cluster is minimally composed of 12 genes(tunA–tunL).Amongst these is a putative radical SAM enzyme(Tun B)with a potentially unique role in biosynthetic carbon-carbon bond formation.Hence,a seven-step novel pathway is proposed for tunicamycin biosynthesis.Moreover,two gene clusters for the potential biosynthesis of tunicamycin-like antibiotics were also identified in Streptomyces clavuligerus ATCC 27064 and Actinosynnema mirums DSM 43827.These data provide clarification of the novel mechanisms for tunicamycin biosynthesis,and for the generation of new-designer tunicamycin analogs with selective/enhanced bioactivity via combinatorial biosynthesis strategies.
基金J.C.C.was supported by the National Institute of General Medical Science(NIGMS)of the National Institutes of Health(NIH)under award number 1F31GM13761601A1J.O.S.was supported by the ACS Bridge Program and The Genentech FoundationThis work was supported by the NIGMS of the NIH under award number R01GM095970.
文摘Non-ribosomal peptide synthetases(NRPSs)are attractive targets for biosynthetic pathway engineering due to their modular architecture and the therapeutic relevance of their products.With catalysis mediated by specific protein-protein interactions formed between the peptidyl carrier protein(PCP)and its partner enzymes,NRPS enzymology and control remains fertile ground for discovery.This review focuses on the recent efforts within structural biology by compiling high-resolution structural data that shed light into the various protein-protein interfaces formed between the PCP and its partner enzymes,including the phosphopantetheinyl transferase(PPTase),adenylation(A)domain,condensation(C)domain,thioesterase(TE)domain and other tailoring enzymes within the synthetase.Integrating our understanding of how the PCP recognizes partner proteins with the potential to use directed evolution and combinatorial biosynthetic methods will enhance future efforts in discovery and production of new bioactive compounds.